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Thermodynamic Equations of State for
Real Gases and Liquids

*Newman A. Hall

The quantitative thermodynamic description of
fluids

scientists which has resulted in an elaborate develop-

has presented an analytical problem for

ment of formulations. These have provided varying
degrees of adequacy for the user of thermodynamic
data. Both theoretical and empirical treatments
encounter limitations which ultimately impose bounds
on the accuracy and completeness for any formula-
tion. Nevertheless, the experience provided by the
many attempts to deal with this problem can be
consolidated to establish a coordinated description
based on the most desirable characteristics of the
best theoretical and empirical treatments.

The quantities of basic concern in thermodynamics
are pressure, temperature, density, and the several
established
practice, density and temperature will be accepted

energy functions. In accord with will
as the primary independent variables in the following
discussion. In addition, the secondary independent
variables are suitable composition parameters. The
present treatment will be essentially independent of
variations in composition. It is recognized, of course,
that in process analysis, pressure is more useful than
density as a basic parameter. The transfer, however,
from density and temperature to pressure and
temperature can be accomplished in actual analysis
by direct application of a suitable P-V-T relation.
The complete thermodynamic description of any
values of the free

fluid is known if quantitative

energy
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If pressure, p, 3), and heat capacity, Cy, 4), are-
known as functions of density and temperature, then
by integration the free energy, A, may be sufficiently-
well established for the determination of any other
quantity. It is also useful to make use of the two-
derived quantities, pressure and heat capacity, to-
provide a separation of information into that depen-
dent on intermolecular interactions-the pressure-and.
that dependent primarily on molecular structure-the
heat capacity.

In the present discussion, attention will be restricted:
to the formulation of and the information provided
by the P-V-T, pressure-density-temperature, relation,.
3.

An established starting point for this examination
is that the P-V-T equation of state for real Afluids-

including the complete liquid region from the critical:
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Jensity to the solid phase boundary-can in principle
be expressed by either one of two extensions of the

perfect gas equation:

p=pRT ®

“These extensions are:
I The Virial Equation:

p=p R T (1+Bp+Cp*+Dp+rreeseesenes Yy (D

-where in general the virial coefficients B,C, D, «++ are
functions of temperature and composition.
I The Imperfect Gas Equation:

p=p R TH+p*R (—a'+T 8 —7. bo—01) ®

where o', 8, 7.’ are density functions; 6, is a tem-
perature function becoming small when temperature
becomes very large, and ¢, is a small quantity
«dependent on both density and temperature.

Of these two very generél equations, the Virial is
by far the best known and the most extensively
studied. It is of a form readily indicated by theoretical
studies and much effort has been devoted to the
theoretical development of the virial coefficients.
Their determination becomes difficult beyond the
first two or three and also becomes quite sensitive
to the precise structure of the molecular interaction.
In addition to this problem, the virial equation series
converges slowly except for very low densities. As
.a consequence of these constraints its principal useful
application has been in a density region near the
perfect gas and well removed from liquid phase
.densities greater than the critical. Its value, however,
is fundamental in view of the sound theoretical
foundation. As the application and theory of the
Virial Equation is well set forth in many references,
it will not be considered further here except to the

extent it may be correlated with the second general
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equation.

The Imperfect Gas Equation, 8), has been
developed primarily by correlation and extension of a
variety of semi-empirical equations. However, as
indicated in the analysis to follow, in its general
form it can be shown to be fully compatible with
the Virial Equation and consequently of equal theoret-
ical validity.

The oldest and most familiar extensions of the
equation of state to imperfect gases are the Clausius
and Van der Waals equations. These may be written

respectively as:

p=0 R T/ (1—bp) ()]

and

p+a p*=p R T / (1—bp) am

The Van der Waals equation, 10), which generalizes

the Clausius equation, 9), can also be written:

p=o R T +p* R (2. _4) an

1—-b60 R

h

By inspection, this is a special case of the general
Imperfect Gas Equation, 8), with the density and

temperature functions assuming the values:

«'=a/R B'=b/(1—bp)
a2

0,=0

In a similar manner a very large number of well
known semi-empirical equations can also be shown

to be special cases of the general equation, 8).
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Among these are: semi-empirical equations, the residual function, ¢,
Bertholet is set identically equal to zero. It is not possible, in
general, to make this assumption without theoretical
basis, In fact, even empirical evidence indicates this

a’'=0, B'=b/(1—bp) (%) o
assumption cannot be made. One can, however,

ro’=1, 6,—=a/RT, ;=0 with no loss in generality, write

Redlich-Kwon . ,
g G=p 7 O b p? e Opd-eee as

a’=0, p'=b/(1—bp) a

where 7;” are density functions and 6; are temperature
’

1 — — . . .
7o =—1-}——b7>—’ 6o=a/RT'?, ¢,=0 functions. This series convergence very rapidly so

that one or two terms will provide very high accuracy
for the entire fluid region. The basic approach to
Beattie-Bridgeman the Imperfect Gas Equation appeared in the author’s
Engineering Thermodynamics (Prentice-Hall, 1960).
The same concept with extensive examination of the

a'=A,(1—ap)/R . ..
rate of convergence has appeared in publications of
B'=Bo(1—bp) s the Academy of Sciences of the Soviet Union:
o' =1—Fy p (1—Bp) Thermo-physical Properties c¢f Gaseous and Liquid
Methane, V.A. Zagoruchenko and A.M. Zhuravlev,
Bo=c/T*, 9,=0 and Thermophysical Properties of Air and Air

Components, A.A. Vasserman, Ya.K.Kazavchinskii,

Benedict-Webb-Rubin and V.A. Rabinovich.
The several density functions occurring in the
Imperfect Gas Equation 8) and 18) can be written in

a'=(As+ap-taco’)/R the most general case as power series in density:

B’ =B t+bp ae)
7'=1—c/cs o (L4710 pe" ' =aota; ptay gt =1 a, " 19)
— 2 —

Bo=c/RT? ¢,=0 B =bo-+by p-by 07w =; by o @0
Martin-Hu 7i'=14ci; ptcyp pitenee =X Cai 0" €3))
’ A A A,p? ) '
« Z;(l_;,p)z + (l_s;p)a + (1_;;;)4 The functions, §;, are temperature functions in
B./R Buo/R Bul/R general of a complex nature. However, as noted,
B= ]_—fbp + (1—2—/bp)2 + (l_sf[{p)a + (lfbp)s “fempirically they can be approximated by relatively
«Fsimple forms. In general these functions will satisfy

7'= (1——1bp)2 + (ffézz)z (A7)  “'the conditions:

By=cs exp (—5.475T/ T, ¢,=0
lim 6;=0, lim 6;,,/6;=0 22
T T
It is of interest to note that in all these common
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If the Imperfect Gas Equation, 8), is rearranged,
using 18), 19), 20), and 21), as a power series in
density, a comparison with the Virial Equation, 7),
indicates that the virial coefficients will be given by:

TB=—ay,+ Thy—0b, @23)
TC=—a,+ Tb,—cy, 6—b, @
TD=—a,+ Th,—cyy Op—c;, 6,—0, 25

It is thus evident that in final detail these two
general equations are essentially equivalent.
The application of the Imperfect Gas Equation in

its general form:

p=p R T+ R(—a’+T ' —1y bo—0 71 b10%)
26)

=p R T+p* R(—a'-{-T ,B’—?;‘;o o T 0,,)

requires knowledge of the numerical values of the

density functions:

aly ﬁ,: ro,y Tl’; """ (27)

and the temperature functions:

o, By, soenee (28)

As noted above, conventional semi-empirical equa-
tions of state provide initial approximations for only
the first three density functions and the first
temperature function.

The studies referenced above indicate that the
addition of information on values of the fourth
density function and the second temperature function
will suffice to indicate with very high quantitative
accuracy the behavior of real gases and liquids

throughout the fluid region. In order to obtain a
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high degree of accuracy at high densities, attention.
needs to be given particularly to the several density
functions.

Empirical methods for obtaining formulations for
all these functions have been described by various
authors. These are well summarized in The Properties
of Gases and Liquids, Robert C. Reid and Thomas
K. Sherwood, (McGraw-Hill, 2nd ed., 1966) and in
Design Data for Industry-Property Prediction wiih
Computer Systems, R.C. Reid and L.B. Evans,
(AICKE Today Series, 1970).

While there are many variations in the empirical
approach, essentially the compressibility factor, Z,

is first computed. Since:

Z=_?

m=l+%(—a’+ Tp'—rs bo—p1: 6,02) (29

it follows from the general behavior of 6; at large

temperatures that:

i1 T2 oz
«=lim == 57 0
§'=lim ’;1 @D-

Consequently a graphical correlation with respect
to the reciprocal of the temperature will give the
density functions «/ and f’ from the slope and
intercept of compressibility factor isochores. Once o’
and A’ are determined, the residual quantity

2o=70' bo-+¢1 (32)

may be computed from empirical data. In 32) ¢, will
be a small quantity becoming zero at p=0, consequent-

ly, since by 21) 7,/(0)=1:

8o(TD)=po(0, T (33)



Tt then follows from 22) that

re=kim ¢o(0, T)/9e(0,T) &5

-Successive terms in ¢, can be similarly developed.

The very rapid convergence of the series formulation

P1=p 71 Oyteeeeee (35)

‘15 such, however, that even the first term may be
sufficient in most cases to give good quantitative
accuracy at high liquid densities.

Most available discussions of the several density
and temperature functions have either been of limited
range and of specialized form, as indicated by the
listed semi-empirical equations above, or have been
applied to specific substances. There is a clear need
for a more general treatment of these single variable
functions.

The two density functions «’ and ° can be made
dimensionless by introducing the critical temperature

.and density. The resulting reduced functions

o, = ’T:y ﬁrl=:’3’ Oc (36)

along with the dimensionless functions 7,’, 7, may
be plotted or tabulated against reduced density,
pr=p/p.. Such reduced functions for pure substances
in accordance with the law of corresponding states will
vary only slightly in value subject to their dependence
on the reduced compressibility factor, Z, or other
suitable parameter.

The temperature functions 6, and 6, will also have

reduced forms

Gor="0, Pr/Tt » B,,=0, pcz/ Tc (37)
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They will be functions of reduced temperature,
T,=T/T, and will similarly be dependent on
parameters such as the compressibility factor, Z..

The density and temperature functions may also
be expressed in terms of composition for fluid
mixtures, Such data can be assembled in graphical
form or by semi-empirical formulations.

In summary, the general Imperfect Gas Equation,
26), which has been described, has several advantages
to be emphasized:

1. It is compatible with all the most widely
accepted  existing semi-empirical imperfect gas
equations,

2. It is analytically equivalent to the Virial
Equation of State.

3. By making provision for very accurate deter-
mination of a limited number of general density
functions, as much accuracy as may be desired at
high densities is attainable.

4. Temperature functions which occur may be
determined empirically or by reference to semi-theo-
retically determined virial coefficients.

5. Density and temperature functions occurring
in the general equation may be expressed in reduced
form. They can also consolidate dependence on the
critical compressibility or equivalent factors as well
as on composition.

Further investigation to give explicit attention to
the general nature of the several density and temper-
ature functions will be a promising approach to
substantial advance in the development of equations of

state for real gases and liquids.
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