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1. Introduction

In a Laser Doppler Velocimeter (LDV) laser light
is scattered from particles suspended in the fluid. The
power spectrum of the scattered light contains
information on the motion of the particles and hence
information on molecular and turbulent transport
processes. A schematic view of the measurement
region is shown in Figure 1.

The light received at the detector is a linear sum
of electric fields scattered from each particle in the
illuminated region. The signal at the detector can be
written

Flt)=A cos(w, t+9 () (1)

where A is an amplitude, w, is the laser frequency
and ¢(¢) is the resultant phase.

¢ (t) is the phase that results from properly adding
the phase received from each of the particles. This
phase is determined by the positions of the particles
and the scattering angle, #. For the situation shown
in Figure 1, the phase of light scattered from the ™

particle is

ﬁji: Zra X¢+C (2)
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where X, is the X coordinate of the i particle, 2
the laser wavelength and a is a constant determined
by the optics: a=2 sin (4/2). The resultant phase, ¢,
and amplitude, E, are obtained by summing the
contributions, E; exp ¢ ¢; from the individual illumi-
nated particles. This is most easily seen graphically
by a plot in the complex plane, Figure 2.

If the relative particle positions are fixed and if
the suspending fluid is convecting at some constant

velocity v in the X direction, the signal f(s) is
2ra
f6)=A(t)cos[ (wo+—7 ) 2+C] (3)

2
The term /-ta

v is the frequency change usually

interpreted as the Doppler shift. It is indeed propor-
tional to the velocity and if this were all that
happened, life would be simple indeed! However, as
we mentioned, only the particles in the illuminated
region contribute to the signal. If the particles in the
illuminated region are removed and another set
substituted by convection, the phase of the new signal
is different, since the new particles do not occupy
the same positions as the old set. Further, since the
suspended particles are randomly placed in any real
system, the new phase cannot be predicted solely with
knowledge of the old phase; i.e., the two phase
terms are uncorrelated, Therefore, in a real system
with a finite illuminated volume, the signal (Eq. 3)
only stays correlated with itself at time ¢+ as long
as some particles present in it at ¢ are still present
at time t+z. If the particles maintain their relative
positions, this time is on the order of o/v where ¢
is the characteristic dimension of the illuminated
region in the flow direction.

The power density spectrum of a random signal is
the Fourier transform of the autocorrelation of the
signal. In this case, the autocorrelation is zero for
all times greater than o/v so that the resulting spec-
trum has a width on the order v/s. To a first (but
good) approximation this spectrum is centered at 2za
a/z, so that a measurement of the spectrum can
yield v and o.

Until this point, the particles have been assumed

not to change relative position and that the flow was
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steady.

If we now allow the particles to move relative to
each other (diffuse}, another phenomenon appears.
In undergoing molecular or turbulent motion, the
which

means that the signal loses correlation with itself.

particles loss correlation with themselves,

This contributes to the spectrum of the received
signal. The interpretation of this contribution o the
spectrum in terms of the stochastic properties of
turbulent fluid motion is the purpose of the remainder

of this paper.

2. Theory

The instantaneous A.C. heterodyne current from
the photodetector for a Laser Doppler Velocimeter
may be written [1],
beam E,

assuming a constant reference

i(t) aE(t)E, (t)=+/const. ReS_e'"OP(r (2)), (4)

where 7, (¢£) is the time dependent position of the nth
particle in the system measured with respect to a
The vector K is the scattering
P(r,(¢)) is the
weighting function for the E fields seen by the

laboratory frame.

vector and is fixed by the optics.

photodetector. The weighting function, which can be
complex, is determiend by the optics and can be
computed from first principles. It is essentially the
product of the E field amplitude weighting function
for the two beams that define the sample volume.
The term const. contains terms describing the scat-
tering efficiency of the particles, the quantum efficiency
of the photodetector, etc., which are unimportant
for the present discussion.

By the Weiner-Khinchin theorem, the power density

spectrum of the photodetector current can be written

I(K, w) :.[Rii (Ks ’-') eiwr T, (5)
where

Ri: (K, 7) =const. #{t)i{t+<) 6)

is the autocorrelation of the current. The overbar

denotes a time average.



This now may be written in terms of the particle
positions,

R;;=const. Re [;Zﬂ}e“"""(") ) Plr, (0)) Plra ()]
@)

or

Ri=const. [[Re (e 00" Plr, 0]) P 1) +

2 > m 2 mC08 (K« (75 (0) —7m(0)])) Plry (0)) Prm () ]
(8

Stationarity is assumed. In all but fluid-particle

systems of very high number density, the relative
particle positions can be taken as random. Therefore
the second term in Eq. (8) is vanishingly small
compared to the first term. Note here, that because
of the average, the second term tends to zero even
for the limiting case of very few particles in the
sample volume at one time.

Equation 8 can now be rewritten,

R;;=const. Re"Ze"‘“ﬁ'(”P (ra(0)) P (r,(0) + 47, (c))
&)
where
4, (2) =1, (c) =74 (0).
This expression can be formally evaluated in terms of
two probability density functions:

1) that there is a particle within the volume element

r, r+dr,

Ldr, (10)
2) that a particle in the volume element r, r+dr
moves a distance 47, in time 7,
G (47, o;r) d o7 (11)

The autocorrelation of the photodetector current is

from Equations 9, 10, and 11,

R,;=const. Re pjjz'iK'd;G (47, =;7) P{r)P (r-+4dr (<)) dr

d 47 (12)

3. Laminar Flow

Consider a system in steady, straight laminar flow.

In this case, for the scattering particles normally
used in LDV systems,
G (47, o37) =5 (4F—v (r) 2) (13)

i.e. the particles track the flow. Equation 12 becomes
Ry=const. Rep[e#+P(5) P (r+u(r)) dr (14)

The dependence of v on r takes account of gradi-
ents in the velocity. Detailed calculations of the
spectrum for laminar pipe flow have been presented
in a previous paper [1]. A typical spectrum is shown
in Figure 3. This spectrum demonstrates the effects
of both the finite illuminated region and of a gradient
in the velocity. Here v, is the velocity in the center
of the sample volume and 2,/R is the fractional
distance from the center of the pipe.
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Fig. 3 Spectra observed with laminar pipe flow showing
effects of large sample volume in radial (z) direc-
tion. In each case the sample volume was centered
at 0. lem from centerline of 1 cm pipe, the charac-
teristic dimension, o, in the flow direction was
approximately . 0045 cm and the velocity at the tube
center was 10 ecm/ssc. Note that K-v, is identical

in each case.
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4. Turbulent Flow

We define the average velacity 7 by
Bin =fif—é (dF, 737) dJF (15)

For convenience, J7 will be defined in terms of the
mean velocity 9, and 4r the deviation from the mean

motion
dF=dr+7z (16)

The computations for this section will be done for
9%% (r). This is not a necessary condition, but it
aids in the clarity of the presentation. Equation 12

now becomes

R;;=const. Reﬁb (dr4o7) emiK Urtgok

P(r)Pr+dr+oz)dr d{dr+o7) (17)
In view of Equation 15 we define
G (dr, z) ddr=G (JF, ) d 47 (18)

where G is the probability that a particle moves 4r,
Jr+d4r with respect to the mean motion or in time
7. This definition becomes clear if one notes that
the probability that a particle moves 47 in time ¢ is
identical to the probability that it moves dr with
respect to the mean flow in time .

Equation 17 becomes

R;=const. Re|G(dr,z)e iK-4riko:Q (dr+7)ddr
(19)
where
=[P () Plr+artom)ar (20)

Equation (19) can always be rewritten using the

Fourier convolution and shift theorems as

R,;=const. Re|G (K, 7)e k20 (K—K")dK’,
(21)

where Q, is the Fourier space transform of Q, and

G is the Fourier space transform of G,
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R;; can be shown to tend to zero with increasing

7 for two reasons

1) limUe"'K""” FIK) dK’]=0, (22)

€ -

for any square integrable f(K’),
2) G(K',7) can be shown to be a decreasing function

of = for any K’, in particular X, so that

1im (|G (K", 2)) @, (K' —K) dK') =0 (23)

T o

For the first mechanisum, we have demonstrated in

a previous paper [1], that a characteristic decay time
is

70=20 VU

where o is characteristic dimension of p? in the mean

flow direction. For the second mechanism, the
characteristic decay time can be taken to be when
G(K,7) /G (K, 0)~e+ (24)

. o L A
i.e. when the standard deviation [4K%,)%, of G is

approximately equal to K. But from the theory of

Fourier transforms we know that
GRTE @@ =0 (25)

1
where (dJr%)? is the standard deviation of G (4, ).
The characteristic decay time, t,, for the second
mechanism therefore occurs wehn

K37 (c))i=0(1). (26)

In other words, it is the time when the average
scattering particle has diffused a distance 1/|K| with
respect to the mean motion. Since |K| for a typical
LDV is on the order of 10*cm™!, the second

mechanism causes significant decay of R;; when

(dr?) %510" cm. This length is very small compared
to the normally encountered Lagrangian integral
length scales, /;, which are on the order of the
shear dimension of the flow system. Therefore, no

matter what value 7o takes, R;; decays in at most



the time it takes the average particle to wander a
distance with respect to the mean flow that is very
small compared to the Lagrangian integral length
scale A;. This means that the integrand involved in
the evaluation of Ry; is significantly different from
zero only for times that are short compared to the
Lagrangian integral time scale, 7.

In this case, G(4r,7) can be approximated by an

asymptotic expression for small z/z;.

G(dr,7) aja (dr—v'7) F(v";r) dv’,

(27)

where F(v") is the probability density function for a
turbulent fluctuation v’.

In this section, several simplifying assumptions are
made:

1) G(dr,7) is isotropic

2) the flow is one dimensional

3) the vector K lies in the mean flow direction.
These assumptions are made only for clarity of
presentation and do not represent a restriction on the
method of calculating the spectra.

If the

into equation 19, and that used in equation 5, we

G(dr,z) from equation 27 is substituted

find after some rearrangement

. 1 7 Kﬁ—w+K‘v’ ’

I(K, o) =const. [—2=F(v )QO(W)dv
(28)

where v’=?w,—~—z‘:. The integration variable, o', in

equation 28 can now be interpreted as the fluctuating
velocity. This becomes clear when one recognizes

that the term

K{o+v') —o )

o (29)

o+ Q"(
is the spectrum generated by a flow with a constant
velocity +v’. (See reference 1) Equation 28 gives
the spectrum as a weighted sum of spectra generated
by each velocity present in the sample region. Indi-

vidual particles can change their velocities during

11

their traverse of the sample volume; but since =, <7y
they do not change their velocity significantly over,
7o, the decay time for R;;.

For P=1, a very large sample volume,

I{K, w) =const. —11<— (%‘ﬁ—) (30)

In this case the spectrum has the shape of the pro-
bability density function for the fluctuating velocity
with a scale factor of K.

If K is sufficiently small, G (K, <) and hence R for
turbulent flow, do not decay until times long compared
to 7z. In this case the observed particle motion takes
on a Brownian motion character and Gidr,<) can

be approximated by (4)

G(dr, <) %'_ﬁ'g‘/g_e_%, (31)

where ¢ is the eddy diffusivity. Using equations 31,
21 and 5, the spectrum of the LDV becomes

_ K'%
1K, o) =const. [y Ry
Q. (K'—K)dK'. (32)

For equation 32 to be valid XK must be less than
1/4;. Since Ay is typically greater than 1 cm., it
appears infeasible to measure eddy diffusivities by the
above technique. However the theory presented here
also applies to ultrasonic scattering where small K
A check of the small K limit

predicted here is feasible by ultrasonic techniques.

vectors are possible.
For the Brownian motion of small particles, where
the correlation length is much smaller than 1/K,
the results have been confirmed. [2,3]

5. Calculation for Real Systems

Consider a three dimensional system with a sample
volume having a Gaussian intensity with RMS widths
01 0y, 0, in the three orthogonal directions and with

orthogonal turbulence intensities,

J.KICRE, Vol.11, No.1, Feb. 1973
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the moments of the spectrum can be calculated from
the three dimensional form of equation 28. When the

mean flow is in the X-direction, and when K is in

the X-direction, the mean and second central
moment of the spectrum are
M,=K7, (33a)

VAR=RoZ 4+ L 4 P24 05 UL (g3

40 40% 40% 40}

or

—KiE LT '”__EE__;‘LE "’_—2”_5
VAR=K#%7- 403[1+ﬁz+5, (Z)+% (Z)] (s
These formulae are independent of the particular
form of the fluctuating velocity probability density
F{v').

[1] and are the finite sample volume contribution to

The 92/40% terms have been discussed in ref.

the width of the spectrum. The other terms are the
broadening due to the turbulence. One will notice
that variance is not simply the sum of the square of
the finite volume broadening and the turbuulence

broadening. It contains, in addition, turbulent finite

volume broadening (e.g. v7%/4c2) due to the RMS
velocity fluctuations carrying the scattering centers

across the sample volume. Typically, ¢./0,<0./0y~1

and (v—’_z/gz)"}<0. 05, so the effect of y and z fluctua-
tions is to increase the finite transit time term by
less than 39%. Since, in a well-designed experiment,
the finite transit time broadening is small compared
to the turbulence broadening, the effect of y and =
fluctuations is negligible. Therefore, a good approxi-

mation to the variance of the spectrum is

VAR=K#ZT4+ 2 (34)

45

If the K-vector is in the y direction,

M,=0, (35)
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gz, T°
VAR=K% §+4—012: (36)
The LDV is therefore capable of measuring each
component of the fluctuating intensity independently.
Near the center line of turbulent channel flow, the
gradient in the mean velocity is small. Further F(v')

can be approximated by

v'l sy, .
~[27)'£+2‘’“3J“zv'3]‘1""“7”’“’"" 67

Using equations 37 and 28

o

- t. -
IK o)~ [ " e
V270’2 Y, 2v'2 P

(0:4v')
(202 (K(D,F7:) —0) 2y ;.
sl L
Sine |7.|>|v:| one has
const. 2
B 1 vl
il e Cd
[_20‘3 (K'U'; ;}Kﬁx_m) z]d'()’, (38b>
I{K, o)~
const. (0—K7,)?
~lawr i) ©

= e

V2= (0 2kt P
? 462,

The heterodyne turbulence spectrum in this case is

approximated by a Gaussian with variance (7.2
40

+KY).
channel center. The solid line is a Gaussian fitted to
the data.

Figure 4 is a turbulence spectrum taken

Near the center of a channel, the dependence of
the turbulence intensity on position is not strong, so
that over the sample volume, v’?, can be considered
constant and the gradient in the mean velocity can
be handled as in ref. [17.

gradients in the mean velocity may be present and a

Near walls where large

strong positional dependenc of v’¢ may be also pre-



sent, a more complex model for G(dr,z) must be

used. This will be treated in a later paper.

1.3
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Fig. 4 Spectrum obtained from turbulent flow of water.
Parameters were: =288 cm/sec, Re=85, 700,
0=19.8° 0,=10.4 ym.

Calculated percent turbulence was 2.95 9.

6. Conclusion

The power spectrum of phototube current for a
Laser Doppler Velocimeter (LDV) operating in the
heterodyne mode has been computed for the case of
turbulent flows. It is shown that for normal operating
parameters the spectrum contains information only

on the short time behavior of the fluid motion. To
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examine the long time behavior, i.e., times greater
than the Lagrangian integral time scale of the
turbulence, one must use extremely small scattering
angles.

It should be noted that this paper describes the
power spectrum of a signal averaged over long times.
This includes situations in which there may be a
very few or very many particles in the sample volume
at one time. We have not considered the case of F.
M. detection. With F.M. detection it is possible to
extend the time and length scale of the LDV measure-

ment beyond those indicated in this paper.
7. Acknowledgements

Two of the authors, Robert V. Edwards and John
C. Angus, acknowledge the financial support of the
Office of Naval Research, the National Institute of
Arthritis and Metabolic Diseases (NIH) and the
National Science Foundation. All of the authors wish
the thank the NASA Lewis Research Center, Clevel-

and, Ohio, for their generous cooperation.
References

(1) R.V. Edwards, J.C. Angus, M.]J. French and
J.W. Dunning, Jr.; J. Appl. Phys. 42 (1971)
837-50.

(2) S.B. Dubin, J.H. Lunacek and G.B. Benedek;
Proc. Natl. Acad. Sci. U.S. (1967) 1164-71
(3) J.W. Dunning, Jr. and J.C. Angus; J. Appl.

Phys. 39 (1968) 2479-80.

(4) S. Chandrasekhar; Rev. Modern Phys. 15 (1),

(1943) 1-44. k

J.KIChE, Vol.11, No.1, Feb. 1973






