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Abstract

This paper demonstrates the application of the #-method of convergence to the solution of absorber, stripper,

and liquid-liquid extraction.

By the solution of a wide variety of examples,

it is demonstrated that the ¢-

method is exceedingly fast and converges for all problems of the type which appear to be of commercial

interest.

The 6-method of convergence has been successfully
employed to solve problems in which the indepen-
dent product rates such as the distillate rate of a
conventional distillation column are specified. How-
ever, for columns such as absorbers, strippers and

rates of the
Instead, the

and the flow

liquid-liquid extractors, the total flow
product streams are seldom specified.

operating pressure, number of plates,

rates, compositions, and temperatures of all inlet
streams are specified. By consideration of an absorber
with one plate (an adiabatic flash problem), two
plausible extensions of the #-method of convergence
for a column with any number of plates are deduced.
The first extension of the #-method makes use of a
single 0 and is called the single-6-method and the
second extension makes use of a # for each plate j
and is called the multi-O-method. In this paper the

development and application of the single-#-method
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of convergence is presented.
In both of these methods,
taken to be the independent variables and the

the temperatures are

compositions and total flow rates as the dependent
variables. For each set of assumed temperatures, the
f-method is used in i}ié\ determination of the solution
sets of flow rates and compositions required to satisfy
the component-material balances and equilibrium
relationships. The total flow rates and compositions
so obtained are then used in the enthalpy balances
in the determination of an improved set of temper-
atures by use of the Newton-Raphson method. The
determination of temperatures from enthalpy balances
by use of the Newton-Raphson method was frst
proposed by Sujata(17) and was later used by Friday
et al. (7). More recently, Tomich (19) proposed a
procedure in which the temperatures and vapor rates

are regarded as the independent variables in the



application of the Newton-Raphson method. This
procedure as well as the one proposed by Sujata (17)
constitute variations of the more general method
proposed by Greenstadt et al. (8) wherein the
temperatures, flow rates, and compositions were all
regarded as independent variables. Other variations
of the Newton-Raphson method wherein the temper-
atures and total flow rates were regarded as the
independent variables in the solution of the material
and energy balances have been successfully applied
by Boynton (2), Boyum (3), Newman (14), and
Billingsley et al. (1).

The single-/-method described herein is very fast,
and it converges for all absorber, stripper, and
liquid-liquid extraction problems which appear to be
of commercial interest. Figure 1 shows a typical
column of the type under consideration, and a state-
ment of the type of problem to be solved is as follows.
For the set of specifications P, Vy.y, (¥ne1i), Lo,
{zei}, Ty, T+, and N, it is desired to find the
corresponding product distribution, total flow rates
{V;} and {L}}, and the temperature 7T; of each
plate j (1<j<N). The formulation of the single-4-
method and multi-f-methods of convergence is

suggested by the following analysis.

Special Case of an Absorber with One Plate

The special case of an absorber with one plate
where the specifications are as enumerated above
reduces to the adiabatic flash problem (10) which
may be described by 2¢+3 independent equations in
2¢+3 unknowns. In particular, one set of independent
equations consists of ¢ component material balances,

¢ equilibrium relationships, one enthalpy balance,

and two equations of the form S z;=1 and Y y;=1,
1 i+l

where the ;s and »;’s denote the mole fractions of
the liquid and vapor streams formed by the flash,
respectively.

One of the methods for solving the adiabatic flash
problem consists of regarding the flash temperature
as the independent variable and the total flow rates
and compositions of the liquid and vapor streams

produced by the flash as the dependent variables. On

b

the basis of an assumed flash temperature, the
component-material balances and equilibrium rela-
tionships are solved simultaneously for the corres-
ponding values of the dependent variables. The values
of the total flow rates and compositions so obtained
are then used to compute an improved temperature
by use of the enthalpy balance.

First consider the problem where the temperature
of plate 1 (the one and only plate) is regarded as
fixed, and a solution to the corresponding component-
material balances and equilibrium relationships is to
be found. (This problem is commonly called the
isothermal flash problem.) The component-material

balance for each component is given by
UN+1s it =01+ 1
From the equilibrium y,;=K,;x,;, it is evident that

b L
v; KuV, @

Thus, on the basis of an assumed value for L,/V,,
the corresponding values of [,;/v,; may be calculated
by use of Equation (2). Let the calculated values so
obtained be identified by the subscript “ca” and the

assumed values by the subscript “a”. Then for an

(\LI/ Vl) as
calculated values of v,; may be found by use of the

assumed value, the corresponding set of

following expression which is obtained by rearranging

Equation (1) to the following form

().

The #-method of convergence is applied to this problem

(vli) @™ UE) i+loi (3)

by defining the multiplier ¢ as follows:

)=, ¢

{ (1"11) w}

and {(/s;)..] be in component-material balance, the

By requiring that the corrected flow rates

following formula for (v;)., is obtained.

iy o
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Since 7 is regarded as fixed (at the assumed value),
it is evident that # must be picked such that the
corrected rateds {(v.).} must satisfy the expression

for the dew point temperature,

v e S (V1) co 5y
.:“1 K“ l’ or igl K“ E:l(vh) co

which may be rearranged to the functional form

g0 =% e [1-7] (6)

i=1

When (vy) ., is eliminated from this expression by

use of Equation (5), the following result is obtained.

@ < (N1 i+0) (lclgy)
gl =21, :

),

Uyi

[Alternately g(f) could have been formulated by
requiring that the (/;;).,’s satisfy the bubble point
expression. ] Thus, the desired value of ¢ is that
6>0 which makes g (6) =0. A solution exists provided
the assumed value of 7', lies between the bubble point
and dew point temperatures of the combined feed
(Vws1+Lo). The value of 6 so obtained represents
the solution to the component-material balances and
equilibrium relationships at the fixed value of T,.
Observe that the particular value of (L,/V)), selected
to initiate the trial procedure is immaterial because
the value found for ¢ compensates for the choice of
{L,/V1) .. The truth of this statement is evident upon
examination of the following expression which is
obtained by use of Equations (2) and (4).

(). %=, %

or

(42). =003, @

To initiate the calculational procedure for solving
an adiabatic flash problem, the material balances are

solved as described above for each of two choices of

sEt3st A A 22 1973 43

T, say Ty, and Ty,,. The corresponding sets of
total flow rates and compositions are used to compute
the unbalance G (7)) in the overall energy balance

for each choice of T); namely,
G(Tl) = (V1H1+L1h1) - (VN+1HN+1+L0I10) (9)

A next trial temperature may be found by interpolation
between the points [T}, 1, G (T, ;) Jand [T\, 5, G (T4 2) ]

by use of interpolation regula falsi (5) as follows:

_T4,,G(T,,,) =T,,,G(T,,)) (10)

B 1V A = e o

Thus, it is seen that this procedure in effect reduces
the original set of 2c+3 equations in 2¢+3 unknowns
for an adiabatic flash to one equation [Equation (9)]
in one unknown, the flash temperature. However,
for each choice of the independent variable T, the
2¢+2 equations for the isothermal flash must be
solved simultaneously for the solution sets of
compositions and total flow rates.

For N>>1, the definition given by Equation (3)
may be extended by supposing that the ratio pertains

to the terminal streams leaving the column to give,

() =ol5)., (11)

where 6 is to be selected such that an overall
component-material balance is satisfied and such that
the bubble point function for each plate ; is satisfied
as discussed below. Alternately, it may be supposed
that the ratio given by Equation (4) pertains to the

streams leaving each plate j to obtain,

(&) =0, (). 1<isN)  (2)
where the set of §;’s is to be picked such that all of
the dew point functions are satisfied simultaneously.
The definition given by Equation (11) forms the
basis for the single-6-method of convergence and the
definition given by Equation (12) forms the basis for
the multi-6-method of convergence. The remainder
of this paper is concerned with the development and

description of the single-0-method of convergence



while the multi-6-method will be the subject of a
subsequent paper.

The single-#-method of convergence is analogous to
the adiabatic
flash in that the temperatures are regarded as the

the procedure described above for

dependent variables. For each set of assumed

temperatures {7}, a solution to the component-
material balances and equilibrium relationships is
obtained. The total flow rates and compositiens so
obtained are used to evaluate the enthalpy balance
functions which are in turn used in the prediction
of an improved set of temperatures.

In particular for each plate j, the complete set of
independent equations are as follows: ¢ component-

material balances, ¢ equilibrium relationships, two

. ¢
equations of the form _Z,‘lx,-;zl and ny’izl’ and one
= =

enthalpy balance. Thus, in a manner analogous to
that described for the adiabatic flash for a single
plate absorber, the single-6-method of convergence
reduces the original set of (2c¢+3) N equations in
(2c+3) N unknowns to N equations (the enthalpy
balances) in N unknowns {the temperatures). Again,
however, as in the case of the adiabatic flash, for
any given set of temperatures, it is necessary to
solve the combined set of component-material balances
and equilibrium relationships [(2c+2) N equations)
simultaneously for the solution sets of compositions

and total flow rates.

Material-Balance Equations

The proposed calculational procedure is initiated
by the assumption of a set of vapor rates {V;} and
After the
{L;} corresponding to the set of assumed vapor rates

a set of temperatures {T}. liquid rates
have been computed by use of the total material

balances,
Vim+Lj—V,;—L;=0, (1£j<N) (13)

the component-material balances may be solved for
the component flow rates.

The component-material balances enclosing each
plate of a typical abosrber, stripper, or liquid-liquid

extractor (see Figure 1) may be reduced to a set of

HH 11

equations containing either the set of unknown liquid
rates {[,;} or the set of unknown vapor rates {v;]}
by use of the equilibrium relationship =Kz,

which may be restated in the following forms:
lj,~=A‘,»,»vj,v; 'U)',’=Sj,'lj.‘ (14)

When the first of the two relationships given by
Equation (14) is used to eliminate the /s from the
material balances for plates j=1 through j=N, the
following set of equations is obtained for each

component 7,
— (At Dwytve=—l;

Ay, iy, i (A1) vjitvie, =0,
(2=j=N-1) (15)

Ay_y, Oy i— (Ani+1) Oni=—Oy+1s i

When this set of equations is stated in the matrix
form AX=C, it will be found that the square matrix
A is of tridiagonal form. For matrices of this type,
the solution set of component-flow rates {v;} may be
obtained by use of either Gaussian elimination or the
recurrence formulas obtained by Gaussian elimination
(5,7,10,11). For each component 7, the correponding
liquid flow rates are computed by use of Equation
(14). Let the flow rates so obtained be identified by
{(w;) e and {1 ca}-
The single-6-method of convergence makes use of the
{(@j) e and {{l;)e} in
picking an improved set of total flow rates.

the subscript “ca”; that is,

sets of calculated rates

Except for the formulation of the function g(f),
the development of the single-f-method for the
present application is carried out in an analogous
manner to that shown previously for conventional
The multiplier 6, defined

is subject to the condition that

distillation columns ({10).
by Equation (11),
the corrected rates satisfy the component-material

balances enclosing the entire column,

Unsn ithoi= (Eni) ot (213) o (16)

The following formula for (vy),, is readily obtained
from Equations (11) and (16)
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() m:ﬂﬂf# (17)
Lp{ LNi .
1 ' 6( Ui )m
For any choice of 6, the corresponding value of the

rate (V)

component-flow rates given by Equation (17) over all

total flow is found by summing the

components 7. The corresponding total flow rate
{Ly)., may be computed by sclving Equations (11)
and (16) for (ly,)., followed by the summation over
all components or by use of (V))., and an overall
material balance.

Next, formulas for the calculation of a new set of
total flow rates which are consistent with the corrected
flow rates (V). and (Ly),., are developed as follows.
Let the corrected flow rates for all components ¢

which appear in both phases be defined by:

(@) o=0,( ) (@) (18)

where 7, and o; are at this point undetermined
multipliers. The definitions given by Equation (18)
do imply, however, that

(L)) co=77j£j
(Vj) co=0'j%j (19)

where

-

2= (;t) (©11) o

<

i (i) ca (V11) co

i= Uy

2

From the definition of a mole fraction and the above

relationships, it follows that

(xji) co (L}) o ;
v
_(@ide (*ji.)m i) e (20)
(in) 0™ (V_,-) w —“E—C)Tj—

et M 11A H 22 1973 49

The multipliers o;,, and g; are related by a total
material balance enclosing the top of the column and

any plate j as follows.

‘7j+1qgj+1_?j—gj“[(vx) m_LoJ =0 (21)

For any choice of 4, the values of the quantities

(Vo Yjuy and £; may be computed, and thus
Equation (21) reduces to one equation in two
unknowns, o¢j;, and y; Consequently, infinitely

many choices of values of these variables exist which

Equation (21). Of the

the following one

will satisfy choice or

relationships investigated (13),

(1=j£N-1) {22)

ag j+1=*l*_,

i

gave the most satisfactory results for the absorber
problems. This relationship is in agreement with the
fact that at convergence a;,, x ;=1 (also, at
Other
this relationship are given in Appendix A. When
Equations (21) and (22)

following formula is obtained.

convergence o, =9;=1). characteristics of

are solved for 7y, the

& VBT,

nj= 2—01 i23)

where

K= (Vl) m—LD~
Also, observe that Equations (11) and (18) require
that yn=0 and o,=1. Thus, for each choice of /,
corresponding sets of compositions and total dow

rates may be computed by use of Equations {17)
through (23).

Formulation of the g Function

The formulation of the function g(¢) for the
determination of ¢ is analogous to that demonstrated
for the isothermal flash problem. However, instead

of only one bubble point function, there exist N

bubble point functions to be satisfied by the choice

of 6; namely,



F=SUK) o(z) =1, (1SF<N) (24)

i=1

(Again, as in the case of the flash problem, the
dew point functions could have been used instead of
the bubble point functions.) By use of the definitions
(lji) ca™ (Aji) P

the assumed K-values may be eliminated to

of (z;) (¥j)cor and the fact that
(’Uj{) cas

give

f,=(%,j%)a(—q3’—)—1, (1=j<N) (25)

.

The expressions given by Equation (25) are more
rapidly evaluated than those given by Equation (24).
The g function may bLe defined as the arithmetic
average of the square of the Euclidean norm of the

bubble point functien,

g(6) =

|

pavyd (26)

=

Prier to convergence, it is generally impossible to
find a single # such that f(8)=0,

for all j. Thus, at the end of any given trial prior

simultaneously,
to convergence, a 6 is picked such that g(f) is
minimized.

The method wused to find the 6 closest to unity
for which g(#) is minimized should be regarded as
peripheral to the single-f-method of convergence.
Many suitable methods have been proposed for the

minimization of a function of a single variable (20).

The methods used by the authors consisted of (a) ‘-

the successive approximation of the minimum through
the use of a parabolic approximation and (b) “The
Golden Section” (20).

In order to apply each of these methods, it is first
necessary to locate a finite interval that contains the
minimum. The parabolic method is initiated by
choosing three values of # denoted by 0,_,<<6,<6n4s1,
where 7,=1.0. If the corresponding values of the g
functions indicates that a minimum lies between ¢,_,
and 4,.,, the minimum is estimated by use of the
expression obtained by curve fitting the equation of
a parabola. If, however, the g function increases or

decreases monotonically in the interval 6,., to 0.+,

75 13

it is searched in the direction it decreases by varying
6 by preassigned increments until either an interval
containing the minimum has been located or a
In the
solution of the illustrative examples, a maximum of
eight values of 6 lying between 0.97 and 1.03 were

preassigned number of #’s has been tried.

tested. The rate of convergence of a given problem
did not depend strongly on the size of the increment
in # which was employed, but it was necessary to
make a sufficient number of trials to find 6 to the
desired accuracy as convergence of the problem was
approached.

After the desired value of # has been found, the
corresponding set of total flow rates are computed as
indicated by Equations (17} through (23). On the
basis of the total flow rates so obtained and the
assumed temperature profile, the component-material
balances (Equation (15)) are solved and the 6-method
applied again. This procedure is repeated until the
convergence criteria for the material balance equations
have been satisfied. The compositions and total flow
rates so obtained are used in the enthalpy balances in

the determination of an improved set of temperatures.

Determination of an Improved Set
of Temperatures

The enthalpy balances,

VimHj+Lohjey— V;H;— Lk ;=0,
(1=jsN) (27)

are employed to predict an improved set of temper-
atures by use of the Newton-Raphson method. In
the application of this method, the enthalpy balances

are restated in functional notation as follows:

Gj= Vj+1Hj+1+Lj-1hj_.1" VjHj_L]hj,
1=jsN) (28)

The Newton-Raphson equation is given by
JgnAXn:Cn (29)

where the subscript # denotes the nth iteration

through the column. The matrix B, contains the

J.KIChE, Vol.11, No.2, Apr. 1973
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partial derivatives of the G,’s with respect to the
T;s, and it is a tridiagonal matrix which is square
and of order N. The matrices C, and 4X, are
conformable column vectors which have the following

representation.
C,=(—G) (=G (=GN)]T
4X,= 4T\ 4T, --4TN)T {30)
AT ;=T =T} or

In the development of the formulas for the partial
derivatives of the G;’s with respect to the tempera-
tures, only the dependency of the enthalpies of the
pure components was taken into account; that is, the
dependency of the total flow rates and compositions
on temperature was neglected in the manner as
originally suggested by Sujata (17). The functions
G; which appear in C, and their derivations which
appear in B, are evaluated on the basis of the most
recent set of temperatures used to solve the component-
material balances and the final sets of compositions
and total flow rates so obtained. The set of temper-
atures found by one application of the Newton-
Raphson method becomes the assumed set to be used
for the next trial through the column. A summary
if the steps of the proposed calculational procedure
follows.

1. Assume a set of temperatures {7} and a set of
vapor rates {(V,).}. Compute the corresponding
set of liquid rates {(L;).} by use of the total
material balances given by Equation (13). Solve
Equation (15) for the component flow rates for
each component 7 and denote them by {(v;;).}.

Then compute the corresponding flow rates

{ 1) ca

phase by use of relationship: (/i) =

for each component i in the liquid
(A ji) a ("sz') ca
2. On the basis of the sets of calculated flow rates
{(v;) ca} and {(l;:)c} found in Step 1, the set
of assumed vapor rates {(V;).} and corresponding
liquid rates {(L;).} used in Step 1, find the #
Then

compute the corresponding corrected values of

closest to unity which minimizes g (6).

total flow rates.
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3. Repeat Steps 1 through 3 until the convergence
criterion for the material balances has been
satisfied. [In practice, a total of five iterations
were made. ]

4. Use the final sets of corrected compositions and
total flow rates found in Steps 1 through 4 and
the temperature profile assumed in Step 1 through
4 and the temperature profile assumed in Step 1
to evaluate the G, functions and an improved set
of temperatures by applying the Newton-Raphson
method one time.

5. If each of the temperatures found in Step 4
differs by no more than a preassigned amount
from the corresponding ones assumed in Step 1,
convergence has been achieved. Otherwise,

repeat Steps 1 through 4 on the basis of the

most recent sets of temperatures and total flow
rates until the convergence criteria have Leen

satisfied.

Table 1. Statement of Examples 1 aond 2
1. Statement of Example 1:

Component Vw41, i (Ib-moles/hr) ‘ 15; (Ib-moles. hr)
CO, ‘ 14.08154 | 0.0
N, 5. 45767 0.0
CH, 2655. 8245 0.0
C,Hg 199. 85249 0.0
CsHg 83. 19560 0.04345
~C4Hipo 19. 08945 0.01889
2~CeHyo 10. 94352 0.03778
~CsHp2 3. 46664 0.20024
a~CsHia 1.51297 0.18324
CeHyy 0. 43565 4.47708
CiHig 0. 24159 17.17535
CgHyg 0. 05973 54. 53534
CoHyp 0.00086 ! 50. 49841
CioHz ] 0. 00042 E _61.73645

1 2994.16259 | 188, 9063

Initial temperature profile:
T;=25°F (1£j<N). Initial vapor rates are linear
between V,=2721 and Vi1 To=2.9°F, Tn.,=0°F,
N=8, Column Pressure=800 psia, and E;=1 for
The curve fits for the A-values and

and 3 of Reference

all 7 and j.

enthalpies given in Tables 1,2,

£ (13) were used.



I1. Statement of Example 2:

Same as Example 1 except that N=20.

8/ 15

Table 2. Stot t of

ples 3 Through 11

Example Number

Component 3 4 ‘

UNasi lo; ; UNs i lo; UNaly i loi \[ VNt i Io; LI lo;
Single-Pnase Light | 0 0 0 0 70 0 ‘ 0 0 0 0
CH, ‘ 70 0 70 0 0 0| 1 0 0.1 0
C,Hg 15 0 15 0 15 0o ! 4 0 0.5 0
CsHy 10 0 10 0 10 o | 10 o 24 0
»~CeHio 4 0 4 0 4 0 15 0 7.5 0
n~CsHyg 1 0 1 0 1 0 20 0 | 445 0
CoHye ‘ 0 0 0 0 0 0 0 0 0 0
CqHy i 0 0 0 0 0 0 0 0 0 0
CsHyg { 0 20 0 0 0 20 0 0 0 65
500 ! 0 0o 0 0 0 0 0 0o 0 0
Single-Phase Heavy} 0 0 0 20 | 0 0 0 0 0 0
To, °F 90 ; 90 1 90 J 350 415
Tya1, °F —7.79 ! —6.34 . —5.0 | 370 425
N 8 8 | 8 | 8 8
Initial {T; °F Linear between Linear between Linear between ;. Tj=350, (127 N)| T;=400, (1<j<N)

T,=100 and Ty=80 T,=100 and Ty=80 T;=100 and Ty=80
Initial {V} Linear between Linear between | Linear between " Linear between Linear between

V=80 and Vy_;

V1==80 and Vy.;

V=80 and Vy,y i V3=80 and Vy,, V=80 and Vy.;

Table 2. (CONT’D.)
Example Number { Other Specifications
Component 8 9, 10 l 11 The column pressure far Example 3 through 10 was 300
VNats i loi | Uyeni loi psia. The equilibrium and enthalpy data in Tables A-4
Single-Phase Light 0 0 18. 47 0 and A-8 of Reference (10) were used. The enthalpy of
CH, 0.1 0 0 0.01 | the single-phase light of Example 5 was taken to be
Catle 05 0, 0 017 1 to that of methane. The enthalpy of the singl
CoHs 2.4 0 0 1.30 equal to that of methane. ¢ enthalpy of tne single-
~CiHyo 7.5 0 0 2.38 phase heavy of Example 4 was taken to be equal to that
»~Cst 54.5 0 0 L.75 of normal octane. The column pressure for Example 11
Cetiy 0 0 0 2.35
Cotye ! 0 0 0 9.55 was 50 psia. The equilibrium and enthalpy data for this
.CyHyg ' 0 33 0 0 example were taken from Tables A-1 and A-8 of
500 { 0 0 0 82.24 i )
: Refer . T thalpy f hick is giv
Single-Phase Heavy' 0.0 0.0 0 o eference (10) he enthalpy for steam which is given
| ; on page 220 of Reference (10) was used. For each of the
To, °F i 395 i 370 1
Ty, °F ; 405 : 500 | feed entrance plates 1 and N, it was assumed that the
N J §=?2 ]{gi E’; g s respective feeds Lo and Vy,; mixed periectly with the
| N=20 for Ex.10 } liquid on the respective plates, and that a state of
Initial (T} | Tj=400, (1Si=N} | Linear between
i T;=340, Ts=2375 i equilibrium existed between the total vapor and total
Initial 1V} %’1::21(') iz)iilt;ve\s:q : %1:‘:.?31(') T:;:t&w%/e:u ‘ liquid streams leaving each of these feed plates.

J.KIChE, Vol.11, No.2, Apr. 1973



} Example 1 i Example 3 Example 6 Example 11
If\%?fe\ v | : -
T bymoles/hy | 15 CF) | (bmoles/h) | T ) (1b.mofesh) ‘ T CF) | (tpmofes ko)
1 27929 | 2721.08  107.636 85.000 = 364.228 | 8.282 | 368007 | 23.268
2 31. 043 ! 2755. 22 111. 436 89. 813 367. 777 27.234 ‘ 367.294 19.120
3 30. 900 : 2789.35 - 112.494 90. 506 370. 966 €0.665 .  366.909 17. 762
4 29.597 ‘ 2823.48 - 112.131 90. 785 i 374.494 33. 420 . 366.628 17. 083
5 27.665 : 2857. 61 110. 224 90. 999 ‘ 378. 611 36.263 \ 366. 361 i 16. 629
6 23.101 2891.74 105. 816 91. 284 1 382. 796 39.673 ‘ 365. 029 ‘ 16. 235
7 21.468 i 2923. 88 96. 433 O1. 812 384. 708 43.981 ‘ 365.403 | 15.791
8 15. 320 2950. 01 74. 365 93.186 | 377.632 49. 387 § 359.832 ! 15.102
Table 4, Comparison of the Colculational Procedures for the Determination of Product Distributions
Ex%mple% : mi-xifthod ' Sujata (17) | § Tomic\h (19)
Ro. } uq “ Eei;r:e ! Number of Trials | Time ' u;nber i Time
Trials ( ) | | (sec.) Trials ! (sec.)
1 7 14.9 ! 10 23.8 (32) | (41)
2 | 20 67.3 i 23 126. ¢ — ‘ -
3 7 9.2 | 7 12.2 | 23 1 an
4 7 85 ! 6 S N 23 (18)
5 8 1.1 6 Lo10.8 v‘ 23 (19}
6 9 14.6 20 21.0 45 (27}
7 17 | 24. 4 Cycling at the end of 50 trials; T, varied about 16°F — | (24) | (19)
: : i every five trials. : | ;
g 11 ‘ 16.2 ' Same as Example 7 except that T, varied about 4°F | — (24) l (19)
! . every four trials. ‘ ‘
9 14 27.2 Same as Example 7 except that T; varied about 50°F — (39) 1 (28)
' i every four trials. ; ) z
10 v 20 48.0 | Temperatures on plates 2 through 10 went off of the | = - | _
‘ . curve fits at the end of the 25th trial. ‘ | }
o 3 4.0 4 .68 ~ -
Table 5. Indepzndent Comparison of the Methods of Sujata (17) and Tomich (19)*
Example ‘ . Sujata (17)-2 ‘ ) Tomich (19)%* ; Tomich (19) .34
No. (Used curve fits stated in (Uted curve fits stated in ! (Used data of
Tables 1 and 2) Tables 1 and 2) Ref. (8))
i Number of Trials ‘ Time (sec) ‘ NumberI of Trials ‘ Time (sec) \ Number of Trials 1 Time (sec)
1 14 : 1. 024 ; — * - a2 2.770
3 10 | 0.638 r 23 0. 605 21 1.798
4 9 | 0. 570 23 ; 0. 615 ‘ 21 1.294
5 10 | 0. 602 23 ‘ 0. 626 1 2 1. 140
6 37 ' 2.216 - ‘ -~ ‘ 44 ‘ 3.878
7 Cycled ' — 1 — t — ! 24 ‘ 1.699
8 | Cycled — : — | — } 24 * 1.701
9 . Cycled — 1 — — 36 3.950
1 6 0.431 i — — | — —

Notes: 1. These solutions were obtained on a UNIVAC 708 Computer, and the following convergence criteria were used:
|4T|£0.001°F and ‘AV\L‘ <0.0001 between successive material for both methods.

2. One iteration on the material balances and a maximum of five iterations were made on the enthalpy balances per trial..

3. K-values which were independent of composition were used to get in the neighborhood of the solution, and then.
the composition dependent K-values given in Reference (6) were used.
4. The program based on the Tomich method did not contain provisions for handling single phase components, and’
to approximate these, 7-CysHys was used in Example 4 and H, was used in Example 5.
*These results were provided through the courtesy of the ChemShare Corp., 730 Asp Street, Norman, Oklahoma. The-
program based on the Tomich method was written by Dr. A.D. Epperly.
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For typical absorber and stripper problems such as
‘Examples 1 through 5 and 11 (see Tables 1 through
5), the procedure described above converged very
rapidly. However, for relatively narrow boiling
mixtures such as Examples 6 through 10 (see Tables
1 through 5), it was necessary to modify the
procedure in order to prevent over-corrections. In
particular, if the corrected total flow rates failed to
give an improvement at the end of Step 1, this step
was repeated on the basis of the calculated values of
the total flow rates. An improvement was said to
have been achieved if g (§) at #=1 at the end of

Step 1 was less than it was for the previous trial.

Treatment of Single Phase Components

When the system contains single phase components,
only minor modifications of the above equations are
required. A single phase light component is defined
as one that appears in the gas phase alone, and a
single heavy component is defined as one which is
miscible in and appears in the liquid phase alone. It
will be supposed, of course, that the single phase
lights enter in the stream Vy., and that the single
phase heavies enter in the stream L, Let vy denote
the total flow rate of single phase light components
and [ the total flow rate of single phase heavy
-components. Since the flow rates for the single phase
components remain fixed throughout the column, it
follows that their component-material balances are

represented by

V;L=7L, lJL=0

and (31)
v;u=0, Lin=ly

In"this case the quantities £2;,Y;, &, p,, and s; have

‘the following definitions,

! : l}‘i
L) o=nltn =S () i

(V) o=0,0 4w W=5 (L) (@i, 62
i* L

B=((V}) eo—v) = (Lo—1x)

-while the bubble point functions given by Equations
{24) and (25) become, respectively,

&317

F=5 (Ko @) e (=3, )

§=1
iTH, L

=Li 2V 6, .
f Vie 2:8;+1y o, N;+v, (33)

(ij) =L/ (VJ) cor

Solution of Liquid-Liquid
Extraction Problems

In the solution of liguid-liquid extraction problems,
the temperatures are generally regarded as constant
Problems which

involve a typical countercurrent extractor of the

or fixed throughout the column.

type illustrated in Figure 1 may be solved by use of
the single-6-method in the same manner as described
for the solution of the material balances and the
equilibrium relationships. One minor modification of
this method was made. After 0 had been determined
in Step 2, the corresponding set of corrected
compositions were used to compute the corrected set

of K,’s for use in the next trial through the column,

i Lo
I
2
3
j=t
J
IRl
N-1|
N

VNfI LN

Fig. 1 Graphical Representation of an

Absorber, Stsipper, or Exiractor
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(K;) ca:li'j.i.’ (34
and

+Li=function of {(z;).};

7V, =function of {(y,).}.

When an additional feed is introduced on an
intermediate plate f as shown in Figure 2, the
material balances expressions given by Equation (15)
must be altered as required to reflect this additional
feed. M

l Lo
SECOND SOLVENT

1=t

14

Fy fel
—_—t
FEED ¢
fol
Pt
N
Vi tn
SOLVENT

Fig. 2 Sketch of an Extractor with
One Feed and Two Solvents

S - T
PURIFIED  SOLVENT

SOLVENT
SEPARATOR

Lo 0
REFLUX PRCOUC T

2

Fr
FEED

L.

Fig. 3 Sketch of an Extractor with Extract Reflux

Vm‘
FRESH SOLVENT
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For the case where extract reflux is used to aid in
effecting a given separation as shown in Figure 3,
only minor modifications of the procedure described
above are required to represent the addition of the
solvent removal stage. Although the solvent removal
stage is similar to a condenser on a distillation
column, it seldom consists of a single equilibrium-
stage, Instead the solvent removal stage generally
consists of some other type of separation process,
which should be solved simultaneously with the

extractor problem. However, in order to focus

complete attention on the solution of extractor
problems it will be supposed that the separations
effected by the solvent removal stage are independent
of the flow rate and composition of V, to the solvent
That is,

recovery r; for each component 7 is constant where

removal stage. it is supposed that the

r; is defined as follows:

o LoZoi+DXp; (% + 1) ;i

i - 35
Voo Toi (35)

The material balance enclosing the solvent removal

stage is given by

v1i:%'oi+loi+di:1'oi+< Lo 1)‘1{ (36)

Elimination of d; from Equations (35) and (36) gives
— (1+7) votv=0 (37

For any component 7, the material balance enclosing
plate 1 is given by

Vg tloi—Tu—l=—IXy; (38)

The ratio /,;/v,; may be stated in terms of »; through

the use of Equation (35,

Lo LoD N,

e =(pr ) (59)
By use of this relationship and the equilibrium
relationship /;;=A,v,;, it is possible to restate

Equation (38) in the following form:

( L/D

m)rivoi— (A1) vt va=—FX,; (40}
0



This equation constitutes the first in the set of the
component-material balances. The remaining balances
of this set are formulated in an analogous manner to
that demonstrated for Equation (15).

For an extractor with reflux (see Figure 3), the
single-f-method differs slightly from the procedure

shown above. The multiplier # is defined as follows:

(2), =20, )

Again it is required that the corrected rates satisfy

the overall component-material balance,
Fi X+ FoXoione, == (0o cot (di) o (I 0o (42)

Since both L,/D and the set of rs are known and
remain fixed for all trials, it follows that (d;/ve) ..
is uniquely determined for all trials by Equation (35).
Then by use of Equation (35). the definition of &
as given by Equation (41), and Equation (42), the

following formula for (v,,)., is obtained.

X+ FoXpitonen (43)

1-+( SinES)) +5(%i ).

(Vei) o=

The remaining equations are similar but differ
slightly from those stated for columns of the type
represented in Figure 1. In particular, v,; in Equations
(18) through (20) should be replaced by wv,. The
calculation of the corrected values of D and L,
merits some attention because it differs from the
remainder of the calculational procedure described
above. Since each member of the set {r;} as well as
Lo/D remains fixed, it follows that the corrected
values of the ratio d; to v,; are given by Equation
{25). When Equation (35) is solved for (d,)., and

summed over all components, one obtains,

Dco: M‘Li ’_g L] (Toi) co (44)

where (v,)., is given by Equation (43). Likewise,
the following expression for (L,)., is obtained from

Equation (35).

8o

ol LD Y&y (L
= _ﬁ»] .-517 (o) c,,—(j)l)Dw (45)

(LO) co

Again as in the case of a conventional column, it
can be shown that ¢,=1 and »x=6. The remaining
7;'s and ¢;’s are calculated in analogous manner to

that demonstrated above.

Discussion and Analysis of
the Numerical Results

In order to demonstrate some of the characteristics
of the single-#-method in the solution of absorber and
stripper problems, a wide variety of examples were
solved. Statements of Examples 1 through 11 are
presented in Tables 1 and 2. Typical solutions are
presented in Table 3 while the complete set of
solutions for all examples is presented elsewhere (15).
Other numerical results for Examples 1 through 11
are summarized in Tables 4 and 5. This array of
examples covers a wide range of feed mixtures(Vyy,
and L,) as

number of plates. To demonstrate the applicability

well as a significant variation in the

of the #-method of convergence for solving liquid-
liquid extraction problems, Examples 12 and 13 were

solved; see Tables 6 through 9.

Table 6. Statement of Example 12

| Component | Zp; (Solvent) | (ZN+1s i FX; (Feed)
Component ' Number moles/hr (msg}::’,’ﬁl moles/hr
Acetone t 1 0.0 ‘ 0.0 ! 0.1

i |
Ethanol | 2 0.0 ‘ 0.0 ‘ 0.1
Chloroform 3 0.8 | 0.0 ) 0.0
Water 4 00 [ 10} 00

Other Specifications

Total number of plates N=15, feed plate for F is f=5,
and feed plate for Vy,; is N=15 (See Figure 2). The
activity coefficients are computed by use of the following
three-suffix Margules equation for component / in a mixture
of L components

7’1='<’-><I’{|:21?1J'é1 :tJAn:l +[ é {(z)) 2Au]+

J=

[f > IJI«A‘UK:I—[Z o { (z1) zéliAn}}-

J=1 K=2 1=1
I+
1#K
JLKE
L L L .
20 Y X 3 xrzgA IJK}
I=1 J=2 K=3
Td
I+K
J<K

where,
A*px=1/2(Au+An+Aix+Agi+Arx+Axp)
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Table 6. (Cont’d.)

Other Specifications (Cont’d.)

[This equation consists of a corrected form of the
expression presented in Reference {9)). The values of Ay

are as follows:

Ap;=0 Ap=0.5446  Ap=-—0.9417 A4=1.872
Ag=0. 599 A2=0.0 Axn=1.61 Ay=1.486
Ay=—0.674 Ax=0.501 Agz=0.0 Ags=5.91
Ay =1.338 Ap=0.877 Ay=4.76 Au=0.0

Table 7. Solution of Example 12
1. Initial Assumptions and the Solution Set of Flow
Rates {V;}

Plate . V;{Initial) | V;{Final)
No. ' 1b- moles/hr ) Ib,moles/hr | 1 Other Initial Specifications

1 l 1.4 1.048 All streams V; were
2 1.4 1.102 assumed to have the same
3 1.4 1.142 initial composition as
4 1.4 1.180 | yy,,. All streams L;
5 1.4 1.226 | yece assumed to have the
6 Lo 1.307 initial composition of the
7 1.0 1.327 combined streams Lo and
8 1.0 1.322 F. The initial set of
9 1.0 1.313 .. .
10 L0 L. 269 activity coefficients vaere
1 1.0 L 275 computed on the basis of
12 Lo 1293 these sets of assumed
13 L0 119 | compositions for V; and
14 1.0 113 | L

15 1.0 1. 069

Table 7. (Cont’d.)

II. Final Compositions of Streams Ly and V,

I
ZNi ! yii

Component No,

\
1 | 0.10506 0.23973X 1070
2 | 0.04531 0. 54253107
3 | 0.83613 0.39686 X102
4 ] 0.01350 |  0.94178

III. Comparison of the Proposed Calculational Proce-

dures for Example 12

Calculational ] Number of Computational

Procedure | Trials Time (min.)*
Bruno et al. (18) 24 6.15
Hanson et al. (9) 43 1.23
Single-f-method | 17 0.82

*The convergence criterion used was <1073, where

4V
v
4V=V correct-V calculated. The correct set was obtained
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by making a large number of trials to converge within the
accuracy of the IBM 360/65 computer.

Table 8. Statement of Example 13

Component | o [ialvena| el (sl | Sepre

Number | moles/hr moles/hr moles 'hr ‘l'aCEOI‘S
Acetone 1 ] 0.0 | 01 0.0 200
Ethanol 2 | 00 ‘ 0.1 0.0 570
Chloroform 3 | 08| o0 1.0 350
Water 4 | oo ‘ 0.0 1.0 7X107%

Other Specifications

Total number of plates N=15, solvent F;, enters on plate
1, feed F, enters on plate 5, and solvent Vy., enters plate
15; see Figure 3. The reflux ratic Lo/D is fixed at 0.25,
and the activity coefficients are to be computed by use of

the expressions and constants A stated for Example 12.

*The operation of the solvent separator is described by the
specification of the separator factors, r;, where
= Lozoi+DXp:
Voyoi ’

Table 9. Solution of Example 13

I. Initial Assumptions and the Solution Set of Flow
Rates {V}

Plate | V;(Initial) | V;(Final) |

No. Ibmoles/hr = Ib-moles/hr ‘ Other Initial Assumptions

1 1.4 1. 060 All streams V; were
2 1.4 1.111 assumed to have the same
3 1.4 1.148 initial composition as
4 1.4 1.185 Vner. All streams L;
5 1.4 1.231 were assumed to have the
6 1.0 1.312 initial of the combined
7 1.0 1.332 streams F; and F,. The
8 Lo 1.328 initial set of activity
9 1.0 : 1.320 coefficients were comput
10 Lo 1.305 ed on the basis of these
11 1.0 1.281

12 Lo L. 246 sets' 'of ?Ssurr?ed com-
13 L0 1 1.19 positions for V; and Lj;.
14 1.0 | 1.136

15 1.0 ‘ 1. 071

Table 9. (Cont’d.)

II. Final Compositions* of Streams Nx, 1, and D

Component ‘ i ! Yoi ¥pi
|
1 010479 ? 0.14034 X107 ,  0.37540%107°
2 0.0470 | 0.12196X107° | 0.92976
3 0.83454 1 0.13005X107% | 0.60879X107"
4 0.01359 | 0.99987 0.93610X107




III. Convergence Characteristics of the /-Method and

Direct Interation

i

Calculational Number of Computational
Procedure Trials )‘ Time (min.)*
Single-f-method 15 | 0.82
Direct Iteration . 21 ; 0.65
*The convergence criterion used was !A‘l;’\ <1073 (see Item
I of Table 7).
In the discussion of Examples 1 through 11, the

fraction of the total feed consisting of C; and lighter
components is used as a measure of the boiling
range of the total feed mixture. For Example 1 (a
wide boiling mixture) the fraction of C; and lighter
components in the total feed is 29.6/31.8 while for
Example 8 (a narrow boiling mixture), the fraction
of C, and to 1/40.

Example 11 was included in order to demonstrate the

lighter components is equal
characteristics of the proposed procedures in the
solution of separation problems involving the use of
the type
Examples 6 through 10 would seldom

steam strippers. Although separations of
described by
be of commercial interest, they were included in
order to demonstrate the characteristics exhibited by
the proposed procedure in the solution of such
problems.

The results for the procedure by Tomich(19) were
obtained with a different type of computer than were
those presented in Table 4 for the single-f-method
and Sujata’s method (17). The time
in Table 4 for the

estimated by use of the results presented in Table 5.

requirements
given Tomich method were

A comparison of the results appearing in Table 4
shows that the
method converged for all examples; whereas, Sujata’s
method failed for Examples 7 through 10. The possi-

single-f-method and

bility of the failure of Sujata’s method for narrow
boiling mixtures such as Examples 6 through 10 has
Also, Friday

et al. demonstrated that the tendency toward failure

been demonstrated by Friday ez al. (7).

to converge increased as the number of plates was
increased.

The proposed combination of the single-6-method
and the Newton-Raphson method is seen to extend

the range of convergence to include all absorber

the Tomcih™

#

8n2

problems which appear to be of commercial interest
{Examples 1 through 5] as well as problems outside
the range of commercial interest [(see Examples 6
through 11). Although the combination of the single-
6-method and the Newton-Raphson method for the
determination of temperatures will converge for
problems having somewhat lighter lean oils relative to
the rich gas streams than those shown for Examples
6 through 10, these problems are approaching the
method. For

example, for problems in which the lean oil is lighter

outer bounds of convergence of this
than the rich gas such as Example 3 proposed by
Boyum (3), the proposed combination of the single-
6-method and the Newton-Raphson failed to converge.

To demonstrate the convergence characteristics of
the

extraction problems,

single-0-method in the soluticn of liquid-liquid

Examples 12 and 13 were
selected. For all liquid-liquid extracticn problems
attempted by the single-6-methcd, ccnvergence was
obtained. Actually, an example which more dramati-
cally demonstrates the speed of convergence of the
single-0-method relative to direct-iteration than does
Examples 12 and 13 has been presented as Example
5-4 by Hutton (12). Hutton’s Example 5-4 converged
in 20 trials when the single-f-method was employed,
but it had not converged to the correct solution at
the end of 160 trials when direct-iteration was used.

In summary, the proposed combination of the
single-f-method of and the Newton-Raphson procedure
for the determination of temperatures provides a very
rapid procedure for solving absorber, stripper, and
liquid-liquid extraction problems of the type which

appear to be of commercial interest.
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Notation

A;;=Absorption factor for component ¢ on plate j;
A;=L;/K;V;.

#=A constant appearing in Equations (23) and (32).

B,=Tridiagonal matrix that contains the partial
derivatives of G; functions with respect to the
temperatures.

C,=Column matrix; defined by Equation (30).

f;=Bubble point function for plate j; see Equations
(24) and (25).

g (#) =Arithmetic average of the Euclidean norm of
the bubble point functions [Equation (26)].

G;=Enthalpy functions; defined by Equations (28).

h;;=Enthalpy of one mole of pure component i in
the liquid phase at the temperature of plate j.

h;=Enthalpy of mole of liquid leaving plate j.

H ;;=Enthalpy of one mole of pure component ¢ in
the vapor phase at the temperature of plate j.
K,;=The K-value for component i; evaluated at the

temperature and pressure of plate j.

1;;=Molal flow rate at which component ¢ in the
liquid phase leaves plates j.

L;=A total molal flow rate that approaches L; as
convergence to the problem is approached; defined
below Equation (19).

L;=Total molal flow rate at which the liquid leaves
plate j.

N=Total number of plates; also,
of the bottom plate, since the plates are numbered

down from the top of the column.

N is the number

P=Column pressure.

S ;;=Stripping factor for component i and platej; S
=K;;V;/L;.

T,;=Temperature of plate j.

v;;=Molal flow rate at which component i leaves
plate j in the vapor phase.

@, =A total molal flow rate that approaches V; as
convergence to the problem is approached; defined
below Equation (19).

V,=Total molal flow rate at which the vapor leaves
plate j.

4X,=Column matrix; defined by Equation (30).

sietast M 112 ®H238 19733 43

Substripts

a=Assumed value.
ca=Calculated value.

co=Corrected value.
Greek Letters

7;=A multiplier; defined by the first expression given
by Equation (32).

0=A multiplier; defined by Equations (11) and (41).

a;=A multiplier; defined by the second expression

given by Equation (32).

Mathematical Symbols

S =Sum over all components from 1 to ¢ except H

=1

ixH, L

and L.
{T;} =Set of all T,'s for plates j=1 through j=N.

Appendix A

The relationship given by Equation (22) has
additional significant characteristics which may be
demonstrated by first restating Equation (21) in the

form

(Fsei— T 2)0,=8, ASJEN-1)  (A-])

Vjt+1
and then in matrix notation,

Mo=RU (A-2)

where M is a square diagonal matrix of order N—1,
U is a conformable unit vector, and
o= [0y oxn10n)T (A-3)

If

2= (72 N2 n-)T (A-4)

and if each side of Equation (A—2) is premultiplied

first by M~ and then by 7, one obtains
pTo=yTM'U (A-5)

When the condition given by Equation (22) is
imposed on Equation (A—5), the left-hand side



reduces to the square of the Euclidean norm of the

unit vector Uj; that is,

pTo=UTU=N—1=Bp"™M'U (A-6)
Thus, Equation (22) consists of that unique rela-
tionship for which the value of the product 37¢ at
any trial prior to convergence is equal to its wvalue

UTU at
Equaticn (22) further requires that each

convergence. The relationship given by
element of
pTo at any trial prior to convergence be equal to
the corresponding element of UTU. Furthermore at
element of the

that

each
right-hand side of Equation (A—6)

any trial prior to convergence,
takes on
value which it possesses at convergence. For example,
for the case of any element j (1<j<N—1), it
follows that

(Vl) m_Lo :(le_La )
(1/7;1-)()91-4.1—“ﬂj£j I«’jH—LJ- [At convergence

(A—7)

Although the resulting condition of restraint on the
intermediate flow rates represented by Equation (22)
does not assure convergence, it does suggest,
however, that convergence may be promoted by the
reciprocal relationship between o;,, and 7, Equation

(22).
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