1. Introduction

In general, the processing of polymeric materials
requires certain steps: namely, melting of solid poly-
mers, transport of molten polymers through a reser-
voir section (or a calming section), and extrusion
through a die section. Because of the cross section
of a die being generally much smaller than that of
a calming section, a pressure drop occurs at the entry
to the die section. This pressure drop is considerably
greater for polymer melts, than would be the case
with Newtonian fluids. There is ample evidence that
the viscosity of the material alone cannot explain
such excessive pressure drops (1,2, 3,4).

When fluid enters a tube from a large reservoir the
velocity profile starts to develop until a certain dis-
tance is reached beyond which flow is said to be fully
developed, meaning that the velocity profile has at-
tained either the classical parabolic form characteristic
of Newtonian fluids, or the flatter than parabolic form
corresponding to polymer melts. The finite length of
tube required for attaining a fully developed flow
profile is known as the “entrance length.” Clearly,
the magnitude of the entrance length is dependent
upon the viscosity of the fluid, the diameter of the
tube and velocity of the fluid (for Newtonian fluids),
and also upon the elastic properties (for viscoelastic
fluids) (5,6,7,8).

The criterion for determining fully developed flow
in viscoelastic fluids (e.g. polymer melts) has been

a controversial subject. A conventional criterion such
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as the “constant pressure gradient” in the tube, does
not seem to be valid in polymer melt flow, while,
of course, the same criterion has been well accepted
for Newtonian fluids. Conditions other than the
“constant pressure gradient” have been suggested in
recent years in polymer melt flow (9). This is an
important subject because, once flow is fully develop-
ed, one can write momentum balance equations to
derive various expressions relating the fluid properties
to flow variables (low rate, pressure drop, etc.) and
the geometry of a tube.

In the exit region of a tube, polymer melts exhibit
some further unusual phenomena from the point of
view of classical fluid mechanics. These are the swell-
ing of extrudate (10,11,12) and the “exit pressure”
(13,14, 15,16, 17).
swell, is the expansion of the extrudate giving rise

The former phenomenon, die

to a ratio of the extrudate diameter to tube diameter
greater than unity, and this ratio is found to be a
function of the throughput rate for a specific tube
and a given polymer. The latter phenomenon, exit
pressure, is the pressure exerted on the polymer
melt as it leaves the tube exit, giving rise to values
above the ambient pressure. Its magnitude also de-
peads on the throughput rate for a specific tube and
a given polymer.

These unusual phenomena in the entrance and exit
regions have been the subject of intensive research
during the past several years, in order to establish
a better understanding of the elastic nature of poly-
mer melt flow. In the present paper we shall discuss
the rheological implications of the anomalous beha-
vior associated with the flow of polymer melts in both

the entrance and exit regicns of a tube of circular
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cross section.

2. Fully Developed Region

For a steady, fully developed flow, the equations

of motion with cylindrical coordinates may be written

as
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For a sufficiently long tube with cross section radius

R and length L, integration of Eq. (1) gives
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where—i—DL is the pressure gradient. The wall

shear stress 7, is then obtained from

s o

oz 2

When a Newtonian liquid is forced to flow from a
reservoir through a circular tube with radius R and
length L, one can define the following quantity as

the shear rate @

40 1% -
B = T = T 7)
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in which Q is the volumetric flow rate, V is the
average velocity of the fluid in the tube and D is
the diameter of the tube. In general, the volumetric
flow rate O is obtained from the velocity profiles V.

(r) in the tube, thus

R

Q= 2:[:';(r) rdr @®)
o

Assuming that there is no clippage at the wall, i.e.,
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V.(R)=0, integrating Eq. (8) by parts, gives

R
Q= ——7:‘[r2dv: [©))]
0
Combination of Egs. (5) and (6) gives
r=2, (10)

For constant shear rate 7 we have

dv, .
ra 7 11

or

dv, = ¢dr 12)
Use of Egs. (10) and (12) in Eq. (9) gives

)
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Differentiating both sids of Eq. (i3) with respect to

7, and using Leibnitz’s rule, we obtain

ﬁls [ 7??% +30 ] = —fu (14)
in which 7, is the wall shear rate. Use of Eq. (7) in
Eq. (14) gives

2 (3+ -%;i—?;) =7, (15)
which is known as the Rabinowitch-Mooney equation.
Eq. (15) is commonly used to calculate the wall
shear rate for non-Newtonian liquids.

On the other hand, it has been found experimen-
tally that for many polymeric materials a plot of -,
versus @ on logarithmic coordinate gives a constant
slope over a wide range of ©® values, as shown in
Fig.1. Then one can write an empirical equation as

follows.
c, = K" o" (16)

in which 7 is the slope of the log =, vs. log @ plot,
that is

7 -
dln <t o (17)

A P

Eq. (i5) may be rewritten by use of Eq. (17)



v o gL !
3 a L/D =8
i @ L/D =12 i
T 50 v LD =16
2
oot o
30 .r’o/ e
g0 T o
u / v
G20k /i/ﬁ/" ’
.j =
dis b = ‘

o ] 1 1. ! I 1 1 11l

10 15 20 30 4050 70 ‘0% 200 450 700 10%
APPARANT SHEAR RATE (SECT)

fig. 1 Apparent wall shear rate versus apparent shear

rate for high density polyethylene at 180°C
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Use of Eq. (18) in Eq. (16) gives further

Tw = K(‘?’u)” (19)
in which
. gt 4n ”
K—_K(3n+1) (20)

Note that for =1, Eq. (19)reduces to
7, = K'® (21)
which is the well known representation for Newtonian

fluids. XK' in Eq.
viscosity in this case. Therefore it can be surmised

(21) represents the Newtonian

that values of » different from unity describe the
deviation from Newtonian fluids. In the case of poly-
mer melts, n is usually equal to or less than unity
(see Figure 1). Eq. (19) is known as the Oswald-
de Wale power law relation. Therefore, we shall define
the power law fluid as that fluid whose wall shear
stress and true shear rate can be represented by Eq.
(19).

Now, one can derive the expression for the velo-
city distribution in a tube for power law fluids. Inte-

grating Eq. (12) gives

207
V() = [7 ar (22)
R

in which V.(R)=0 is assumed, that is, no slippage
at the wall. Using Egs. (10) and (16) in Eq. (22)

and integrating the resulting equation gives

Lo=r(L (1)) e

where ¥ is the average velocity of the fluid. The
velocity profile of power law fluids for different values

of n is shown in Figure 2.
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Fig. 2 Velocity profiles for the power-law fluid

3. Entrance Region

In view of the complexity of flow conditions there,
theoretical treatments of the pressure drop in the
entrance region of a tube are approximate in nature
and are limited to certain types of entrance geome-
tries. Consequently, it is frequently necessary to eval-
uate entrance pressure drops experimentally. This is
particularly true in the case of highly viscous poly-
mers where entrance effects are large. If, in fact,

the excess pressure drop may be thought of as occur-
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ring in an imaginary increment to the actual tube
length, a plot of pressure versus capillary length-to-
diameter ratio (L/D) at a given shear rate will be
linear (1). Extrapolation of such a linear plot to zero
pressure gives the ratio of the fictitious length to the
tube diameter for that particuar shear rate. In view

of the work required to overcome elastic forces, it

\
——

—

NEWTONIAN FLUID

The additional term 7z in the denominator of Eq.
(24) is called “End Correction. ” np is reported to be:
0.06 Nz, for a Newtonian liquid, where Nz, denotes:
the Reynolds number defined by

Nre=pDV /1 (25)

o is the density of the fluid, D is the tube diameter,.

\\\_
P —

VISCOELASTIC FLUID

Fig. 3 Sketch of the streamlines in the reservoir

is to be expected that the entrance length and the
pressure drop in the entrance region would be much
greater for an elastic material than for an irelastic
fluid under the same flow geometry. Observe converg-
ing streamlines in the entrance region for both
Newtonian and viscoelastic fluids, sketched in Figure
3

Now consider the situation in which pressure drop
is measured from somewhere in the reservoir to the
end of the capillary. For this, Eq. (6) must be modi-
fied by taking into account the pressure losses that
arise in the reservoir. In the case of 2 Newtonian
liquid these pressure losses in the reservoir are consi-
dered to be the viscous losses encountered by the
liquid as a result of velocity gradients near the capil-
lary entrance. As may be seen from Fig. 3, the
streamlines in the reservoir converge at the inlet of
the capillary before they reach it and thus one is
inclined to consider an additional fictitious length
ngR to the actual capillary length, so that the true

shear stress at the wall can be written as

Ttw = m (24)

8528 H 113 M4F 19734 8|

V is the average velocity and u is the viscosity of
the fluid.

Bagley (1) in 1957 reported a very interesting ob-
servation from the extrusion of polyethylene melt.
He found that the value of the entrance correction
for such a fluid is much larger than that for Newton--
ian fluids, and furthermore it is a strong function
of shear rate. Then, he suggested the following pro-
cedure for correcting the entrance effects: (a) plot
the flow curve of log 7, versus log 4P, for a series
of (%E—) values (see Fig. 4); (b) from the plot of
log ¥, versus log 4P and choosing an arbitrary
shear rate, find the pressure 4P corresponding to
this shear rate for various capillaries of different
(L/R) values.
nce length np from the extrapolation of the 4P vs.
L/R plots to 4P=0 (see Figure 5); (c) using the

appropriate entrance corrections replot the curves of

Then obtain the value of entra-

Fig. 4, using Eq. (24) to calculate the true shear
stresses. This plot shown in Fig. 6 becomes a single
curve independent of the capillary dimensions used
to obtain the data.

Note that for polymer melts, in general, the value-

of ng in Equation (24) is larger than that of Newto-
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nian liquids, The qualitative interpretation for this
can be given as follows. For viscoelastic liquids, the
tube entry pressure losses can be attributed to two
factors: Couette losses, as in the Newtonian liquids,
and elastic energy story stored in the flowing visco-
elastic liquid as it is sheared. The stored elastic en-
ergy is believed to be partially dissipated after the
fluid enters the tube, reaching a steady value which

is converted to completely recoverable elastic energy.
4. Exit Region

In the exit region two anomalous phenomena, die
swell and exit pressure, are observed in polymer melt
flow. The swell phenomenon has been know for many
years and much literatue has been published on the
subject (10,11,12). However, the existence of exit
pressure in polymer melt flow has only recently been
recognized (13,14, 15, 16,17). The reason for it seems
to be very simple. Die swell can be easily observed
from extrudate, while exit pressure can be determined
only when one starts to measure pressure distribution
with elaborate instrumentation.

Swelling of the extrudate on emerging from a ca-
pillary is typical of non-Newtonian viscoelastic liquids
and is believed to be related to their elastic proper-
ties. From the structural point of view, die swell is
accompanied by a disorientation of macromolecules
which have been “parallelized” within the capillary
due to the high shearfield. From the rheological point
of view, on the other hand, it is believed that die

swell occurs as a result of recovery of the elastic
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deformation imposed in the capilly. It is clear that a
deformed element of fluid exhibiting retarded elasti-
city will not recover its elastic deformation instan-
eously as it emerges from the capillay. Instead, while
recovery is proceeding, it will travel some distance
from the exit of the capillary. This distance will
depend on the velocity of the fluid element leaving
the tube exit and the characteistic time of the mate-
rial concerned.

Har et al. (15) have recently obtained a definite
correlation between die swell and exit pressure.
Hence, the physical interpretation for the exit pres-
sure is essentially the same as that for die swell. In
this section we will first derive some fundamental
equations which will be used to correlate the measu-
red values of die swell and exit pressure with normal
stress difference. We will then present methcds for
measuring exit pressure and die swell in a capillary
type instrument. Finally we will discuss how one can
analyze experimentally determined exit pressure and
die swell data in order to obtain rheological informa-
tion on melt elasticity and flow properties of polymer

melts.
4.1 Theoretical Development

Writing the force balance equation around the por-
tion of the liquid jet between Sections 1 and 2 of

Figure 7,

— R 72 — ~-R2 J2 e O R
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Fig. 7 Sketch of the exit region with die swell
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in which

V(r) =Velocity of the liquid in the tube

R; =Radius of the extrudate at its maximum
die swell

V;  =Free jet velocity at maximum die swell

0 =Density of the liquid

S..(r)=Normal stress in flow direction.

In Eq. (26) the left hand side represents the dif-
ference in momentum flux of the fluid between Sec-
tions 1 and 2, and the right hand side represents the
external force which is the total stress in the flow
direction integrated over the entire cross section of
the tube.

Replacing » with <., by use of Eq. (10) and by the
continuity equation

TR oV, =1z R pV 27

Eq. (26) may be rewritten as

of Vi, de — 2 (D ) = st
L)z, dz, (28)
where d; is the maximum extrudate diameter and V°
is the average velocity of the liquid in the tube as
defined by Eq. (7). Differentiating both sides of the
above equation with respect to ¢, and using Leib-

nitz’s rule, one has, after some rearrangement,

s> = 2 (s oTDY o a(})
D
Dy? [”‘d_]
_<717) ["+1+ [ln%]]}
(29)
If one assumes that the fluid is represented by a
power law_as. expressed in Ed. (16), Eq.(29) be-

comes, after the integration of the first term by use
of Eq. (23),

_ eD? (87 \2[(n+1)(8n+1) /D \?

S.® 0 = (5 e - ()

D (2n+1) d,
d [ln-lll—)—]
[n +1 +——d [lnsg] ]} (30)

Now, from the definition of the deviatoric stress,
S..(R) is given by

Szz(Rs L) = —PrL + Tzz(R) (31)



in which pg,z is the wall isotropic pressure at the
tube exit. On the other hand, integrating the radial

component of the equation of motion, Eq. (2), gives
R
Pr,L = PosL + 7 (R) +on S,y —Sewd Inr
(32)

where po,z is the isotropic pressure at the center of
the tube exit. Eliminating pg,z from Egs. (31) and
(32) gives
R
SulR, L) = (7 — 7o)z — [Pz + [ (Sor — Sao)

Q

d1 nr] (33)

Again, from the definition of the deviatoric stress,
one has
S, (R, L) = — pror. + 7 (R) (34)
Use of Eq. (34) in Eq. (32) gives
R
S, (R, L) = = [poz+ [ (Ser = S

d 1n r] (35)

Therefore, combining Eqgs. (33) and (35) gives
() a=—Ser (R, L) +8::(R,) (36)
where S..(R, L) is given by Eq. (30). Eq. (36) now
represents the primary normal stress difference as the
sum of the two quantities on the right hand side:
— S, (R, L). and S. (R L).

of these two quantities determines the primary

Hence, measurement
normal stress difference, i.e., melt elasticity.

Note, however, that S,.(R,L) is the wall radial
normal stress at the exit of a tube, which is measur-
able without disturbing the flow in the tube. Since
the pressure measurement is opposite in direction to
that of the radial normal stress component, we can

say that (13,14)
toie=— Sn(R, L) (37
and then Eq. (36) may be rewritten as
(cea—Trr) R = PExit T SR, L) (38)
Hence, Eq. (38) indicates that measurement of exit

pressure and die swell determines uniquely the pri-

mary normal stress difference, i.e., melt elasticity,
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which is of utmost importance in practical operation
with polymeric materials.

Note that the assumptions made in the derivation
of the expressions above are that the fluid is describ-
ed by a power law and that the fully developed
velocity profile prevails at the tube exit. However,
it can be shown later that the assumption of a power
law is not necessary for polymer melts in practice
(13, 14).

4.2 Experimental Determination of Die Swell

The method commonly used to obtain the die swell
ratio of polymer solutions involves photographing
the polymer stream as it exits from a horizontal ca-
pillary. The relaxation time of solutions is generally
so short that complete swelling occurs close enough to
the capillary exit for the effect of gravity to be neg-
ligible. The case of polymes melts is not, however,
so simple.

In the past the following techniques have been used
to obtain melt die swell data:

(a) The same method as is used for solutions (18).

(b) Vertical extrusion of a short length of polymer
which is frozen (no attempt being made to contral
the manner) with a micrometer (1.

(c) A refinement of method (b) in which the extrud-
ed melt is held at the extrusion temperature for
a period of time in order to permit complete re-
laxation(19).

In methods (b) and (c) a density correction of the

form

_5: = (_80_) 3 (39)

is usually made, where
d =swelled diameter of melt at extrusion tem-
perature

d,=swelled diameter of frozen polymer
o =density of melt
po—density of frozen polymer.

Method(a), although the most direct and least
complicated, is not suitable for polymer melts. The
reason for this, as will be demonstrated subsequent-
ly, is that the melt relaxation time is so long that

complete expansion cannot ocucr in a region close to

J.KIChE, Vol 11, No.4, Aug. 1973
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the capillary exit.

Method (b) represents a distinct improvement but
is subject to the following objections:

(1) It has not been indicated whether or not the
polymer used to obtain the die swell passed through
the entrance during the extrusion time.

(2) The use of the density correction is question-
able. This is particularly true in the case of polymers
which crystallize since the solid density is known to
depend on crystallization kinetics.

In order to eliminate these sources of possible error,
Han and Charles (20) have recently devised a method
which is, in essence, a modification of method (c).
The experimental procedure for the measurement of
die swell developed by these authors is as follows:

(1) Polymer flows through a capillary device and
into a chamber which is maintained at the same tem-
perature as the capillary. The chamber is equipped
with a small removable pyrex window.

(2) When a steady state has been achieved, the
window is removed and the polymer stream (still
flowing) is cut at the exit.

(3) Flow continues until a stream of about 3 inches
in length has emerged. At this point flow is stopped
and the small window replaced. (Thermocouples with-
in the chamber indicate that the removal of the
window causes a temporary decrease of no more than
5°C.)

(4) Pictures are taken of the suspended stream at
various time intervals until the melt has fully relaxed.

(5) The melt diameter is then determined by com-
parison of thr melt images to that of a standard.

In Figure 8, die swell of a high density polyethy-
lene has been plotted for several rates of shear as a
function of time after exiting the capillary. The die
used had a diameter of 0.125 inch and a length of
0.507 inch(L/D=4). It can be seen that complete
relaxation requires approximately two or three minu-
tes. This result agrees reasonably well with what
one would expect from Bagley’s observation of the
“snap-back” effect in the entrance region. In addi-
tion to this, die swell measurements were obtained at
several rates of shear. In all cases measurements
were taken approximately three minutes after the

polymer left the capillary. The results are shown in
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Fig. 9 Die swell versus shear rate for high density
polyethylene at 180°C

Figure 9. On the same figure are the results obtained
by using method (c) above. A density correction
factor (po/p) of 0.67 was used for the freezing met-
hod. This value was supplied by the polymer manu-
facturer. It can be seen that measurements obtained
from the frozen polymer were consistently lower than
those obtained by the photographic technique. It is
felt that this is due primarily to the crystallizatien
consideration previously mentioned. There may be
other factors operating during solidification, such as
thermal stress generation, but there is not enough

informtion available to make speculation worthwhile.

4. 3 Experimental Determination of Exit
Pressure
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Representative axial pressure distributions for high
density polyethylene at various shear rates are shown
in Figure 10 for L/D=4. Details of the experimen-
tal technique of the pressure measurements have been
given in a number of papers by Han et al. (13,14,
15). It can be seen from this figure that insofar as
the pressure gradient is concerned, the flow has
become fully developed within on diameter of the
entrance. This constant pressure gradient can be
used directly to determine the shear stress at the
wall without the need of employing the Bagley cor-
rection (1). The shear stress is given by Eq. (6).
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Representative flow curves, plots of shear stress
versus shear rate, are given in Figure 11. It is seen
that, to a very good approximation, the flow curves
can be represented by the power law expression,
Eq. (19).

It is worth nothing, also, in Figure 10 that an
extrapolation of the straight line portion of pressure
profiles to the exit of the die yields non-zero gauge
pressure, called exit pressure ¢%'%!%  which increases
with shear rate.

As a viscoelastic fluid flows it deforms and in so
doing it both dissipates energy by a viscous mecha-
nism and stores energy by an elastic mechanism. Once
a steady flow has been achieved, the fluid continues
to dissipate energy bt the viscous component but re-
tains a fixed amount of elastic energy. The primary
normal stress difference, which is a manifestation of
this stored elastic energy, then remains constant and
non-zero during the steady flow. If, as is assumed,
the flow remains fully developed right up to the exit,
then the primary normal stress difference at the exit
will be non-zero. Since, as was shown in the intro-
ductory remarks, the exit pressure is directly related
to the steady flow normal stress difference, it too will
be non-zero. Furthermore, it is known that the pri-
mary normal stress difference in steady shear flow is
an increasing function of shear rate. This implies

that the exit pressure will also increase with shear
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rate. This has all been confirmed experimentally as
shown in figure 12.

Use of Eq. (38) was made by Metzner and his
coworker'® with the die swell data on polymeric
solutions, in which these authors assumed zero exit
pressure without having made any actual measure-
ments of the exit pressure. However, Sakiadis?’ mea-
sured the exit pressure with polymeric solutions and
showed in fact non-zero exit pressure. In the light
of Sakiadis’ result for the measurement of oxit pres-
sure of polymeric solutions, the calculation of the
primary normal stress difference from Eq.*® with die
swell measurement alone (i. e., setting Pg,;, = 0) does

not seem to be reasonable. there is no

Moreover,
justification for assuming zero exit pressure a priori
without taking actual measurements. If the magnitude
of the measured exit pressure term is very small, as
compared to the die swell term, one can then neglect
the exit pressure term with full justification.

On the other hand, in the flow of polymer melts,
a calculation has been shown ' that the die swell
term is orders of magnitude smaller than the exit

pressure term, so that Eq.*® can be reduced to

(zee—7r) R = Pryiy (40)

for practical purposes. This suggests that in ploymer
melt flow, the measurement of the pressure profile
alone can give the flow curve as well as the normal
stress difference which is indeed a remarkable result.
Therefore the result of Figure 12 is essentially infor-
mation on the behavior of the primary normal stress
difference with change in shear rate. It is clearly
shown that the primary normal stress difference is an
increasing function of shear rate, as predicted from
most constitutive equations.

One should note at this point that the theoretical
expressions, either Egs.’® or *9, are based on the
assumption that flow is fully developed at the exit of
the tube. In other words, the existence of fully de-
veloped flow raust be confirmed before any attempt is
made to use the data obtained from the exit pressure
and die swell to predict the normal stress effects.

The effect of entrance length on fully ‘developed

flow has been a controversial subject because different

st5r@st M 112 HM4E 197319 8

authors have reported different values of entrance
length in 'their ’studies. The criterion of “constant
pressure gradient” has long been accepted as a nece-
ssary and sufficient condition for fully developed flow
in Newtonian fluids. However, there is ample evi-
dence in the literature that “constant pressure gradi-
ent”
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is not a sufficient condition, through a necessary one,
fully developed flow in viscoelastic fluids'®. In the
past, measurement of extrudate die swell has been
used as a criterion for fully developed flow of visco-
elastic fluids, suggesting the capillary length at which
extrudate die swell no longer chanes. Han and Char-
les have recently proposed a criterion for fully de-
veloped flow based on their measurements on the exit
pressure as a function of the L/D ratio, together

with the measurement of die swell versus L/D.

In Figures 13 and 14 are plotted exit pressure vs,
L/D for high density polyethylene and polypropylene,
respectively, with shear rate as a parameter '3, The
shear rate reported in the figure is true shear rate
calculated by the Rabinowitch-Mooney equation. It
can be seen also that exit pressure decreases rapidly
with L/D at low values of L/D and then levels off
at L/D about 16. This result is rather interesting.

It would be very intéresting to measure die swell
as a function of L/D, and then compare the depend-
ency of exit pressure on L/D with that of die swell
on L/D. Figure 15 shows the correlation of die swell
with L/D, indicating that die swell levels off at L/D
about 20 '®.

There are three things which deserve special atten-
tion in the results shown above. First, pressure
gradient appears to become constant at L/D about 2,
while both exit pressure and die swell are decreasing
considerably at that value of L/D. Thereforeit seems
clear that constant pressure gradient is not a sufficient

UIE SWELL VS LD
POLYETHYLEVE, 180°C.

24t

Fig. 15 Die swell ratio versus L/D ratio for high den-
sity polyethylene at 180°C
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Fig. 17 Exit pressure versus shear rate for polystyrene
melts at three different temperatures

criterion for fully developed flow. Secondly, the exit
pressure vs. L/D. curves seem to level off starting
at slightly lower values of L/D than the die swell
vs. L/D curves. Since both the exit pressure and die
swell are believed to be manifestations of elastic be-
havior, it may be expected that in princriple, both
exit pressure and die swell should level off at the

same value of L/D. However, one should also com-
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-pare the sensitivity of these separate measurements of
-exit pressure and die swell. In general, the die swell
measurement is more sensitive than the exit pressure
measurement. Considering experiments of this type,
the results of Figures 13 and 14 can be considered
remarkably good. Further more one kind of measure-
ment checks the other kind of experiment in a con-
.sistent manner.

To demonstrate the accuracy in pressuyre measure-
ment, the dependency of viscosity and exit pressure
on temperatures is shown in Figures 16 and 17, res-
pectively. It can be seen from these results that both
melt viscosity and exit pressure (i.e. melt elasticity)
are clearly related to the temperature, as might be
expected.

At this point it would also be interesting to see if
Newtonian fluids exhibit exit pressure. If exit pres-
sure is indeed a manifestation of the elastic behavior
of viscoelastic fluids, then Newtonian fluids should
not exhibit it. To demonstrate it one should choose
a Newtonian fluid which has a viscosity comparable
in magnitude to that of polyethylene, for instance,
under the same flow conditions. Han et al.’® chose
such a fluid, called Indopol H1900, which is a low
molecular weight polybutene. Figure 18 shows the
The result indi-
cates no exit pressure for such a fiuid.

pressure profile for Indopol H1900.
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Fig. 18 Axial pressure profiles of a Newtonian fluid
(Indopol H1900)
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One can now conclude from these resluts that the
existence of exit pressure is a clear manifestation of
the normal stress effect of viscoelastic fluids, i.e.,

elastic effect.

5. Concluding Remarks

At present a practical method of measuring the

elastic properties of polymer melts is needed, a me-
thod which could be readily adapted to various types
of commercial equipment for polymer processing. In
particular a method is needed that is not limited by
shear rate. In past decades much effort has been
devoted to developing experimental techniques of
measuring the viscoelastic propertics of polymeric
materials. Basically there are two types of rheometer;
a) the rotational type (cone-and-plate, parallel-plate
and coaxial cylinder), and ‘b) the capillary type.
Until recently, these rheometers have been widely
used for polymer solutions; they have often been
used to test various constitutive models, but relatively
little work with polymer melts has been reported in
the literature. This is mainly because, in general,
the experimental measurement of the elastic properties
of polymer melts is rather difficult compared to that
of solutions.
For polymer melts, use of the rotational rheometer
is limited by low shear rates due to flow instability:
for instance, with the Weissenberg rheogoniometer,
it is a well-recognized fact that polymer melts start
to extrude from the gap between the cone and the
plate at shear rates, say even below 10 sec™'.

Use of the capillary rheometer for polymer melts
has been extensive because it is not limited by low
shear rates. However, the validity of the method of
analyzing the experimental data by means of the so-
called “entrance effect correction” is subject to serious
question, because some of the assumptions made for
the method do not have a proved justification®.
Furthermore, the method of the “entrance effect cor-
rection” involves quite a bit of labor because one
needs to make experimental runs with different capil-
lary length-to radius ratios. Therefore, for practical

purposes, this method is not too attractive.



The method of using exit pressure for determining
the normal stress difference (i.e., melt elasticity)
was discussed above, which is due to Han and his
coworkers®?1419, This method is believed to be one
of the mest practical and attractive tools. The basic
idea lies in the recognition of the existence of exit
pressure. Moreover, it has been clearly demonstrated
that the measurement of wall normal stress profiles
alone, as a function of flow rate, can give rise to
complete information on both the viscous property
(i.e. flow curves) and the elastic property (i e.
normal stress difference) of the polymer melts flowing

through a circular tube.
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