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Abstract

A method of correcting for the effect of temperature jump at the interface of the fine wire and the sur-
rounding gas was developed from the theoretical point of view to be used for processing the data obtained by
the frequency response technique for measuring the thermal conductivity of gases at low pressures. The me-

thod was applied to the data obtained with the alkali metal vapors.

Technique, was first contemplated by Lee et al 9,

Introduction and the work was carried on by Tarmy et al ¥,

and further developed by Peterson et al ¢ during

A new method of measuring the thermal conduc- a period of time. The measurement so far carried
tivity of gases, known as the Frequency Response out based on this principle was concerned mainly
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with the gases at nearly one atomospheric pressure
a method

of handling low pressure gases incorporated with the

or higher. Recently , Lee <® devised
same general principle of measurement. The method
seemed to be fine judging both from the theoretical
conjecture and from the internal consistency met by
the method in the data processing step.

The measurement of gas thermal conductivity at
low pressures was impelled by the difficulty encoun-
tered in taking electrical measurements with satu-
rated alkali metal vapors. The condensation of the

vapor and short-circuiting the lead wire by the

liquid metal was the major soure of touble. It was,
therefore, necessitated to employ superheated vapors
of relatively low presures ranging from 0.08 to 0.2
atmospheres. According to the theory, the finest
possible hot wire diameter was desirable to work
within the linear range of the calibration curve. At
the time of the previous work, the thinnest tungsten
wire available was 0.0003 cm in diameter. The mean
free path of the vapor molecules under this circum-
stance, particularly in contrast with the wire diame-

ter, raises a serious problem in deeming the wire

temperature as the gas temperature at the wire.gas

interface. Designating the wall and gas temperatures
by ¢, and #, respectively, and the temperature jump,
by 4t, one may relate these quantities by

t,~t=dt; (1)

This situation will naturally necessitate a new boun-

dary condition at the wire-gas interface for analysing
the theory mathematically. The inner boundary con-
dition for the cylindrical system, in absence of a
temperature jump, can be written by taking a heat

balance at r=r,. Namely,

M gtg = IiRsin* wi + Ak % — Ah(t—t)  (2)

where M is the heat capacity of the wire, A is its
surface area, R is the time average of the
fluctuating wire resistance, ¢, is the temperature of
the outer shell, and the rest bears the usual mean-
ings. - )
However, this can not be true when there is a

temperature jump. The equation holding in this case
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can be written by

atw — J2R sin2 o{t,—4t;)
M 30 I2R sin w(?«}—Alz*—.a_;
— AhGe, — ) @
or,
Oty _ 70P.: ) ot )
M S = IiRsintof + Ak't-air— — Ah(t, — t2) (4)
where
B = k{ Mt; )/( oty )}

In the previous work, Lee approximated %° with the

following equation derived:from the kinetic theory of

gases:
K 1 2—a k
k " rdn(r,/r) a ¢
_v/2zRT 1
i RS (5)

He finally used eq. (4) as the inner boundary condi-
tion dropping out the subscript w from ¢.

This procedure amounts to saying that the wall
and gas temperatures, ¢, :and ¢, ‘can be represented
by a single notation ¢ just by imagining a fictitious
thermal conductivity %° for the interfacial layer while
keeping % for the remainder of tile gas.

The present work was undertaken on the basis
that the above treatment Jacks , a strict theoretical
justification, or, at the most,- is only an approxima-
tion. It was intended here to finalize the method of
handling the temperatue jump problem in conjunction
with the already established

trequency response

technique.
Theoretical

< Suppose that the wire, mounted in a cylindrical
shell, is heated by a d.c. current. for a moment;:
and the temperature at the outer shell is maintained
constant. If the wire temperature is mair‘ntaihed at
somewhat a higher temperature than the outer shell
the heat input into the wire will be conducted away
through the gas into the outer shell establishing. .a'

temperature profile as shown ia Fig. 1.
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In a highly idealized mathematical model, radiatign

may be assumed to be absent. In the figure, one
will notice that ¢, and ¢, represent the wall and gas
temperatures at the interface, and a temperature,
t;, is seen at the point where the wall line and the
extension of the main body gas temperature profile
intersect. For the purpose of theoretical analysis, ¢,,
instead of #,, must be taken for the gas temperatiire
t defined above for eq. (1). Thus, we may write,
borrowing the expression of Kennard (7), as fol-

lows:

—a
lw ty = d *ar At; (6)

where (9¢/0r) is the temperature gradient of the
gas in the neighbourhood of the wire, and d is.the

temperature jump distance given by(7)

d—= 2—a k- vaRT 1
- a <y y+1 P
or, (7
_ »2 —-a _‘_4(«' ,k, L
a 7+ 1 7C,

where L is the mean free path of the gas molecules,
¢ is a positive number ranging from 0.491 to 0.499,

and g is the accommodation coefficient.

Fig. 1 Cylindrical System with Coaxially Mounted Wire

Definition of the Temperature Jump Heat

Transfer Coeflicient

If in Fig.1, one defines the temperature jump at
the wire and the shell by 4¢; = ¢, — #;,, and 4¢},=-
tes — Lus, Tespactively, and 4t =i¢,, — ¢;,, the rate

of heat conduction is

g = 2rer ki (ae;/d,)
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" be neglected.

= 2ar,kl (dt 2/ d,) (8)
== 2kl -At/In(r,/r,)
N_qw? define £’ such that
q = 2zk'l AT/In(r,/r,) (9)

where 4T = ¢, —
egs. (8) and (9),

tys = At; + 4t + dt;,, then, from

7= 21% 4o AT (10)
In -T2 % 4 &
r

r 1 2

and from egs. (9) and (10),

P14 4 ()
ry in T2 re In-12
] I [
If one neglect the third term of the right side of

the above equation because of dy<rn(ry/r,), and
replace k/k’ with £°/k, one obtains the expression
given by eq. (5).

Let us now define 4, the temperature jump heat

transfer coeflicient, as follows:
q = thlAtJI (12)
Combining egs. (10) and (12), one obtain

B k ,+,4,t,,+,4t,=)

; ok , (.,,4?:3
ri(in-le + L ) A
r,

(13)

In the above equation, d,/r,<d,/r,, that d,/r, can
This implies that 4¢;, is also negligi-
ble because the gas molecules attain effectively an eq-
uilibrium temperature with the outer shell by col-
liding innumerable times with the shell during the
time a molecule near the fine wire makes just one
collision. This amounts to saying that the accommo-

dation coefficient at the outer shell is, in effect, in-

creased. Therefore, eq. (13) can be approximated
by
k ' dt
hi R (19)
’ rl(lnlﬁv »}-».dl, ) ( dt;, )
ry ry S

Since at the steady state, at the interface rer,

g — ka2 = — kA2 ) a5)

ro—7r



where A, =2zr,1 and A,,is the geometrical mean
of A, and A, = 2zr,1, it follows that

ot _ 4

o) e
Therefore, from eq. (6), one obtains

T S Y )
i a In - 17

Substituting eq. (17) into eq. (14), one finally ob-

tains
ok
hi= rh (18
Formulation of the Boundary Value Problem
with Temperature Jump taken into Considera-

tion

Suppose, now, that the fine wire is heated by a
sinusoidal a.c. current, i == I;sinwfd. Then, the wire
temperature will fiuctuate with two times the frequ-
ency of the current. The heat input into the wire is
now considered to be transferred by both conduction
and radiation. When the steady state is attained,
there will be a temperature wave at each point in
the gas travelling towards the outer shell with de-
creasing amplitudes, dying out completely as it re-
aches the outer shell.

The differential equation that applies within the
gas region < r <r, is

é,t._ = @ ( ?
.

3 .1 ot
5 Lo 7 ) (19)

where a==k/co is thermal diffusivity. The inner bo-
undary condition is now written with a great discre-
tion using different notations for the wall and gas
temperatures. Namely, at r=r,

hA(L, —t,)

M % - [2Rsin?ws + kAP
F or

(20)

where M=c"p’ =r?l, and A is the same as A,, and
h is the radiation heat transfer coefficient which can
be estimated from the data of emissivity of the fine
wire,

The heat capacity of the outer shell is made so
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large that the shell temperature is practically con-
stant. Stated in the mathematical language this will

constitute the outer boundary condition,

t=1¢, atr=r, 21)
Another relation, linking ¢, with 7, will be requi-
red for the complete solution of the problem. This
relation can be obtained by equating the heat trans-
fer with the temperature jump as its driving force

and the second term of the right hand of eq. (20).
Thus,

BiA(ty ~ 1) == — kAf;!r at re=r,  (22)
Using the relation given by eq. (18), eq. (22) can
be rewritten as follows:

ot
ty — 1t = — d,—é;— at r=r, (23)

One should keep in mind that ¢ corresponds to ¢;
shown in Fig.1, and the temperature profile used
here is  ¢,,~ty—t—t;; rather than b=t —t—ty;

TR

Soluton to the Temperature Jump Boun-
dary Value Problem

Temperature of the Gas

Table 1. Dimensionless Groups

Symbol .

Formula

Group
Name New Old
Conductivity CR VA Zruc.’;;r—,;_.—m_m
Raito ;T
Dimension Ratio RD ra/ry
Diffusion Ratio X (2w/’a)ér,
Interface Ratio IL hdi/k, RR-D
Radiation Ratio RR U hr,/k
Jump Ratio D dy/ry
Capacity Density CDR '’ jeo
Ratio
Amplitude Rati ARG, PRI
mpiitude Ratio le W or ;/gpz-%bp’-%CR

eq. (69)

The complete solution consists of the transient
and stationay state part of the solution. However,

only the later part is required in this case. It was

J.KIChE, Vol.11, No.5, Oct. 1973
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found in this solution that the same trial function
as was previously used (1) leads effectively to the

final solution. The form of trial function is
t(r,0) = f(r) + g(r)cos2wb + b(r)sin2wf  (24)

Using the dimensionless groups defined in Tablel.
the temperature of the gas at the wire-gas in-

terface can be written as follows:

D i InDR
h=t+t ( ) ) 1+RR(D+InDR)
4 1 g,.R_(’A'RZG) cos (200+¢) (25)
2we’p'ril

where ¢, the phase angle, is a function of gp, &p.
and CR, or alternatively a function of CR, CDR,
DR, RR and D.

Temperature of the Wire

The temperatures of the gas and wire are linked
together by eq. (23), and the wire temperature can
finally be written as follows:

, ., (IiRY iaDR+D
o (4rrkl 1+RR(D+InDR)

+ I«‘g-R—(il,a—IQ—:/—)—cos(2o)0-1'-¢u.) (26)
2wc’p'ril
Defining the amplitude ratio, ARW, and the phase

angle $,, both based on the wire temperature where

ARW = {CR (gp—digs'8)*+ (bp—d:bs'8)*
@n

and ¢,, g," and b, are also functions of the same

variables as those for ¢.

Theoretical Calibration Curves

From the experimental point of view, the oscil-
lating temperature of the fine wire can not probably
be registered without being converted into the form
of IR-drop. For this purpose, a fine wire of high
temperature coefficient of resistance, such as of tung-
sten or platinum, is thought to be helpful. Assume
that the resistance varies linearly with the : temper-

ature, and let dR/dt be the temperature coefficient
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of the wire resistance at the average wire temper-
ature. Then, the instantaneous wire resistance at

an arbitrary temperature ¢, is as follows:
R=R+ L% (1) (28)

where R, is the wire resistance at ¢=t¢,, The IR-
drop, e, across the wire is now obtained by mul-
tiplying R by ¢, the heating current, and substitu-

ting eq. (26) into eq. (28). Thus,

_ 3R InDR+D dR 7.
¢ [1"R’+ 4zkl 11 RR(D+InDR) dt ]S‘"””
[ BR(ARW) dR 1.
[ drwc’o'r? dt ]Sm(w€+¢w)

I3R(ARW) dR 7.
Horarmit a Jin oo+ (@)

Eq. (29) suggests that the IR-drop consists of a funda-
mental harmonic wave of a large amplitude in phase
with the current, another fundamental harmonic
wave out of phase by ¢, from the current, and a
third harmonic wave out of phase by ¢,. The amp-
litudes of the latter two harmonics are identical,
but, are order of only one millionth of the main
fundamental harmonics in magnitude. If the fre-
quency sensitive Wienbridge, in which the meas-
uring cell is placed as an arm, is actuated by the
sinusoidal current i=1Isinwf, the balancing of the
bridge will automatically eliminate the small and
large fundamental harmonics leaving the third har-
monic component alone in the bridge output. The
signal, though small, can be registered in a VTVM
after amplifications in several steps. From the cali-
brated reading, it is possible to calculate ARW. The
value of ¢, can also be calculated from the readings
of the variable capacitor which is a component of
the bridge. The capacitor is adjusted tc obtain a
sharpest balance of the bridge. However, the capacitor
readings are, in general, not as accurate as the
We will,

the phase angle from our discussion.

resistance readings. therefore, leave out

Having determined our policy of measurement, let
us go back to the theory to recall that ARW- was



expressed in terms of
ARW=func(CR, CDR, DR, RR, D) (30)

The basic principle of the measuring method can
be established by paying attention to the relation
ARW vs. CR, while regarding CDR, DR, RR,
and D as parameters. The relation plotted on a log-
log graph paper for several different sets of para-
meters are called the “Theoretical Calibration Cur-
ves”, although, actually, a computer program rather
than drawn curves will be more useful. Fig. 2 shows
some of such curves drawn when there are no radi-

ation and temperature jump.
1.0 -
o)

0.1
0.05

t4PLITUDE RATIO, ARO
ta
\

1 COR- ?

2 . 0

3 - i00

0.01 2 4. 500

5 -~ = 100U

0.005) 6. = 5000

z 7. = 10000

8 %8800

. 9. B
0.001 CONDUCTIVITY RATIO CR

oo Qo1 [eR} 1.0 10 100
Fig. 2 Theoretical Cdlibration Curves for DR==1000, RR==

0,. and D=0

When there is temperature jump, but no radiation
(for simplicity), both ARW and ARG must be con-
sidered against CR. Such relations are shown in
Fig.3. It is evident although ARW approaches asym-
ptotically to 0.5 as CR is increased, ARG always
approaches to somewhat lower value merging in one
curve as the temperature jump dies away. In any
case, the effect of temperature jump on the ARW
or ARG vs. CR curves is quite evident when the

temperature jump can not be overlooked.

1.0  mana
Qs
an<
Q
0051z
mg Curve 1. d,/r1 : 0
2. o« =21
é-'f A 2)ARW
5 4 210
0.01 5 = o0
[y 6, = 2)ARG
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Fig. 3 Theoretical Calibration Curves for DR=1000, RR=
0, and CDR==50, 000
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Now, suppose that we have got the value of ARW

calculated from the experimentally found amplitude,
then one can pick up the corresponding value of CR
from the theoretical calibration curve, or, using
the computer program. The desired value of thermal
conductivity can then be calculated from the known
frequency value of heating current and the value of
wire radius. -
" The method, just described, was named the “Ab-
solute Method of Measurement”. This method can
be used only when(1) the mathematri.calw ’mddel is
real, particularly, when the heating current takes:
an exact sinusoidal wave form, (2) the hot wire
radius is known with a sufficient accuracy, and (3)
the physical properties of the gas and the hot wire
matgrial are known accurately. However, these re-
quiréments are impossible to be completely fulfilled.
For this reason, this method shall not be followed
further.

Frequency Response Technique as the Re-
lative Method of Measurement

Consider any single curve in either Fig.2 or 3.
Regardless what substance—gas or liquid—is being
tested, there is always a single value of ARW for a
given value of CR, due to the virtue of the dimen-
sionless groups used for the correlation. For a
given fine wire, the value of CR is fixed if the
ratio of frequency to thermal conductivity is :.un-
changed. Alternately, if the gas and wire is fixed,
ARW will depend only on the frequency of the
heating current. Therefore, ARW can be regarded
as a frequency response. Let us define what we shall

call the “Frequency Factor” as follows:
GP == CR -k 10° = 2wc’p'r,*10° (31)
We will now consider ARW as a function of GF
with other dimensionless variables and % retained as
the parameters. Namely, ‘ h
ARW = func(GP,CDR, DR, RR, D, k) (32)

If the ARW vs. GP curves are ‘drawn experi-
mentally keeping other dimensionless parameters con-

stant for two different gases whose thermal -conduc-

J.KIChE, Vol.11, No.5, Oct. 1973
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tivities are %, and %,, the shapes of the two curves
will appear as shown iin Fig. 4. If the two gases had
the same thermal conductivies, the two curves would
have been superposable. Consider a value of ARW

at any level in Fig.2 or 3, then it follows that
CR,=CR, (33)

Now, shifting our attention to Fig.4, and recalling
the definition given by eq. (31), we can write as

follows:

AMPLITUDE RANIO, ARW

FREQUENCY FACTOR, GP

fig. 4 Principle of Calculating Thermal Conductivity by the
Relative Method

LI, (34)
or,

k= Sak, (35)

r

The above relation states that, if gas r is chosen
as the reference gas, whose thermal conductity is
well known, it is possible to calculate the thermal
conductivity of the unknown gas z in terms of &%,
the thermal conductivity of the reference gas, by
multiplying it by the ratio of the frequencies corres-
ponding to GP, and GP,.

This method was named as the “Relative Method
of Measuremrnt”, or, as the “Frequency Response
Technique” because of the philosophy involved. This
method does not require the model to be strictly real,
and the wire radius to be known accurately. The
method, however, does not produce data of any
higher accuracy than those of the reference gas,
regardless how carefully the measurements are taken.

The produced data are subject to revision whenever
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the data of the reference gas are improved.

New Method of Correcting for the Tem-
perature Jump Effect

The frequency response curve for the reference gas
is constructed from the data taken at the normal
temperature and pressure using a wire of fixed radius.
So, the value of CDR and DR are fixed. Since, in
the measurement, the wire and the shell tem-
peratures are made different by less than 10°C, the
radiative heat transfer may be considered negligible
letting RR=0. Since at the atmospheric pressure,
the mean free path of the molecules is small, the
temperature jump effect may become almost neglig-
ible. Thus, D=0.

On the other hand, the frequency response curve
for a gas of unknown thermal conductivity is cons-
tructed from the data taken frequently at a low
pressure and a high temperature. So, the effects of
temperature jump and radiation intervene in the
measurement of ARW, and so do likewise the effect
of CDR by so much depending on the extent to
which the CDR is different from that for the refer-
ence gas, and the effect of the axial conduction at
the both ends of the wire.

These effects must be corrected for before the con-
structed frequency response curve for the test gas can
be compared with that for the reference gas. The
methods of correcting for the effects of radiation
(RR), capacity density ratio(CDR), and the end
conduction are well described in the previous
work (5). In this work, we are primarily interested
in the method of correcting for the effect of tem-
perature jump.

For this purpose, we need to calculate the jump
ratio D and the value of ARW as well as ARO
using the theoretical formulas. It is possible, then,
to define the following:

TJC — ARW — ARO (36)
where TJC, whose meaning is selfexplanatory, is
the abbreviation for temperature jump correction

term, and ARO is the amplitude ratio when D=0,



but, the other parameters are the same as for ARW.

Having defined the TJC, the next step is to cal-
culate the corrected amplitude ratio ARO, as per the
following formula from the amplitude ratio ARW,

determined experimentally.

ARO,— . ARW. )

After all corrections, including the one just mention-
ed, are made, one can immediately follow the pro-
cedure described in the proceding section to grind
out the final value of thermal conductivity. The
present method of correction is based purely on the
theory. Although the theory based on the model

may not apply exactly to the actual case, consi-

deration has been paid in defining eq. (37) so that
the result undergone this correction is still correct.
Of all the information needed for calculating the
TJC, The valve of accommodation coefficient is
most poorly available. It is not even easy to deter-
mine when it is not available.
The previously shown Fig. 4 is, in fact, the plot of

ARO, against GP.

Application of the New Method of Correc-
tion to the Experimental data Application
to the Low Pressure Argon data

In order to test the validity of the new method
for correcting for the temperature jump effect, the

method was first applied to the low pressure data on
1.0

T T T

Q.5

Y
3
or
Q
Q

02

0.05

oo2, .. . FREQUENGY, .:TACTORL-GP.

Aol ek 4 b

2 5 10

[eX] 02 Qs

Fig. 5 Experimental Frequency Response Curves for Low
Pressure Argon Runs Prior to the Temperature Jump
Correction
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argon gas. The data were shown in
Fig. 5.

The wide spreading of eight curves from one ano-
ther is due to the difference in both CDR and tem-
perature jump effect. It will be seen how closely the

spreadings are narrowed down by applyjng the tem-

summarily

perature jump correction in Fig. 6.

1.Q[TTT Y T T T T T T T
051 .
- g 3
B ]
o
O.?_r'z —
[*4
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o -
0.1 Eg .
'S =
: -
0.05‘2 -
.02l jRElQULEi‘K;Y‘ |F(AC TOR»' G’j FENNT L

[oX] 02 o5 1 2 5 10

Fig. 6 Experimental Frequency Respone Curves for Low
Pressure Argon Runs ofter the Temperature Jump
Correction

In thid figure only five corrected curves are shown
in order to avoid overcrowing. We may not be able
to exactly superimpose the corrected experimental
curves upon the theoretical curves in Fig.2 which
were constructed on the mathematical model. How-
ever, we can take the close resemblence between the
two groups of curves as an ample evidence for the
correctness of the method. Fig.6 can also be effec-
tively used for formulating the method of correcti
ng for the effect of CDR difference from that of the
reference gas.

In measuring the thermal conductivity. low press-
ure gases were not intentionally sought. There is of
course no sense in measuring thermal conductivity at
reduced presures because the pressure does not ap-
preciably affect the thermal conductivity. The low
pressure measurement was rather compelled by the
difficulty in obtaining metal vapors at nearly one
atmospheric pressure. The pressure actually encounted
here in this experiment ranges from 0.08 to 0.2
atmospheres.

Here, by all means, the cases where pressure is so

low that heat is transferred by the bombardments of

J.KIChE, Vol .11, No.5, Oct. 1873
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unobstructed molecules is not considered.

Because of the fineness of the wire used, which is
0.0003 cm in diameter, the pressure range encounted
here already belong to the case where the mean free
path of the gas becomes comparable to the wire dia-
meter,

Application to Cesium and Rubidium Va-
pors
Figs. 7 and 8 show the working curves for cesium

and rubidium vapors along with the reference curves
obtained using argon.

0.40 T P e r
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T
|
0202 oLt .
4
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o
s
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Fig. 7 Morking Curves for Cesium Vapor based on CDR==
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O .
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(= 2. previous
005r2 3. " R
E : 4 present ]
| 5. .
0.03t ]
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006 01 0.2 05 1.0 2.0
Fig. 8 Working Curves for Rubidium Vapor based on CDR

-=3000
If the test gas curve comes on the upper side of

the reference curve, the thermal conductivity of the
gas is lower than that of argon, and vice versa.
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Conclusion and Evaluation

The thermal conductivity values must theoretically
be the same regardless at which level of ordinate the-
This is

tunately not so in actuality. The calculation must be-

calculating procedure is carried out. unfor-
carried out in the region of ordinate where the cur-
ves become almost linear or parallel to each other.
The thermal conductivity values calculated in this
manner are shown in Table 2. The comparison is
made with the old values(5,6) which were produced
by an approximate mathod of correcting for the tem-
perature jump effect. The difference seems to be tri-
vial. But the present method has a much more sound

logical backing.

Table. 2 Thermal Conductivity of Cesium and Rubidium Vapors.
in cal/sec. em. °C

Temp, Press, k, old

Metal °C atm X10* X 10*
Cs 615 0. 214 0. 1587 0. 1515
Cs 554 0. 0984 0. 2060 0.1838
Cs 547 0. 0974 0. 2120 0. 1950
Rb 826 0. 0829 0. 2158 0. 1980

0. 0882 0. 2280 0. 2160

Rb 772

The extent of temperature jump correction applied
to the amplitude ratio ranges approximately from 3
to 19%, and this value is about 5 to 25%
than the amount of correction applied previously.

smaller-

The auter has previously published the theoreti-
cally calculated values of the thermal conductivity
of alkali metal vapors. The final experimental values.
here are in reasonaly good agreement with the the-
oretical values. There are some work on measuring
the thermal conductivity of sodium and potassium
vapors in the Soviet Union, and of cesium and rubi-
dium vapors in the United States. The accuracy
claimed by the Soviet authors are 20% and their ra-
diative part of heat transfer in the measuring cell is
said to have amounted to as much as four times that
United

States deviates considerably from the authors’ theore-

of conduction. The workcarried out in the

tically calculated values, perhaps, because their data

were processed under the assumption that the vapox-



is monoatomic.

The value obtained here for cesium and rubidi-
um vapors are correct within 6%, and they fall
essendially within the region predicted by the theory.

Finally the author wishes to acknowledge the Min-
istry of Science and Technology for having provided
the fund for this work.

Nomenclature

a; Accommodation coefficient

¢; Specific heat at constant pressure of the test gas

¢’; Specific heat of the fine wire

d; Temperature jump distance

h, hj; Heat transfer coefficients

k; Thermal conductivity of test gas

p; Pressure of the test gas

t; Instantaneous gas temperature

t.; Instantaneous fine wire temperature

I,; Amplitude of the heating current

R; Fine wire resistance at the average wire temper-
ature

ARG; Amplitude ratio based on the gas temperature

ARW; Amplitude ratio based on the wire temperature

73 Ratio of the specific heats

#; Time

0, 0'; Densities of the gas and fine wire

&, ¢,: Phase shift angles based on the gas and wire

temperatures
; Angular velocity, 27f
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