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Abstract

Recent developments in the theory of the kinetics of non-catalytic fluid-solid reactions are reviewed. Until recent-
ly, the treatments of this important group of reactions have been in an embryonic stage. In the last few years,
however, significant progresses have been made in various aspects of fluid-solid reactions. In Part I, the reactior:
of an initially nonporous solid will be reviewed. Part II will discuss the reaction of an initially porous solid, and
the reactions between two solids proceeding through gaseous intermediates will be described in Part III. Finally,
the treatment of industrially important multiparticle systems will be presented in Part IV.
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Fluid-solid reactions occupy an importent position in
materials processing technology, encompassing such
diverse processes as the combustion and gasification of
solid fuels, the gaseous reduction of metal oxides, the
roasting of sulfide minerals, the leaching of metal
values from ores, and the calcination of limestone, to
name but a few examples. Furthermore, certain indus-
trially important reactions between two solids frequent-
ly proceed through gaseous intermediates. Such sys-
tems car. be analyzed by considering the overall reaction
as a pair of coupled gas-solid reactions as will he
discussed in part III of this review.

Although most fluid-solid reactions involve a rather
complex set of reaction steps and may require individual
treatments, there are certain aspects of the overall
reactions that are common to a wide range of systems.
Such aspects are amenable to systematic generalization.

In this review we shall examine these aspects and
their application to a number of reaction systems. In
analyzing fluid-solid reactions, one must recognize the
basic difference between a homogeneous and a hetero-
geneous reaction, In the latter, two or more phases
are invclved, and hence the reaction almost always
occurs at an interface. It becomes readily apparent
that mass and heat must be transported to and from
this reaction interface. It follows that the analysis of
a fluid-solid reaction must start from the consideration
of the structure of the solid before, during, and after
the reaction, namely one must ask the following ques-
tions before deciding on the method of attack:

1. Is the solid initially porous or nonporous?

2. Does the reaction form solid products, or leave

solid ash behind?

3. Does the solid product or ash form a coherent
layer, or peel off continuously?
These questions must be borne in mind as we proceed

with our discussions.

1.1 Elementary steps of fluid-solid reactions

Let us consider a fluid-solid reaction of the following
type:
A(fluid) +bB(solid) =cC (fluid) +d D (solid) (1)

Examples of reactions of this type include:
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Fe;03(s) +3C0O(g) =2Fe(s) +3C02(g)
CuO(s) +H(g) =Cu(s) +H0(g)
CuO-Si0-2H,0(s) -+2H* (1) =

Cu2(1) +-Si0z-nHz0 (s) + (3—n)H0 ()
2ZnS(s) +304(g) =2Zn0(S) +250:(g)

The overall reaction process may involve the following

individual steps, as sketched in Fig. 1.

(1) Mass transfer of reactants and products between
the bulk of the fluid and the external surface of
the solid particle.

(2) Diffusion of reactants and products within the

pores of the solid.

(3) Chemical reaction between the reactants in the
fluid and in the solid.

ob ]
L
Fig. 1. Schematic diagram of the overall reaction

process.

Only recently it has been recognized that the rate-
controlling step can change depending upon reaction
conditions, and thus rate information obtained under a
given set of conditions may not be applicable under
another set of conditions. Furthermore, frequently there
may not be a single rate-controlling step because several
steps may have more or less equal effects on determi-
ning the overall rate. The relative importance of these
steps could also change in the course of reaction. There-
fore, understanding how the individual reaction steps
interact with each other is important in determining
not only the rate-controlling step under given reaction
conditions but also whether more than a single step
must be considered in expressing the overall rate.

In addition to the above steps involving the chemical
change of species, there are two other processes that

may have significant influences on the overall rate:heat



transfer and changes in the structure of the solid dur-
ing reaction. Many fluid-solid reactions either generate
or consume heat. The heat of reaction must be trans-
ferred from the surrounding to where the reaction
takes place, or vice versa. Heat transfer involves (1)
convection and/or radiation between the surroundings
and the solid surface, and (2) conduction within the
solid. The chemical reaction and heat may cause sint-
ering or other changes in the pore structure, which in
turn could have significant effects on the overall reac-
tion rate.

Since these elementary steps occur in many other
types of reaction systems and thus not unique to fluid
-solid reactions, we will not discuss these further and
the reader is referred to other sources for detailed dis-
cussions. (For external mass transfer, see Refs. 1-7;
for estimation methods of diffusivity and viscosity,
Refs. 1 and 8; for diffusion through porous media,
Refs. 3, 5, 9-11; for intrinsic kinetics on solid sur-
faces, Refs. 5, 12-14; for external heat transfer, Refs.
1 and 5; for conduction of heat in porous solids, Refs.
3, 15 and 16. These references are by no means ex.-
haustive; they are meant to be some representative

examples only. )

1. 2 Introduction to the reaction of a single
nonporous particle

The subsequent discussion in this Part I concerns the
reaction of a single solid particle which is initially
nonporous. If the reactant solid is initially nonporous,
the reaction occurs at a sharp interface between the
fluid and solid phases.

If no solid product is formed, as in the gasification
or dissolution, or the solid product is removed from
the surface as it is formed, the solid reactant will al-
ways be in contact with the bulk fluid and the size of
the particle will diminish as the reaction progresses.
If, on the other hand, a coherent layer of solid prod-
uct is formed around the reactant solid, the reaction
will occur at the interface between the unreacted and
the completely-reacted zones. If the solid product is
porous, the fluid reactant can reach the reaction in-

terface by diffusing through the pores of the product

5

either the fluid
species must diffuse into the solid by solid-state diffus-

solid. If the product is nonporous,

ion, or a constituent species of the solid reactant must
diffuse to the surface to react with fluid reactants.
The overall size of the solid will depend on whether
the solid product has a greater or smaller volume than
the reactant solid.

In the reaction of a nonporous solid and a fluid, the
chemical reaction and mass transport are connected in
series, making the analysis much easier “than in the
case of a porous solid.

In certain fluid-solid reactions, nucleation presents an
important step. The growth of nuclei is a rather com-
plex phenomenon. As the solid size becomes larger or
the reaction temperature is raised, the time within
which nucleation is important becomes a small portion
of the total reaction time and thus nucleation becomes
less important. We shall confine our discussion here
to reactions occurring at a sharp boundary which adv-

ances in parallel to the external surface of the solid.

1. 3 Reactions in which no solid product
layer is Formed

Examples of such reactions are the dissolution of
metal in acids, the formation of nickel carbonyl, the
chlorination of metals, the roasting of cinnabar (HgS),
the combustion of relatively pure carbon, among other.
This type of a reaction may in general be described by
the following scheme:

A(fluid) +bB(solid) = ¢C (fluid) -+d D (removable solid)

(2)
- Unreocted solid
// ’ ’\\
/ //“\’_, \ ///—\\\
/ / \ / A\
/] AN y;
\ \ / / N P
N \ %
Fluid film

Fig. 2. Schematic diagram of a shrinking particle while

reacting with the surrounding fluid.
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wwhere b,¢, and d are stoichiometric coefficients.

Let us consider a spherical particle of a nonporous
solid reacting with a fluid without forming a solid
product, as illustrated in Fig. 2. The rate of consump-
tion of the fluid species A at the solid surface by
reaction is given as follows:

na=k-f(Ca.). (3)

Where ny is the rate per unit surface area, % is the
teaction-rate constant, and f designates the dependence
of the rate on concentration. Neglecting accumulation
in the boundary layer surrounding the solid, the rate
of chemical reaction must equal the rate at which fluid
'species are transferred between the surface and the bulk
fluid. As discussed earlier, the rate of external mass

¢ransport is described by

na=k,(Cas—Cs.) @
“Thus, equating Egs. (3) and (4), we obtain
k-f(Ca) =kn(Cas—Cyy) (8)

"The overall rate can be determined by solving this
«2quation for the unknown C,,, and substituting it
back into either Eq. (3) or (4). Before obtaining the
.general solution including the effects of both chemical
kinetics and external mass transfer, it is instructive to
cXamine asymptotic cases first.

When k<<%, Eq. (5) yields C4~C,;. This is
the case where external mass transfer offers little resis
tance, and thus chemical reaction controls the overall
r-ate of reaction. The rate is then given by

na=k-f(Cas) ®

On the other hand, when £>>%,, f(C,,) tends to
zero which occurs when the concentration of A appro-
aches its equilibrium concentration under the conditions
prevailing at the surface of the solid, C*4,. Thus, in
«his case chemical reaction offers little resistance and
external mass transfer controls the overall rate. Sub-
stituting C*4; for Cy, into Eq. (4), we obtain

114 =km(Cs—C*4) @

In the intermediate regime where both chemical kin-
atics and mass transfer offer significant resistances, the
analysis will be illustrated with a first-order irreversible
reaction. (The case of first-order, reversible reaction
is described elsewhere®. Thus, we have

na=k Cy: (8)
and C*,4,=0 9
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Solving Egs. (4) and (8) simultaneously to elimi-
nate Cy,, we obtain

Cas

npa= ]

T, 1
e,

10

Egquation (10) indicates the familiar result for first-ord-
er pracesses coupled tn series that the resistances are
additive. It is also noted that Eq. (10) reduces to either
Eq. (7) or (8) under appropriate conditions.

In order to obtain the overall conversion wvs. time,
the rate of disappearance of A,7n4, must be equated
with the rate of consumption of the solid B.From the

stoichiometry of the reaction (2), we have

nA:—-.ﬁg_. dr‘ (11)

b dt

where pp is the molar concentration of solid B and 7,

is the radius of the solid at any time. Therefore, from
Egs. (10) and (11), we get

L.l (12

All parameters except £, on the right-hand size of Eg.
(12) are independent of ». If %, could be considered
to be independent of r, integration of Eq. (12) would
be straightforward. In reality, however, £, will vary
with 7.

Given such a relationship one can perform the inte-
gration to obtain r, and hence the conversion as a fun-
ction of time. An example of the procedure can be
found elsewhere’. The general procedure can be illu-
strated as follows: Rearranging Eq. (12) and integrat-

ing,

- [T f" th_] 13)
Ko U E T, R

which gives the relationship between 7, and time. Con-
version X is related to r. by the following:

Xz (L)’ as

ro

where 7o is the original radius of the solid. Equation
(13)also shows that the time necessary to attain a cer-
tain 7, (and hence a certain conversion) is the sum of
the time to attain the same 7, in the absence of mass—
transfer resistance and the time to reach the same r,
under mass transfer control. This important result app-

lies to any reaction system made up of first-order rate



orocesses coupled in series,

When the reaction accompanies a significant enthalpy
«<hange, considerations must be given to the transfer of
heat as well as of mass. The complete equations in-
volving heat conduction inside the solid as well as ex-
ternal heat transfer would be rather difficult to solve,

The formulation of the problem is in many ways
similar to that in the case of a fluid-solid reaction
forming a solid product. The effect of heat of reaction
is much more pronounced in the latter case. Therefore,
the detailed discussion of nonisothermal effect will be
postponed until later when the system of shrinking
unreacted core is described. Interested readers may

consult other articles dealing with this subject. 1718

1. 4 Reactions in which a product layer is
formed

This type of a reaction is frequently encountered in
chemical and extractive metallurgical processes, some
typical examples being the combustion of ashy coals,
the production of lime, the leaching of minerals from
ores, the reduction of metal oxides, the oxidation of
metals, and the roasting of sulfide ores. This group
of reactions may in general be described by the follow-
ing:

A(fluid) -+5B(solid) =¢C (fluid) --d D (solid) (15)

Figure 3 illustrates how the reaction progresses in

this type of systems.

Fig. 3. Schematic diagram of a shrinking unreacted-

core system.

The overall process can be divided into three steps:
external mass transfer, diffusion through the product
layer, and the chemical reaction at the interface betw-
cen the unreacted and completely reacted zones. In the

following we will formulate equations including all

7

these steps and show conditions under which one of
the steps may become the controlling step. The criteria
for thesc asymptotic regimes will also be developed.
The analysis will be made for an isothermal system on
a first-order, irreversible reaction occurring in an initi-
ally nonporous spherical particle. Generalization for
non-first order or reversible reactions and other geom-

etries can be found elsewhere. 519

1. 4.1 Mathematical formulation |

At steady state the interfacial chemical reaction and
mass transfer processes must occur at the same rate.
Thus, in terms of species A the following three rates
are equal:

Interfacial chemical reaction:

'—‘NA=47ZT"2kCAc (16)
Diffusion through the product layer:4

—Ny=4zr2D, dg: an
External mass transport’

—Ny=47r 2k, (Cas—Cas) (18)

In the above, —N, is the total rate of transport of
A into the sphere, 7, is the radius 'of "the ‘unreacted
core,

C,4. is the concentration of A at r,

D, s the effective diffusivity of A in the product

layer, and

r,  is the radius of the sphere at any time.

The solution is obtained by applying "the pseudo-
steady-state approximation, that is, the movement of
r. is much slower compared with the time scale for
establishing the concentration profie of A. Thus, as far
as the diffusing of A is concerned, the position of 7, app-
earsto be stationary and Ny is independent of position.
Then, Eq. (17) can be integrated for constant N with
Eqs. (16) and (18) as boundary conditions to give the
concentration profile as a function of r. From the
concentration profile thus obtained, ‘N, may be calcu-
lated using any of Eqs. (16)~(18). As before, the
consumption of A can be related "to that of solid B
through the following relationship:

- _ Amrlep dr.
Na== as9)

If the volume of solid product is “different from the

HWAHAK KONGHAK Vol. 14, No. 1, February 1976
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volume of initial solid reactant, r, will change as
reaction progresses. In many fluid-solid reactions the
change is negligible. Therefore, we will discuss the
case of constant r,. The system with variable r, will
be discussed later.

(16)-(18) together

(19) is straightforward and may be found

The procedure for solving Egs.
with Eq.
elsewhere. 20 For constant 7, the result can be ex-
pressed in terms of 7. as follows:

bkC 43 r kry { ( r ( r .

P ] — e — < )24 13-

=1 =T 13rP)T2 r,)'

[1 (7 )] a0

It should be noted that, in the presence of an inert
solid mixed with solid B, pg represents only the num-

ber of moles of species B per unit volume of the entire
solid mixture.

The following expression has been derived to syste-
matically describe the conversion-vs. —time relationship
for, an isothermal first~order reaction of a nonporous
solid with a fluid in which the solid may be an infinite

slab, an infinite cylinder, or a sphere®:

0= gry(X) -+ Pry(X0) +-25] (2)
where
o BRCay (A .
r= o8 ( FV, )t z2)
2— & ? ¢
7="3D, ( A, ) (23)
3 F,V

m_

She==h (i)

A ); modified

e
Sherwood number (24)
and A, and V, are the external surface arca and the
volume of the particle, respectively, and F, is

the particle shape factor which takes the value

of 1,2, or 3 for an infinite slab, an infinite

cylinder, or a sphere, respectively. We note that

( Fﬁv’ ) is the half thickness of an infinite
v

slab, and the radius of an infinite cylinder or

a sphere.

Other quantities in Eq. (21) are defined as follows:
grp(X)=1—- QA —-X)v* (25)
Pra(X)=X2 for F,=1
=X4+1-X) In 1—-X) for F,=2 (26
=1-3(1-X)¥3+2(1—X) for F,=3
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and we also used the relationship that

Xrl—(:_;)h:] -~ (TA’T: ) (7

1.4.2 The case of changing particle size

The case in which paricle size changes during the
reaction may be solved®by using the following relation-
ship in integrating Eq. (17):

(rp) ¥+ at any time=-7{r,) * original+- (1—Z) (r,) ¥+ (28)
where Z ls the volvme of the product solid formed
from a unit volume of the reactant solid. If we neglect
the change of £, with particle size, the solution is of
the same form as Eq. (21) cxcept that the following
definition of P,(X) should be used:

P (X)=ZX? for F,-=1

— [Z4+Q0-2)Q0=X))n Z+(1—~2Z) (1--X)7
- Z—1 o

+1-X)n(1—-X) for F,-=2 (29
_3[ Z—-[Z+ (l——Z) A-X)33 (l__'\')*g,,gi

for F,=3
We note that, as Z approaches unity, Eqgs. (29} reduce
to Egs (26).

1. 4.3 Additivity of reaction times

It is seen in Eq. (21) that the time required to:
attain a certain conversion is the sum of the times to
reach the same’conversion under the control of the
three separate steps, the first term being that of chem-
ical reaction, the second that of product-layer diffusi-
on, and the third that of external mass transport.
This is analogous to the result obtained for reactions
in which no solid product layer is formed, given by
Eq. (13).

1.4.4 The importance of o

It is noted that o2 provides the numericl criteria for
establishing the respective regimes of chemical reaction.
and diffusion controls. For porous solids, SA* is usually
quite large due to the fact that D, is about an order of

magnitude smaller than the molecular diffusivity. Thus,



external mass transport plays only a secondary role to
the diffusion through the product layer. Therefore, we
will examine the effect of the shrinking-core reaction
modulus, 42, for Sh*=co. Figure 4 shows the convy-
When 62 is
larger than 10, the system is controlled by the diffusion
through the product layer. When 2 approaches co,

ersion function vs. time for various g.2

Eq. (21) can be rearranged to give
. 2bF,D.C A 2X
= P AL 4 2= et
o8 ( F,V, Je=pn 0+ 2
(30
Thus, we have established important criteria in terms

of 5.2 as follows:

10

08}
X 06t

-—— Sphere (Fp=3) B
—~— Flat plate (Fp=l)_

~time relatio-

Fig. 4. Effect of o2 on conversion vs.

nship for the reaction of a nonporous solid
with o fluid (Adapted from J. Szekely, J. W.
Evans, and H.Y. Sohn, “Gas-Solid Reactions, ”

Academic Press, in press).

When ¢,2<C0.1, chemical reaction controls and when
0,210, diffusion through product layer and external
mass transfer controls the over-all rate. The criteria
are general in that its numerical values for defining
the asymptotic regimes are the same for all three geom-
ctries considered.

We can determine % and D, from experimental data
obtained in the chemical-reaction-controlled and diffu-

sion-controlled regimes, respectively.

1.4.5 Comments regarding the shape factor F,

An advantage of Eq. (21) and the definitions of
and V, (for
example using F,V,/A,) rather than a characteristic

dimensionless quantities using F,, A,

dimension such as radius) is that the equation can be
expected to hold approximately valid for geometries
other than the three basic ones used in obtaining the
result, provided that A, and V, are known and F, can
(21) is

whose

be estimated suitably. For examples, Eq.

expected to be valid for a cube or a cylinder
diameter is equal to its length if F,=3 is used. A
cylinder whose length is finite but greater than its
diameter will have an F, between 2 and 3. Fora
particle which has dimensions that are ‘more or less’
equal in thece directions, F, may be assuraed to be 3.
A particle with two more or less equal dimensions but
a long third dimension can be assumed to have F, equal

to 2.

1. 4.6 Further remarks

It is seen in Fig. 4 that the relationships between
g5,{X) and time is approximately linear for o2 as
large as 0.5 where significant diffusional resistances are
present. This shows that one cannot assume chemical
reaction control based only on the linear relationship
between g;,(X) and time. Such mistakes have often
been made in the past. On the other hand, £, (X)
vs. t*/o2 is seen to be approximately linear for ¢.2 as
small as unity where chemical reaction and diffusion
are of equal importance. . Again, the existence of a
linear rclationship between P, (X) and time does not
guarantee the control by product-layer diffusion. A
more reliable method would be to vary the particle
size and test if the reaction time is proportional to the
size of the particle or its square. Remarks may be made
at this point regarding the Jander equation??® which has
been used to describe a diffusion~controlled gas-solid
reaction in a spherical solid. 2228

[1- (1—X)1/agz=ibl_3e_czﬂ_t
pBrp

This equation was obtained assuming that the product

(31

layer around the spherical particle is flat. It has been

HWAHAK KONGHAK Val. 14, No. 1, February 1976
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shown® that, when the conversion is less than about
40%, this equation shows a reasonable agreement with
the exact solution of Eq. (30) with SA*=oc0. As con-
version increases, the assumption of flat product layer
becomes inapplicable and the “Jander equation becomes
grossly erroneous. In fact, as can be seen by comparing
Egs. (30) and (31), the Jander equation does not
even give the correct time for complete conversion.
Furthermore, Carter?®’ has shown, using the data on
the oxidation of nickel particles, that the Jander equ-
ation becomes clearly inapplicable at conversions higher
than 60%. Thus, the exact relationship given by Eq.
:{30) should be used instead of the Jander equation.

1.5 Nonisothermal reactions in shrinking-
unreacted-core systems

When the reaction involves a substantial enthalpy
«hange, temperature gradients will develop within the
particle. The reaction rate may be significantly influe-
nced by this temperature difference. With an exother-
mic reaction, the increased temperature in the solid
The rate,
will not increase indefinitely because, when the chem-
diffusion through the

will enhance the reaction rate. however,
ical reaction rate is very fast,
product layer will control the overall tate. The rate of
diffusion is relatively insensitive to further increases in
temperature. Another interesting aspect of exothermic
gas-solid reactions is the possible existence of multiple

steady states and thermal Instabilities.

1. 5.1 Mathematical formulation

For a nomisothermal reaction system, energy balance
is needed in addition to mass balance over the solid
particle. To facilitate mathematics, we will develop
the equations for a first-order, irreversible reaction.
We will also assume that the effective diffusivity, the
thermal conductivity and total concentration are const-
ant within the temperature ranges. The energy balance
equations are analogous to mass balance equations given
by Eq.s (16)-(18).
for solids with small heat capacities. Then, the energy

We will develop the equations

wequations in a spherical shrinking—core system are given
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as follows: At reaction interface:

Q=4nr2k(T,)Ca (—4H) (32)
where 7T, is the temperature at the reaction interface.
Conduction through the product layer:
dT
dr

where 2, is the effective thermal conductivity of product

Q=dzr22,

(33)

layer. External heat transfer:

Q=dzrh(T,—T}) (34)
where T, and T, are the external surface and the bulk
temperatures, respectively.

The solution can be obtained by determining C,4, and
T, from Egs. (16)-(18) and (32)-(34), with £ in
Eq. (32) evaluated at 7. 'In keeping with our assu-
mptions, D,, A, k., and h are kept constant. Equa-
tions (32)-(34) are solved using a pseudo-steady state
assumption, that is, at any time Q is constant at any

r. The results are as follows®:
_gd;_l_[gs(Tb)y[M]
4b

g'Fp(X)
exp[‘/ (1— % )]:O o
and
T, Cpe | 1/Nu*-+P'ry(X)
T, 1=plo(T) P Cjb [ g'r;(XF)p ]
exp [ 7’(1‘ :{'b )]:0 @0
where
r=E/R, T, @
_ (—4H)DCs
B= 2. T o
-k (FV
Nuv= b (_ﬁ ;,_ ) (39)

and g'g,(X) and P’ (X)
with respect to X of g;,(X) and Pj,(X), respectively.

represent the derivatives

C4. and T, can now be determined for each conversion
X by solving Eqs. (35) and (36) simultaneously. The
conversion -vs. ~time relationship is obtained by subst-
ituting Cy4, and T, into Eq. (16), and combining it
with Eq. (19) together with Eq. (27).

1.5.2 Multiple steady states and thermal
instability

These phenomena occur due to the fact that for an

exothermic reaction Egs. (35) and (36) may have



more than one solution at a fixed conversion. This can
be best explained by comparing the rates of heat gene-
ration at and conduction away from the reaction inte-
rface when the interface is at a given r..

Thus, from Eq. (32),

Qgcneration:‘izrczk ( Tt) CAc T JH) (1'0)
and from Egs. (33) and (34),
- PNT—Ty [ g
Qconducuon AG(AP/I’ ,b) \T“ ['b) [ I/A}Vu*"L‘P,F'(X)/Z ]
“n

In deriving Eq. (41), we again made use of Eq. (27).
The heat generation is typically an S-shaped function
of T.: Atalow T. the reaction is chemically controlled
and the reaction rate increases exponentially with 7.
As T. increases, chemical kinetics becomes fast and
the overall reaction is controlled by the product-layer
diffusion which increases very slowly with temperature.
The conduction term given by Eq. (41) is essentially
a straight line with respect to 7. Thus, there exist
the possibility of three solutions for 7, and hence C,,,
as shown in Fig. 5. Of the three solutions, the middle
solution is unstable and cannot exist in reality. The
upper solution is usually controlled by diffusion, wher-
eas the lower solution is controlled by chemical reaction
due to the low temperature and hence slow reaction

rate.

-4

o

Fig. 5. Schematic diagram of the possible existence

of multiple steady state.

Figure 5 represents the possible relative positions of
Qgenerntion aNd Qcondustion at a certain 7. During the
reaction, r, Change with time and the position of these
curves will also change. These changes

may occur

such that no sudden change in T.is experienced. But

11

under conditions depicted in Fig. 6. a sudden transition
from the lower to the upper operating condition will
occur, resulting in a thermal instability. In this system,
The

reaction starts at the external surface of the solid where

the bulk gas is maintained at temperature Tj.

heat transfer is rapid and hence the reaction temperature
is not much higher than 7}, as shown by point A.
At this low temperature, chemical reaction is likely to
control the overall rate. As reaction progresses into the
interior of the particle, heat transfer becomes slower
and point B is reached followed by a rapic transition
to point B’. Thus, the system is “ignited” to the upper
reaction regime, and will be in general operated at a
state represented by point C. As the reaction progresses
further (or in a system starting at point C), the syst-
em may go through point D at which a sudden jump
to point D’ occurs causing an“extinction” of the reac-

tion.

"Lccations of Ggen and Q45 OS5 reqaction progresses:
a-»b-»c-»d-»e

Operating conditions: A -»B/B'->C —-D/D-»E

Rate of Heat Generation or Consumption

¢

Interface Temperature, T,

Fig. & Thermal balance at the reaction interface (Ad-
apted from J. Szekely, J. W.
H.Y. Sohn, “Gas-Solid Reactions”, Academic

Evans, and

Press, in press).

Criteria have been developed for the possibility of a
thermal instability in gas-solid reactions?®%:20, In
these studies the heat capacity of the solid is assumed
to be negligible. Wen and Wang?” have discussed the

HWAHAK KONGHAK Vol. 14, No. 1, February 1976



12

effect of solid heat capacity in a nonisothermal gas-solid

reaction.

1. 5.3 Maximum temperature rise in diffusion-
-conitrolled gas-solid reactions

Excessive temperatures occurring in gas-solid react-
ions may cause severe structural changes such as serious
sintering which may close pores, thus hindering further
reaction. It is, therefore, of practical importance to be
able to predict the magnitude of the maximum temper-
ature that the solid may encounter in the course of
reaction. A rigorous solution could be found from 7T,
(35) and (36) for various

conversion values. This procedure, however, is rather

obtained by solving Egs.

tedious. An alternative procedure is possible by recog-
nizing that, if an appreciable temperature rise is atta-
ined within the solid, the reaction is likely to be
controlled by diffusion in the product layer, as discussed
earlier. Luss and Amundson?® obtained a numerical
solution for the maximum temperature rise for diffusi-
on—controlled gas-solid reactions occurring in a spheri-
cal particle. It is noted here that, if the reaction is
controlled by diffusion the solution is identical whe-
ther the solid is initially nonporous or porous. Sohn2®
has obtained an analytical solution which is exact for
an infinite slab and is approximately correct for a
particle of other geometries. He obtained, from the
analytical solution, useful asymptotic solutions for the
prediction of maximum temperature rise. Only the final
solutions will be presented below. Interested readers are
referred to the original article for detailed derivations.
Sohn?” showed that the temperature rise in the solid
when the reaction front is at a certain position is given

by the following:

0=2Ac"[D(x)—D(a)] 42)
where

_ WT—T) (FV,

0= din i ﬁ,’) “3)

=(_k_\ (_osF, F,V,
a=( o, ) ( WD.Co, ) ( A, -) (1)
(Here, pg is the molar concentration” of only the reac-

tant B in the solid which might contain other inert

solids, and p, is the density of the solid including the

aatast M 143 M1E 19764 28

inerts if any.)

—_‘_,_“/ - o 1 ) < g=1__Te

= 2‘1 (5 by ), =1 ., (45)
— 1

o= *‘{2‘4 (46}

and D(x) is defined by the Dawson’s integral

e D (w) ze--w'f evds 4n
The value of which is tabulated in the literature29~3D,
The maximum temperature rise can be obtained from
the maximum value of @ at a corresponding position
r.. However, the maximum temperature rise can be
explicitly determined from the following asymptotic
and approximate solutions of Eq. (42)2: For a large
Sh* (thus small @), Eq. (42) reduces to
0=+v9 A e**D(z) (48)

From the maximum value of the Dawson’s integral3®,

we get
Omazysh*—0=0. 76547 (49)
which occurs at
s 1.31
g=—"== 50
VA 50

This large SA* asymptote is recommended for @<0. 1. 3%

For large values of ¢(1<<«), the asymptotic solution is.

100

(o]
e} t_.L_.l._L.l_l 1l
Q .

(s}

},

L bl e ]

! fo) . 100
Sh

Fig. 7. Asymptotic and approximate analytical soluti-
ons for .the maximum temperature rise. —
Exact solution; -+~ Asymptotic solution(a<( 01);
-O-O-Approximate solution (0. 1<<a<{1);
~A-A-Approximate solution (1<a).
[Adapted from H.Y. Sohn, AICLE J., 19
(1973), 191.7]



Oncoee = 1517077 1)
For 0.1<a<1,
Omaz= Vv'2A exp l\_.(_a#igﬁ)z ]
[D (_aia_;_ig_.) —D(a) ] (52)

The asymptotic and approximate solutions are shown in

Fig. 7. together with the exact solution obtained from
Ep. (42).

1. 6 Concluding remarks

The reaction of a nonporous solid with a fluid has
been discussed and solutions to the governing equations
have been derived. We have attempted a systematic
generalization at the sacrifice of some less important
details. As a result, we were able to establish an
important criterion in ¢,2 for determining the asymptotic
regimes of chemical-reaction—controlled or diffusion—
controlled reactions. Another consequence of this app-
roach is the generalization for various geometries. Thus,
the numerical values of 2 characterizing the asymptotic
regimes are the same for all geometries.

The shrinking-unreacted-core model is attractive for
its simplicity. But it should be noted that this is valid
only for the reaction of a nonporous solid occurring‘at a
well-defined sharp reaction interface. Various previous
investigators have applied this model, mainly for its
simplicity, to the reaction of a porous solid where
chemical reaction occurs in a diffuse zone rather than at
a sharp interface. This is permissible only for diffusion-
controlled reactions for which mathematical expres-
sions are identical. In general, the application of the
shrinking-core model to the reaction of porous solids res-
ults in erroneous analyses of experimental data: incor-
rect dependence of the reaction rate on different reaction
conditions (for example, activation energy) and various
physical parameters (for example, the dependence of
rate on particle size). The proper analysis of the rea-
ction of porous solids with fluids will be discussed in

Part 11 of this review.

13

Nomenclature

A dimensionless quantity defined by Eq.
(44), or area
A,  external surface area of the pellet
b number of moles of solid B reacted by
one mole of fluid reactant A
C.  specific heat of the particle including
the inert solid, if any
C molar concentration of fluid species
C* equilibrium molar concentration of fluid
species
D, effective diffusivity in porous solid
F shape factor (=1, 2 and 3 for flat plates,
long cylinders, and spheres, respectively)
g(x) conversion function defined by Eq. (25)
h external heat transfer coefficient
(—4H)

k reaction-rate constant

molar heat of reaction

K, external mass transfer coefficient
Nu*  the modified Nusselt number defined by
Eq. (39)
?P(X) conversion function defined by Eq. (26)

r  distance from the center of symmetry

in a nonporous particle

Sk, Sh* the Sherwood and the modified Sherw-
ood numbers, respectively, defined in
Eq. (24)
t time
t*, t* dimensionless times defined by Eqs. (22)

and (30), respectively

T  temperature

¥V volume

X  parameter defined by Eq. (45), or dis-
tance coordinate in Eq. (60)

X fractional conversion of the solid

VA volume of solid product formed from

unit volume of inttial solid

Greek symbols

o dimensionless quantity defined by Eq.
(46)

HWAHAK KONGHAK Vol. 14, No. 1, February 1976
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8  dimensionless quantity defined by Eq.
(38)
7 dimensionless quantity defined by Eq.
37N
I3 dimensionless variable defined by Eq.
(46)
7} dimensionless temperature defined by
Eq. (43)
A effective thermal conductivity of a porous
solid
0 molar concentration of solid reactants
0s density of the particle including the
inert solid, if any
g, shrinking-core reaction modulus defined
by Eq. (23)

Subscripts

fluid A
bulk property
solid B

value at reaction interface

s W oo B

original value

Q

particle or pellet

>

s value at external surface, or for entire

solid including inert solid, if any
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