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Abstract

As was seen in Part [, the treatment of the reaction of a nonporous solid particle is relatively
straightforward. When the solid is initially porous, analysis becomes rather involved due to the
fact that chemical reaction and diffusion occur in parallel. Only recently, some noteworthy develop-
ments and articles have been reported as the importance of this type of systems is being recognized
more and more. In this Part II, recent advances on the reaction of a porous solid particle will be
discussed. In the next two parts, we will describe the reactions between two solids proceeding through

gaseous intermediates and the treatment of industrially important multiparticle systems.

*¥Part 1: Huwahak Konghak, 14 (1976), 3.
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When the reactant solid is initially porous,
the fluid reactant will diffuse into the solid while
reacting with it on its path. Thus, chemical
reaction and diffusion occur in parallel over a
diffuse zone rather than at a sharp boundary.
The reaction of a porous solid has not been
studied as extensively as that of a nonporous
solid. Only recently has it received much atten-
tion from a number of research groups. As in
the case of a nonporous solid, it is important to
understand the relative importance of chemical
kinetics and transport phenomena. The resistance
to mass and heat transport may significantly in-
fluence the apparent activation energy, the ap-
parent reaction order, and the dependence of
overall rate on the size and other structures of
the particle.

2.1 Reactions in which no solid product is
formed

Examples of such reactions are the combustion
of porous carbon, the formation of nickel carbo-
nyls from relatively pure nickel, the dissolution
of porous minerals, and the Boudouard (or solu-
tion-loss) reaction between porous carbon and
carbon dioxide. This type of reactions may in
general be described by the following:

A(fluid) +5B(solid) — fluid products (53)
In the case of nonporous solids reacting without
forming a solid product layer, it was shown
that the overall reaction may be controlled by
chemical reaction or by external mass transfer.
In the case of porous solids, the diffusion of
fluid reactants within the pores of the solid cre-
ates an additional regime where the overall reac-
tion is strongly influenced by the pore diffusion

(but not controlled by it).
2.1.1 Uniformly-reacting porous particles

At low temperatures where intrinsic kinetics is
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slow the fluid species can diffuse deeply into the
interior of the solid, and reaction occurs through-
out the solid under a uniform concentration of flu
id A that is same as its bulk value. Thus all the
kinetic measurements will yield intrinsic values.

One of the first models on the gasification of
solids, taking into account the changes in pore
structure by the consumption of solid, is due
to Petersen®, who assumed that the solid con-
tains uniform cylindrical pores with random
Without going into the detailed
description of mathematical derivation, the result
of the model will be summarized. When the

intersections.

diffusion through the pores is rapid and hence
offers little resistance, the concentration of the
reactant is uniform throughout the particle and
the rate of reaction per unit volume of solid is
given by the following:

& \(2G—=35)§ ~"
) =2 C ()

Rate per volume=k<~ £
7o

where
k =gas-solid reaction rate constant,
& =initial porosity of the solid,
ro =inital radius of pores,
¢ =r/ry (r=pore radius at anytime)
C4 =concentration of reactant A
and G is the root of
4.

the variation of & with time is obtained by in-
tegrating
dr _ bk 7
= (56)
to give
g=1+- (57)
TC
where
—. rQ‘DS,,
“= pacn (58)

The relationship between the conversion X and

time is given by®

x=pfra+ D (LEEE - 69



It is emphasized that this expression is valid
only when diffusion offers little resistance and
hence the fluid concentration is uniform within
the solid. When diffusion offers a significant
resistance, the concentration and reaction rate
will vary with position inside the particle. This
problem has been treated by Petersen3? and,
more recently, by Hashimoto and Silveston®®.
Applying the model to the reaction of porous
graphite with carbon dioxide, Petersen® found
a reasonable agreement, despite the assumptions
that the pores are cylindrical and uniform in
size and the neglect of the coalescence of adjac-
ent pores as they grow. Furthermore, this model
is one of the few models that contain the real-
istic feature that the surface area may increase
with reaction, go through a maximum and then
decrease.
2.1.2 Reactions occurring wunder the strong
limitation of pore diffusion or under the

control of external mass transfer

the fluid re-
‘actants cannot penetrate deeply into the solid
without reacting. Under these conditions, the

As the reaction becomes faster,

reaction will mostly occur in a narrow region
near the external surface consuming the solid
from the surface into the center. The situation
is described in Fig. 8.

We will illustrate the quantitative aspects of
such a reaction for an irreversible reaction. Sin-
ce the reaction mainly occurs in a narrow layer
near the external surface, the reaction zone may
be considered flat regardless of the actual overall
geometry of the solid. The mass balance, there
fore, may be written in one direction only:

2,
4G _ts.Ca=0 (60)

D,

where x is the distance normal to the external
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surface and S, is the surface are® per unit volume.

Fluid film
T

Fluid reactant
concentration

Cab}
Cas

Fig. 8. Reactiocn of a porous particle without forming
a solid product layer and shrinking in overall
size.

Here, we made the assumption that the bulk
flux is negligible, which is valid for equi-
molar counter diffusion or when A is present at
low concentrations. The case of substantial vol-
ume change due to reaction will be examined

later. The boundary conditions

are:
Ca=Clyy at t=0 (outer surface
of the soid) (61)
and
CA= d;.’rA = as r—eo (62)

The first boundary condition assumes a negligi-
ble resistance due to external mass transfer.
The effect of external mass transfer can easily
be incorporated as shown later. The second
boundary condition is justified when it is recog-
nized that the pellet dimension is much larger
than the thin layer in which the fluid reactants
are completely exhaused. This condition is satis-

fied when the following inequality is valid?®:

,Kz; / (542.1) _kS,v%i}_?ff > 3 (63)

The solution of Eq. (60) is given by*

*Substitute PE%%L and thus d:igf =dec‘li and solve for p with C, as the independent variable.
A
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j@_l_% 2 kS, C,.+1>1,2 (61)

dz |~ \m+1 "D, “a
=0

From the concentration gradient at the external
surface (x=0), the overall rate per unit exter-
nal surface area can be obtained as follows:
2 dc 4 .}_ nt1
) e

A= L ( dz
at external
surface

(65)
It is noted that the rate is proportional to
(#D,)'? which means that the apparent activat-
ion energy is the arithmetic average of the activat-
ion energies of intrinsic reaction and diffusion:

E.+E
Eppi= bR (66)

For the diffusion of gaseous reactant, £;~0 and
the apparent activation energy is one-half of the
intrinsic value. The apparent reaction order is
also changed:

M= _@inyziﬂgc,ﬂ_ 67)
Equation (63) shows why diffusion does not con-
trol the overall rate, that is, even when chemi-
cal reaction is fast (£ large), a larger % still
increases the overall rate. This is because chemi-
cal recction and diffusion occur in parallel,
not in series. The overall conversion of the
solid may be described using 7, given by Eq.
(65). The procedure is entirely analogous to
that for a nonporous particle described previous-

Iy.
Equating Egs.  (11) and (65), integrating,
and substituting Eq. (27), we get
P vz el
/ﬁ”:_l,’?.&‘.l),) CASZ( Ap )t
A N Y
=1-(1=X)VFr=gp,(X) (68)

We have assumed that the external mass transfer
offers little resistance. We shall examine the
effect of external mass transfer subsequently. It
is seen that the X-vs. ~ relationship is analog-

ous for porous and nonporous solids. Thus, fre-
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quently no distinction has been made in analy-
zing this type of a reaction whether the solid is:
porous or not. On closer inspection, however,
the kinetics of the reaction of a porous solid is
falsified by the influence of diffusion. Instead'
of intrinsic kinetic parameters, one obtains the-
apparent values of activation energy andreactior:
order. The kinetics is also strongly affected by
the physical structure of the porous solid such.
as the specific surface area andt he effective diff-
usivity.

The above analysis was made for a power-law
kinetic expression. Many fluid-solid reactions.
may be more accurately described by the Lang-
muir-Hinshelwood type expression:

Rate= %%C; (69)
which can be shown®", using appropriate trans-
formation of variables, to represent, also a class:
of more complex mechanisms that account for a
reversible surface chemical reaction and the adso-
rption of other species. When this kinetic exp-
ression is incorporated in Eq. (60), the result is.
—In(1+KCa,) )12

KC T Cas
(70)-

When there is a substantial change in fluid vol-

ns=(2kS,D,.)'? (KC4s

which is expected more:
the bulk of fiuid
species in the pores must be taken into account.

ume upon reaction,

likely in gas-solid reactions,

If the volume increases upon reaction, as in 2C-
0,—2CO, the bulk outward flow of CO hinders
the diffusion of O, into the solid. A reduction
in volume has the opposite effect.

Thiele® first showed the efiect of volume
change on the rate of a catalytic reaction in a
porous catalyst pellet. His work was extended
later by Weekman and Gorring®®. We can apply
a similar analysis to fluid-solid noncatalytic reac-
tions with which we are concerned here. The
mass balance equation including the bulk fiux

term at constant pressure is as follows:



D

d*’Cyp 8/Ca, ( dCy )2
¢ dx? 1+0'CA/CA, dx

—kS,C3(1+60C4/Ca,) =0 (71)
-where =(v—1)Y4, and v is the the volume of
fluid species produced per unit volume of fluid
species reacted, and Y, in the mole fraction
of gas A at the pellet surface. Solution of Eq.
{71) with the boundary conditions given in Egs.
(61) and (62) gives the overall rate of reaction
per unit area of external surface as follows:

TFor a zeroth-order reaction (n=0),
na=(@S.D)2(1+6)| Sn1+0) | Ca”
(72)

For a first-order reaction(n=1),

na=(2kS.D)'*(1+0) .r%‘ —geln (140) }MCA

(73)
For a second-order reaction (n=2),
— 1/2 5 ,1 _ 1,
na= (2kS,D)VE(1+9) EIRE
Ty
+hidn(1+0) [TC (74)

Up to now, we have implicitly assumed that
the area of the external surface is negligible
compared with S,. This may not be valid for
solids of very low porosity or very fast reaction.
In such a case, the reaction occurring at the
external surface may contribute significantly to
the overall rate®. The rate of reaction at
the external surface may be written as

na =kfCJ (73)

external
surface

where f is the roughness factor for the external
surface defined as the ratio of true area to the
projected area of external surface. This term is
added to Egs. (65), (70), and (71) to obtain
the total rate of reaction. This total rate of
reation must be used to determine the conversion.

For a first-order reaction without appreciable
volume change, the overall rate including the

resistance due to the external mass transfer is

69

ng= ICAb

+ 4 (76)
2 1/2 km
(2428, D) " as
It can be readily verified that the external mass
transfer controls the overall rate when 2) ) Z,.
When the external mass transfer offers little re-

sistance (£ {<%,), the overall rate becomes
ro9 \1/2 ] )
na= (2488, D.) " +AF ||Cas (77

When the contribution of the second term is
small compared with that of the first, the exp-
ression reduces to that of Eq. (63) with C.,
equal to Cag.

_ Nonisothermal behavior in reaction sysiems
under consideration has been studied®”, based on
the analysis by Petersen 2%® for a nonisothermal
catalytic reaction in a porous catalyst pellet.
Only the result for a first-order reaction will be
presented here. Then

5_1__syis2
na=(@kS.D)Ve-E=LD e, g
where k,=k(T,), (79)
the reaction-rate constant at external surface

temperature, and where

d =78 (80)
7 = E/R,T, (81)

. (—dH)DLCps _ ( T-T,° (
A=TTT A (82)

It has been assumed in deriving Eq. (78) that
B < (1, for which the solution is valid for values
of |d] up to at least 5. For other values of /5 the
solution involves numerical integration, and the

reader is referred to literatures®®,

2.2 Reacions in which a product layer is
formed

This type of a reaction is similar to those
discussed in Section 1.4 of Part I except that
the initial reactant solid is porous. The reaction
can again be described by the following:

A{luid) +bB(solid) = cC(fluid) +d D (solid)

(83)

HWAKAH KONGHAK Veol. 14, No. 2, April 1976
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In a porous solid, the reaction occurs in a diffuse
zone rather than a sharp interface. There is a
gradual change in conversion of solid over the
pellet. In general, the external layer will be
completely reacted first and the thickness of the
completely-reacted layer will grow towards the
interior of the porous solid. Figure 9 illustrates
the reaction of a porous solid in which a solid

product layer is formed.

—Fluid film

Fluid Solid
Reactant Concentration

Fig. 9. Reaction of a porous particle forming a selid

product layer.

When pore diffusion is fast compared with
the rate of chemical reaction, the concentration
of fluid reactant will be uniform throughout the
pellet and the reaction will occur at a uniform
rate. If chemical kinetics is much faster than
the rate of diffusion, however, the reaction will
occur in a narrow layer between the unreacted
This Ilatter

situation' is identical to the diffusion-controlled

and the completely-reacted zones.

shrinking-core reaction of a nonporous solid dis-

cussed previously, We will formulate equations

including both intrinsic chemical kinetics and
diffusion, and derive the criteria for asymptotic
regimes where a particular step controls the
overall rate. The analysis will be made for an
isothermal system of a first-order, irreversible
reaction. (Extension to a reversible reaction can
be found elsewhere®. We also neglect the struc-
tural changes that occur during the reaction,
although certain aspects of such changes can be
incorporated into the analysis as discussed by
Szekely, Evans and Sohn®.

The following discussion is based on the work
of Sohn and Szekely*®™*®. Unlike those of many
other investigators*™*®, their analysis is general
in terms of solid geometry and gives approximate
closed-form solutions valid for the cases that
must otherwise be solved numerically. They also
derive important criteria for asymptotic regimes

for which simple, exact solutions are possible.
2.2. 1 Mathematical formulation

Let us assume the porous solid to be an aggre-
gate of fine grains. In order to facilitate the
visualization and description of the model, we
will assume that the grains have the shape of
flat plates, long cylinders or spheres. * The ex-
ternal shape of the pellet may also be approxi-
mated by one of these geometries.

We will follow the procedure described else-
where?® in developing the mathematical equa-
tions for the generalized grain model. In addition
to those already made above, the assumptions
to be made are:

(1) The pseudosteady-state approximation is

valid for determining the concentration
profile of the fluid reactant within the

pellet. 450

*The assumed shape of particles is to facilitate the visualization of the system. The real requirement is to

know the variation in the rate of reaction with solid conversion in the absence of resistance due to intrapellet

diffusion. This must always be determined by experiments.

ahEhE e M4 H2E 1976 43



(2) The resistance due to external mass trans-
fer is negligible. (This assumption will
be relaxed later and the effect of external
mass transfer will be studied).

(3) Intrapellet diffusion is either equimolar
counter-diffusion or occurs at low concen-
trations of diffusing species.

(4) Diffusivities are constant throughout the
pellet.

(5) Diffusion through the product layer around

(This as-

sumption will also be relaxed later).

the individual grain is fast.

The conservation of fluid reactant may be des-
cribed by

D, ACy—vs=0 (84)
where v4 is the local rate of consumption of the
fluid reactant A, in moles per unit time per
unit volume of pellet.

Within each grain, the conservation of solid
reactant may be described by

-~

or, __
—pB—a't - —bkC,; (85)

where 7. is the distance from the center of sym-
metry to the reaction interface.

An expression for v, may be obtained by de-
termining the surface area for reaction available
per unit volume of the pellet:

'(’A=(13k<%§—) (—;‘4:—‘2—)Fg'1CA (86)
where ag is the volume fraction of the pellet
occupied by solid B.

Equations (84) and (85)may be expressed in
dimensionless forms by introducing the following

dimensionless variables:

p=ga 87)
=5 o0
1= =% (90)

and

71
= EP KP aBk AE
In the above, R is the distance from the center of

geometry of the pellet. The dimensionless forms
of Eqs. (84) and (85) are

A¥-g2)EF g1 = (92)
and
5 =9 (93)

where 4*? is the Laplacian operator with 7 as
the position coordinate. The initial and boundary
conditions for Eqs (92) and (93) are

§=1, at t*=( (94)
¢=1, at p=1 (95)
d//
75 =0 at 7=0 (96)

For most practical purposes the desired results
are in terms of the fraction of the solid reacted,
instead of ¢ or & as a function of time. This
is obtained as follows:

= L9 (1—¢F)dy
X= TigFoidy (€]

It is noted that the dimensionless representa-
tion of the governing equations indicates that
the dependent variables & and ¢, and thus X,
are related to ¢* and % through a single para-
meter ¢. This quantity ¢ is a measure of the
ratio of the capacities for the system to react
chemically and for it to diffuse reactants into the
pellet. The modulus ¢ contains both structural
and kinetic parameters and is very useful in
characterizing the behavior of the system.

2. 2.2 Asymptotic behaviors

When ¢ approaches zero, the overall rate is
controlled by chemical kinetics, the diffusion
being rapid compared with the rate of chemical
reaction. Thus, the reactant concentration is
uniform within the pellet and equal to that in
the bulk (¢=1). This can be directly obtained
from Eq. (92) with 6=0. ¢ is then independent

of 7 and Eq. (93) is readily integrated to give:
HWAHAK KONGHAK Vol. 14, No. 2, April 1978
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~

E=1—1* for 0<C#*<1
(98)
£=0 for t*>1

Using Eq. (97) we obtain the following rela-
tionship between X and t*:

t*=1—-(1-X)VFg=gr,(X) (99)
which is identical to Eq. (21) with ¢,=0 for
chemical-reaction control. Equation (99) provid-
€s a convenlent means of determining the reaction
rate constant from experimental data obtained
under conditions where diffusional resistance is
absent. When ¢ approaches infinity, the overall
rate is coatrolled entirely by the difusion of the
gaseous reactant within the pzllet. This case is
identical to the diffusion contrelled reaction of
nonporous solids discussed previously in Section
1.4.4. The result can be expressed as follows
[using Eq. (30)1:

Pr.(x)= 2EPPDLas (_ds_
1)1‘)(‘1> - [£4:32 ] \ Fpi’yp ) ¢ (100)
:2,};:5’1:‘[) ‘*_ﬂf*
o2 C = 0‘—2 (lOI)

where Pg,(X) has been defined in Egs. (26).
Equation (100) provides a convenient means of
determining the effective diffusivity by plotting
experimental data obtained under diffusion con-
Ecuation (101)

suggests the following generalized modulus

trol according to this equation.

&= g =_ ‘j P /_a?k ‘;‘/?_. -

VORF, A4, VT 2op,
As will be seen subsequently,

this generalized
modulus enables us to determine the criteria for
the chemically-controlled and diffusion-controlled
asymptotic regimes. Furthermore, the numerical
values of ¢ defining the respective asymptotic
regimes will be the same for all combinations

of grain and pellet geometries.
g p g

2. 2.3 Complete solutions

Analytical solutions are possible for F,=1.
The case of F,=3 and Fg=1 has been solved

stetBE H14A H2E 1976 43

by Ishida and Wen %, and the solution for the
case of F,=Fg=1 is also available’”. In other
cases the solution must be obtained numerically.
Results of numerical computation have been
reported by Sohn and Szekely*® as shown in
Figs. 10 and 11.

uu—l{,"

o
@
—_

o
b
1

)
9, X201} F

Fig. 10. Cenversion function vs. reduced time for smail

velues of ¢ [Adopted from H.Y. Sohn

and J. Szekely, Chem. Eng. Sci., 27 (1972},

763].

i, X =X for £y
203
o
g

e, 1= 3GX)

ik ey Lo
2

Fig. 11. Conversion function vs. reduced time for
[Adepted from H. Y.

Eng. Sci..

large values of 4.
Sohn and J. Szekely. Chem.
27 (1972), 763).

Figure 10 shows a plot of gp,(X) ws. ¢* for
small values of . The ordinate was so chosen
as to allow the convenient presentation of the
appropriate asymptotic solution of gg,(X)=¢*.
It is apparent from this figure that the =0
asymptote is valid for <0.3 (or 62<0.1),

regardless of the geometry. Thus, when this



scriterion is met, the system is under the control
-of the reaction of individual grains and the
:solution is given by Eq. (99) which eliminates
the need for numerical computation.

Figure 11 shows a plot of Pr,(X) vs. t*/6*
‘for large values of &. The choice of the ordinate
‘was dictated by the form of the asymptotic solu-
‘tion of Eq. (101).
asymptote is approached when 4>3.0 (or %>

It is seen that the 6—wc

10), again, regardless of the geometry.

The solution for 0.1<6%<10 depends on the
geometries of the grain and the pellet. Sohn and
Szekely!® obtained the following closed-form
approximate sslution that is applicable to any
combination of geometries:

*gp (X)) +5%5,(X) (103)
The detailed derivation of this relation can be
found in the original article.

Equation (103) provides not only a simple
and easty-to-use relationship between X and ¢%,
but also a greater insight into the problem by
clearly showing the relative importance of chem-
ical reaction and diffusion through a parameter
6. Another important feature of Eq. (103) is
that the time required to attain a certain con-
version is shown to be the sum of the time to
reach the same conversion under chemical reac-

tion control and that under the diffusion control.

1

1
1‘
0
{
* 0 _J
|
5 ca Exact soluton _.1
e 3+ 52p. Ix)ef¥ ——m— mrssn 4
3 Qe (X)+ 82pg_ 1x)=t
o 9 P
i
0 B
|
+ - ! - l
2 3 4 5
,K‘

Fig. 12. Comparison of approximate selution with
exact solution for ¢=1 and 2. (Adapted
from H.Y. Sohn and J. Szekely, Chem.
Eng. Sci., 27, (1972), 763].

73

This can be recognized by comparing Eq. (103)
with Egs. (99) and (101).

Comparison of Eq. (103) with exact solution is
shown in Fig. 12.

The comparison is made for intermediate val-
ues of & for which the difference is largest.
The approximate solution is seen to be a satis-
factory representation of the exact solution. For
smaller and larger values of &, agreement is
better than shown in this figure. In fact, the
approximation is asymptotically correct as §—0
or #—co. Furthermore, it has been shown®”
that Eq. (103) is exact at X=1 for all the
combinations of geometries (F, and F,). Thus

Py =1+462 (104)

The above analyses have been success fully

applied to the reduction of nickel-oxide pellets

with hydrogen®?®.

2.2.4 Further comments

The effect of external mass transfer has also
been studied *°. The appropriate relationship
was determined to be:

~ 4 7 { 2X
t*::gFg (X) +62(Pr,(X) + ﬁ*{l

" FpVp

where Sh*=Sh(Dy/D.) :75'\_‘( ale ]
[ \ L b /

(105)

The case where the solid product has diiferent
effective diffusivity from that of the initial re-
actant solid has been studied by Ishida and Wen*®
and Sohn and Szekely*®. The results for incor-
porating the Langmuir-Hinshelwood type kin-
etics, rather than a first-order kinetics, have been
reported??.

All of the above analyses assume that the
diffusion through the product layer around each
When this

intragranular diffusion is important, the appro-

grain offers negligible resistance.

ximate relationship between X and #* has been
shown to be®V:
~N oA N 2X
=g, (X) 05 Pry (033 Pr,(X0) +-50 |
(106)

HWAHAK KONGHAK Vol. 14, NO. 2, April 1976
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where

ey ()

Nonisothermal reaction between a porous solid
and a gas is generally very complex, although
a few simple asymptotic cases can be solved
systematically. For example, the maximum tem-
perature rise in a diffusion-controlled system
discussed earlier for nonporous solid applies
directly to that for porous solid. The most im-
portant behaviors in this group of reactions are
instability and multiplicity.

The rigorous formulation of the problem of
nonisothermal reaction requires an energy balance
equation in addition to the mass balance equa-
tion given by Eq. (84). Making use of the
pseudo steady-state approximation for heat con-
duction, the energy equation can be written as

AT+ (—4H)va=0 (107)
Eliminating v4 from Egs. (84) and (107), and
integraring, we obtain

o (=4D)D
s Ae

T % (Cas—Ca) (108)

In obtaining this equation we have made use
of boundary conditions given by Egs. (95) and
(96) and corresponding boundary conditions for
temperature. Equation (108) gives a relationship
between temperature and concentration within
the porous solid during the reaction. It is signi-
ficant to note that this relationship is not affect-
ed by radial position and is, furthermore, valid
regardless of the pellet geometry.

Equation (108) can now be substituted in to the
temperature dependent parameters into Eq. (84)
and the resultant equation solved for the concen-
tration profile. The relationship between conver-
sion and time can then be obtained by following
the same procedure as for the isothermal system.

Instability and multiple steady-state may occur
because there may be more than one solution
for a nonisothermal system, that is, there may
be more than one concentration profile satisfying

3123 B4 H2E 1976 43

Eq. (84). These effects have Lkeen discussed in
the literature»?. A more detailed discussion on
this subject is teyond the scope of this review.

2. 3 Concluding remarks

The reaction of a porous solid with a fluid
involves chemical reaction and intrapellet diffu-
sion occurring in parallel. Thus, the analysis
of such a reaction system is generally more com-
plicated than that of the reaction of nonporous
solids. The grain model which was discussed
above is a rather recent development in this area,
and represents one of the distributed models
proposed in the last few years. These distributed
models have been tested against experiments and
found to describe the reaction of porous solids
reasonably well*?46.53%3_ In the text, the grain
model was described in terms of dimensionless
equations enabling us to establish an important
parameter & which characterizes the behavior of
the reaction system and also gives us numerical
criteria for asymptotic regimes. Furthermore,
the closed-form approximate solution . obtained
in the text is very useful, especially when we
are confronted with analyzing multiparticle sys-
tems. Without such a closed-form solution, both
the process within the individual particles and
that over the whole system must be solved nume-
rically. Even with the availability of impressive
capacities of modern computers, this will present
a formidable problem. The application of the
approximate solution of Sohn and Szekely to
multiparticle systems has been discussed in the

literature®:5?,

Nomenclature

Ag, A, external surface area of an individual
grain and the pellet, respectively
& number of moles of solid B reacted



Sh, Sr*

X

by one mole of fluid reactant A
molar concentration of fluid species
effective diffusivity in porous solid
effective

diffusivity in the product layer around
a grain

roughness factor defined as the ratio
of the true external surface area to
the apparent surface area

shape factor (=I, 2 and 3 for flat
plates, long cylinders, and spheres,
respectively

conversion function defined by Eq. (99)
molar heat of reaction

reaction-rate constant

external mass transfer coefficient
conversion function defined by Eq.
(26)

distance from the center of symmetry
in a nonporous particle or a grain
distance from the center of symmetry
in a porous pellet

the Sherwood and the modified Sher-
wood numbers, respectively, defined
in Eq. (105)

surface area per unit volume of the
pellet

time

dimensionless time defined by Eq. (89)
temperature

volume

distance coordinate in Eq. (60)

fractional conversion of the solid

Greek symbols

fraction of volume of pellet occupied
by reactant solid

dimensionless quantity defined by Eq.
(82)

dimensionless quantity defined by Eq.
(81)

Os

< >

3

o

hsS

w o oo oo
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dimensionless quantity defined by Eq.
(80).

porosity

dimensionless distance defined by Eq.
(90)

dimensionless temperature defined
effective thermal conductivity of por-
ous solid

dimensionless position of the reaction
front in the grain, defined by Eq.
(54) or (88)

molar concentration of solid reactants
density of the particle including the
inert solid, if any

dimensionless parameter defined by
Eq. (91)

generalized gas-solid reaction modulus
defined by Eq. (102)

shrinking-core reaction modulus defin-
ed after Eq. (106)

parameter defined by Eq. (58)
dimensionless concentration defined by
Eq. (87)

Subscripts

fluid A

bulk property

solid B

value at reaction interface
grain

original value

particle or pellet

value at external surface, or for en-

tire solid including inert solid, if any
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