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Abstract

The design and analysis of a multiparticle fluid-solid reaction system is discussed. The types of
contacting devices discussed are fixed beds, moving beds, fluidized beds, and continuously stirred
tank reactors. The analysis, however, can be extended to other multiparticle systems. It is shown

how the analysis of the reaction of individual solid particles discussed in the previous parts of this

* Part I: Hwahak Konghak (J. Korean Inst. Chem. Engrs.), 14(1976), 3.
Part II: 14(1976), 65.
Part IIi: 14(1976), 135.
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review forms the basis for analyzing a multiparticle system combined with the reactor configuration,

fluid flow, and the rate of supply of the fluid reactant.

Also in this article, a powerful mathematical technique called the “population balance model” for

describing a reaction of a multisized particle system is introduced. It is believed that this recently

developed technique will find many applications in the design and analysis of various chemical and

extractive metallurgical processes involving particulate assemblages.

fluid-

solid reactions occurring in single particles have

In the preceding parts of this review,

been discussed. The eventual objective for study-
ing simple particle systems is, of course, to
apply the results of such a study to analyzing,
predicting and designing multiparticle systems.
Most practical fluid-solid systems of industrial
importance consist of particulate assemblages.
Examples of multiparticle fluid-solid contacting
equipment include packed beds, moving beds,
fluidized beds, and rotary kilns. The extension
of single-particle studies to multiparticle systems
will depend on the nature of the particulate as-
semblages, the mode of fluid-solid contacting,
and the spatial variation of the fluid properties
within the system. These problems are quite
analogous to those involved in extending the
catalytic reaction in a single pellet to an indust-
rial catalytic reactor.

In this review, it will be assumed that the
reader is familiar with various properties of mul-
tiparticle systems such as residence time distrib-
ution, pressure drop and velocity distribution,
axial and radial dispersion, and heat and mass
transfer characteristics.

Needless to say, one cannot generalize the te-
chniques of describing multiparticle systems.
Different groups must be considered separately.
A number of commonly encountered multipart-
icle contactors will be discussed in this review,
which will form a basis of treating other specific
systems. In the following, reactions of unifor-
mly sized particles in fixed, moving, and fluid-
ized beds will be described. Finally, the appli-
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cation of the recently developed population bal-
ance model to the reaction of multisized particle

systems will be presented.
4.1 Fixed-bed systems

Let us consider the reaction of solid particles
with a reactant fluid in a fixed bed. The react-
ion is given by

A(f) +bB(s) =cC(f) +dD(s) (144)
For mathematical simplicity, we will consider
an isothermal system. Nonisothermal systems can
be analyzed similarly by adding equations of
energy. We shall further assume an irreversible
reaction. For such a system, the governing eq-
uation for the fluid reactant can be written as

D, 2Cs —U 4 —(—rp=0  (45)
where D, is the axial dispersion coefficient, U
is the superficial velocity and (—R,) is the rate
of consumption of gas A per unit volume of the
bed. In Eq. (145) we neglected the accumulat-

ion of A in the void space of the bed (—ng-)
term.

The rate of consumption of solid B per unit
volume of the bed at any Z can be written as
follows:

. _ /number of particles v
—Rp= bRA'(per unit volume of bed/”™

rate of consumption of\ __/ 1—ep \ > 0X
(solid B per particle )k(__V;, }013,03‘ P

=(1—¢p) apps 86‘;& (146)

where ap is the fraction of particle volume, re



gardless of whether the solid is porous or non-
porous, occupied by solid B (=1 for dense,
pure solid B) and pp is the true molar density
of solid B (=number of moles of B per unit
volume of pure B).

The term 6X/0t depends upon the specific
reaction and the nature of reactant and product
solids as discussed in Parts I and II%% of
this review. For the purpose of illustration
and because of their frequent appearance in im-
portant fluid-solid reaction processes, we shall
consider the following two cases:

1. Shrinking unreacted~core system (discussed
in Part I) in which initially nonporous sol-
ids of uniform sizes react with fluid forming
a porous product layer.

2. Porous solids of uniform sizes reacting to
form porous products, as discussed in Part
IL

For an initially nonporous solid, by rearran-

ging Eq. (21) in part I9, we have

_ bkCa Xyt g

0= B (F,V;.){g #(X) w2 #e(X0)
2 4

— (147)

For an initially porous solid, from Eq. (105)

in part II%9 we obtain

0X _ 0kCa [ Ar N\ I vy 2l

X) -y }*1 (148)
At t=0,

the conversion is zero throughout the bed, and

The solution procedure is as follows:

we can determine 56X/t as a function of Cu
from Eq. (147) or (148) as the case may be.
We can use these equations for changing Cy
because diffusion is a first-order process and we
Then
we incorporate this relationship between 5X/6¢
and C4 into Eq. (145) through the use of Eq.
(146). Now Eq. (145) can be solved to give
C4 as a function of the bed length Z using ap-

assumed a first-order chemical reaction.
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When the dis-

persion term is included, the boundary con-

propriate boundary conditions.

ditions become rather involved; when plug flow
is assumed (D,=0),
comes straightforward. With this concentration
profile, we can evaluate 0X/0¢t at any Z. We
then integrate Eq. (147) between =0 and 4t,
which yields X vs. Z at 4t. This X—vs. —Z
relationship is used to solve Eq. (145) for Cj4

the boundary condition be-

vs. Z at 4¢t. This procedure is repeated until
the desired value of z. It should be noted that,
when X reaches unity at certain Z, no further
reaction occurs at that position and hence 2.X/0t
and R, must be set equal to zero. Numerical
results for the case of porous solids have been
reported in the literature®®.

The operating conditions in terms of bed len-
gth, flow rate, etc., would depend on whether

gaseous or solid product is the desired product.

4.2 Moving-bed systems

In moving-bed reactors both the solid and the
gas move cocurrently or countercurrently. We
will illustrate the analysis for a steady-state sys-
tem with the fluid and solid moving in plug
flow.

The governing equation for the fluid reactant

is

U-4Ca i (-Rp) =0 (149)
where
and dX/dt is given by either Eq. (147) or

(148).

The governing equation for the solid reactant
1s

GB "'~( Rp)=0 (1515
where GB is the molar flow rate of B per unit

cross—sectional area of the bed. For cocurrent
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flow Gp has the positive sign and for counter-
current flow it has the negative sign.

The boundary condition for Eq. (149) is

at Z=0, C4=Cy (152)
and that for Eq. (151) is

Cocurrent flow: at Z=0, X=0 (153a)

Countercurrent flow: at Z=L, X=0 (153b)
Dividing Eq. (151) by b and adding the resul-
tant ejquation to Eq. (149), we obtain

o, GeX

¢ (vt =57
dz

Integrating this eguation with boundary condi-

tions (152) and (153), we obtain

Ca . Gp_ i+ T

A= | XX | (155)
Using Eq. (155) in Eq. (147) or (148), as the
case may be, and substituting the resultant eg-

uation in Eq. (151),

=0 (154)

we obtain a first-order
ordinary differential equation for X 'as a fun-
ction of Z, which can be easily integrated analy-
tically. The concentration profile can then be
obtained from Eq. (155).

The spherical shrinking unreacted-core system
was considered by Ishida and Wen®’ and the
system of porous pellets was studied by Evans
and Song®®. Moving-bed systems in which
axial dispersion is important can be studied foll-
owing a similar procedure. Nonisothermal con-
ditions can be easily incorporated, although the
mathematical procedure will become more invo-
lved.

In the above, for both fixed-bed and moving-
bed systems, the sizes of particles were assumed
uniform. A remark may be made at this point
concerning a system with a certain particle size
distribution. When the distribution is either Ga-
ussian (normal) or log-normal in terms of weig-
ht fractions, Mcllvried and Massoth®® have sh-
own that the overall rate of conversion is not
much affected by the spread (within a reasonable

limit of naturally and industrially encountered
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values) as long as the weight-mean size is used.
This may not be the case when the distribution
is of the Gaudin-Schuhmann form®™. The exten-
sion of the above analyses to a system with a
size distribution is rather straightforward. Exam-
ples of this type have been discussed by Evans
and Song™ who made use of Eq. (103) of Part
IT obtained by Sohn and Szekely’".

what different example using the so—called popul-

A some-

ation balance mode! will be discussed later in

this article.
4. 3 Fluidized-bed systems

The behavior of solid particles and fluid in
a fluidized bed is quite complex?®. It is po-
ssible to incorporate more complex models of
fluid flow and mixing in describing fluid-solid
We will,

however, present here an approach %79 based

reactions in a fluidized bed 7>7%,

on the assumption that within the bed the
solid particles are well-mixed and the fluid
[The solid is well-
stirred by the fluid contained in large bubbles

is passing in plug flows.

which makes an insignificant contribution to
reaction,

Again, it is assumed that the solid particles
have uniform size and the bed is isothermal.
Since the solid particles are assumed to be per-
fectly mixed, we may assume that during the
residence time, the solid encounters the spatial
mean gas concentration, Cg, to be determined
later. [This is possible for a first-order react-
ion,

Thus, Egs. (21) and (105) are applicable
provided that ¢* is defined using C4,. We then
obtain, from either of these equations, X as an
explicit function of t*: (We need to do this nu-
merically. )

X-=X(*, Sh*, os® or 62) (156)

The age distribution of the solids in the bed



is
F(*y = ii emtH bE 157

where % is the dimensionless form of the resi-

dence time 7 of the solids in bed:

P _b,kﬁC:‘,Am Ay e colide
¢ 508 ( PV, b for nonporous solids
(158a)
:%kogﬁh(lfég%/gﬁ for porous solids (158b)

The average conversion of the solids leaving the
system is given by
X (7, Sh*, 6.2 or §2) = J TEG@ X (%, Sh*, 02
0
or 62)dt* (159)
Since we assume that the gas in the emulsion
phase passes through the bed in plug flow, the
appropriate mean gas concentration is the log-
mean value between the inlet and outlet concen-
trations:

CA ix)ﬂ_crﬂw_out . (160)

Cam—yEain=Ca o
In(Ca /Ca ow)
The outlet concentration Ca ., can be calculated
from an overall mass balance as follows:
GeX=6Ga (1-C4s ou/Ca 1) (161)
where G4 is the molar flow rate of gas A per
unit cross-sectional area through emulsion phase.
The calculation of the overall conversion thus

involves a trial~and-error procedure.

4.4 Application of population balance
medel to multiparticle systems

In the previous sections, systems of monosiz-
ed particles were discussed. In this section we
will discuss some examples of the treatment of
multisized particle systems. In particular, we
will introduce a powerful technique for handling
reactions of particles which have distributions
of properties such as size, composition, poro-
sity, etc. This is based on a general accounti-
ng procedure which can be used to predict chang-

N

¢s in property distributions for multiparticle

207

processes involving chemical and physical inter-
actions.

In 1964, Hulburt and Katz7® and Randoiph 76
D proposed a population balance equation for
the continuity of particle numbers. This balance
equation can be applied to an infinitesimal
control volume as in the case of momentum,
heat and mass transfer (microscopic form).
In this review, however, we will illustrate the
use of the population balance model by consider-
ing systeras in which the population balance
equation may be written over a reactor volume
such as batch or continuously stirred tank reactor
(macroscopic form).  The application of the
population balance model to systems described in
Sections 4. 1~4. 3 would involve the microscopic
form of the model. In general, the solution of
problems involving the microscopic form is quite

complex.

4.4.1 Mathematical Expressions of
Preperty Distributions

Before describing the application, it would be
of interest to take a brief look at the mathe-
matics of distributions. The property distributions
are expressed in terms of density functions f
(D) and distribution functions F(D). Let us
consider the particle size distribution. The frac-
tion of the particles in a population which have
a size Letween D and D+-dD is given by f (D)
dD. The fraction of the particles smaller than
some size D, can be obtained by summing the
fractions of particles from the minimum size in
the population, Dy, to D). For an infintesimal

dD, the summation becomes an integral:

D
F(Dy) = jpl FDYD

min

(162)
Of course, F(Dy.p) =1, and the fraction of par-
ticels in any size interval Dy, and D. can be
calculated from

HWAHAK KONGHAK Vol. 14, No. 4, August 1976
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[ 52 £D)aD=FDy) - F (D)) (163)

The functions f(D) and F(D) may be given in
terms of fractions of the total number or mass
(or volume) of particles. In the population
balance model we are concerned with keeping
an account of the number of particles. Ho-
wever, the distribution is frequently determ-
ined by sieving the particles and weighing each
size fraction, which gives rise to mass (or vol-
ume) distribution. Thus, it is required to con-
vert one type of size distribution to another.
The relationship between a number distribution,
denoted by fp(D), and a mass distribution,
denoted by f3(D), is obtained by considering
the following equality:

/ Mass of one particle - Number of parti-
. of size between . X ¢ cles in that size |

D and D+dD " interval
/ Mass of particles \‘

= | in that size inter-
\ val /
pCsD3Nfo(D)dD=Wf3(D)dD (164)

where N is the total number of particles in the
system, W is the total mass of particles in the
system, p is the solid density, and Cj is the
volume shape factor (volume of one particle=
C3D%). If p and C; are independent of D, we
obtain from Eq. (164)

_. _D3(D)
fo(Dy= LI _
¢ Igm?x D—:ffs (D)dD (160)
and
Fo(Dy= —p - Dfo(D) 166

[om Dy o ()ap

Equations (165) and (166) permit the transfor-
mation of one type of size distribution to the
other.

We can extend the description of property
distributions to the system in which there are
more than one properites of interest. We may
be interested in the distribution of size, D, and
the content of the reactant solid, pp, in a par-

ticle assembly. The number fraction of particles
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with size between D and D+dD and molar
concentration of the reactant solid ketween pp
and pp-+dpg is given by fo(D, oB).

The distribution function is

D
FoDs o) =[P 51 fu(D, op)dDdp
167)
The size

distribution irrespective of reactant-solid content

In this case, Fy(D,.., 05 pa)=1.

can be obtained by
FoD) = [} f(D, o) o

and the distribution of reactant-solid content ir-

(168)

respective of size can be obtained by

D
Folos)=[ 5™ fu(D, ps)aD

In principle, this procedure can be extended

(169)

to any number of properties of interest, but in
practice, the complexity of distribution precludes
the simultaneous consideration of more than two

properties.
4. 4.2 Macroscopic Population Balance Model

The starting point for a population balance is
the following balance equation for the number
of particles with certain properties.

<Rate of number '\’__ (Rate of number ) :
of particles in | \of particles out /T

<Net rate of number )_:.__ (Rate of number accu-‘)
generation of particles mulation of particles

(170)
Let us consider a reactor which at time 7 con-
tains N(z) particles per unit volume. The num-
ber of particles per unit volume of reactor with
the first property between {; and Z,+ d{;, the
second property between p and o+ d, etc.,
can be written as

PAR=N () fo(s, Coy - oLay 8) 8y A, o, dlag

a7
The rate at which particles in the specified pro-
perty intervals are entering the reactor is:

‘rate ofy - : v v - -
(input )"’i\inQin/‘O in (Cu, Goy oo gy 1)y, dTg, o0,



o, dir=QudindR (172)
Similarly, the rate at which such particles are

leaving the reactor is:
'rate of -
(Output ) :Noulanfo,out (Clv [ C‘Ma t) dcl; dczr

°tt dCM :Qout¢outh (173)
The net rate of generation of particles in the

specified property interval is:
M

(Net rate 0f>:V[(5B_5D)‘“ pr _g?(vj <)

generation

dR| (174)

where V is the active volume of the reactor,

and dp and dp are the rate per unit volume at

which particles are “born” and “die,” respec-
tively, in the specified property interval. (dy and
op are the result of discrete changes such as
breakage or coalescence.) The term involving
the summation represents the net rate of disap-
pearance of particles in the specified interval
due to continuous changes in the properties
to {p. v; is the time rate of change of property
j, lLe

vy= ;%; (175)

The rate of number accumulation of particles
with properties in these intervals in the reactor

is the rate of change of particle number:

Rate of _ 0(Vd)
(accumulation) =y dR (176)
Substituting Egs. (171)~(176) in Eq. (170),

we obtain the macroscopic population balance
equation:

- ;l\at" ( V(./)) = Qin¢in - Qoqlg'f'ouz "l‘ V l ‘ (51; - 5D) -

M a ]
Py e (v |
S -

Qa7

In order to solve this equation, one must have
independent knowledge about the terms &g, dp
and v;'s. The terms 6p and dp usually involve
physical change whereas the terms v;’s are due
the analyses

to chemical reaction. Therefore,

o See, for example Ref._ (79].
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for the reaction of a single particle discussed in
the previous parts of this review will supply
information on these latter terms.

In the following, we shall present some ex-
amples on how the macroscopic population balance
equation can be used for analyzing the behavior
of particulate reaction systems. These examples
are drawn from Ref. [787.

4.4.3 Application to Bath Processes

Let us consider a well-mixed batch reactor in
which the following reaction takes place:

A(f) +bB(s) =cC(f) +dD(s) (178)
We assume that the sizes of particles remain
the same during the reaction. The only proper-
ty of interest in this system is the mass of B
remaining in a particle. There is no breakage
or coalescence of particles, i.e., 65=6p=0. For
a batch process Q;,=@Q,,,=0. Thus, Eq. a7

becomes
0 ) i 0 yr /, )
SV s ==v2 Lo s )]

(179)
The solution, for an initial distribution ¢ (mg, 0),
of which is*

(180)

The overall conversion of B can be obtained as

¢ (mp, t) =95(m3—_f; vp - dt, 0)

follows:
XV [am ma G 0y v [T
mp* ) (mp, t>dm3}/Vj:§::‘i‘: mp-¢(mp, 0)dmp
(181)
We let mp=[1—X(Dy, Ca, 1) JogCsDy® where X
(D, t) is the fraction reacted for a particle of

(180) into Eq. (181),

and transform from a number distribution to a

size Dy, introduce Eq.

mass distribution. Equation (181) then becomes

D
X= [ X(Dy, Ca 0f3(Dy, 04D, (182)
The concentration of fluid reactant A at time ¢
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can be obtained from a fnass balance on A:
CaV=Cao V-5 XMpy (183)

where Mp, is the total number of moles of B
initially present in the system. Rearranging Eq.

(183), we obtain

Ca _q_ Mp ,
Cao 1 bVCao X (184)
It can be seen from this equation that Cs=
Ma, ‘ . L
Cao When—b—V—C—o— is small, i.e., the fluid rea

ctant A exists in large excess in the system,
and X(Dy, Cao,t) in Eq. (182) can be writ-

ten explicitly. When —328% s large,

Mpqy
bVC 40
X(Dy, Ca,t) must in general be evaluated by

numerically integrating the given expression for

X for a small time increment, computing X

dt
from Eq. (182),
(184), and repeating the procedure.

calculating C4 from Eq.

4. 4.4 Application to Continuous Processes

. In this section we shall discuss the application
of the population balance model to a continuous
process operated at steady state. Specifically, let
us consider the reaction of solid particles suspen-
ded in liquid in a continuously stirred tank
reactor. The particles are nonporous initially and
react according to the shrinking unreacted—core
Again, the
(178). We

also assume that the overall size of a particle

scheme discussed in Part 169,
reaction can be represented by Eq.

remains unchanged during the reaction. The only
property of interest in this system is the position
of reaction interface D, or the fractional conver-
sion X. One could formulate the problem with
either of the two, but it is conceptually easier
to use D,(=2r.) as the property of interest.

Equation (177) can now be written as
Qb= Q= V7505 610 (185)

steb3s H 143 X 45 1976 8

Since we assume perfect mixing,

Pour=¢ (186)
and
Caou=Ca (187

The term vp depends on the controlling step(s)
and solid geometry. For a spherical solid, we
have from Eq. (20) or (147)

_dD, ___ 2bkC kD [ D, D2
BT a’Bp; {H 2D8U”D">_(\,'D)‘
Lo

where D is the overall size of a particle.

Rearranging Eq. (185), we get

ch L UB (D /D)
_¢u(D,/D)
s oDy PID =l D
(189)
where
T=V/Q

Equation (189) is a first-order linear differential
equation which can be solved using the following

integrating factor:

D" dvg(D,/D)/dD,
LE =exp {[o BvB<D 75)

1 -
oy 4P|
CED 7/ e

o 0 )

_&BPB 2. 2D; _
¢ S5krCn 121) (D24 D

i 0B} o

The solution is given by

(D D)+

DD

fﬁ o d |LF. <(,(D,:/D)1_f -

LF. E. (Dol D)
= op(D,/D) 9P

whlch can be evaluated to give
LF. X¢(D/D)—1.F. | pe=pXp(D./D) = —
D =D
Ct'lﬂoB(]-_+' k/km> D Dc CAln S/)m(Dc/D) X(*Xp

(192)

T obEC . © .
QBPB _' 2, 2Dc*
{ ke, DI 12D <D =D



3 -+ kE_( — DS .
)i o~ 2] an, o
For a single reactor with a fresh feed,
$in(De/ D) =0(D.—~D) ¢, (D) (194)

where 6(D,—D) is the “Dirac delta function.”
We also recognize that the initial condition is

¢(D/D) =0. (195)
Substitution of Eqs. (194) and (195) in Eq.
(193) vields: '

H(D./D)=— apop (1+k/E,) G (D)

abkCr X1 F.
Integrating over all sizes D, we get ¢(D,) ==

D .
[om= ¢(D./DYaD

The lower limit of integration would normally

(196)

(197)

be D.;. In this case, however, we must reco-
gnize that D cannot be smaller than D, In
general Cs will differ from Cga;,, and must be

determined from the following mass balance on

A:
r (D
Cain Q—CaQ= -[}Q U'D‘“_“ apppCsD? ¢, (D)dD

. -
— [ aposCiD2 G(D) - A |

Equations (196) to (198) must be solved simul-
taneously. The overall conversion can then be

(198)

obtained from

X Dmax a C.D3). (D) - dD—
Dmin BPBL3 in
D ,
[ == anosCsD® $(D) - anl

- (199)
| 0> a505CaD® G:4(D) - dD

In general, the computation must be carride out
numerically, although certain special cases per-
mit simple solutions.

Although we have not specified the size dis-
tribution ¢, (D), there are well-known distribu-
tion functions describing naturally occurring
particulate systems or those .arising as a result
of comminution. Some examples are the log-
normal, the Gaussian, and the Gaudin-Schuh-
mann distributions. As one can see, the popul-

ation balance model enables one to treat the

25

Ziti

reaction of particles with a size distribution in
a systematic and unified manner.

This approach becomes even more powerful
in analyzing a system in which both discrete
and continuous changes occur, such as simulta-

neous grinding and leaching of minerals.
4.5 Summary

In this article the procedures for analyzing
and designing the reactions of multiparticle sys-
tems in various fluid-solid contacting devices
have been described. It was shown that these
procedures require the knowledge of rate pro-
cesses occurring within the individual solid
particles which were discussed in Parts I to III
64,6680 of this review. The kinetics of in-
dividual particles is combined with the particular
configuration of each reactor in terms of fluid
flow, residence time distribution, mass balance,
etc., to construct the overall picture of the sys-
tem.

Examples were presented for the analyses of
fixed-bed, moving-bed, fluid-bed, and continu-
ously stirred tank reactors. A recently develop-
ed, powerful method, called the population
balance model, for treating the reaction involv-
ing a multisized particle system has been in-
troduced. It is hoped that this versatile method
will find many applications for analyzing and
designing chemical and extractive metallurgical

processes involving particulate assemblages.

Nomenclature

A,, A, External surface area of individual
grain and the pellet, respectively
b5 Number of moles of solid B reacted by
one mole of fluid reactant A
C; Volume shape factor [see Eq. (164)]

C Molar concentration of fluid species
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D Diameter of a particle
D, Axial dispersion coefficient
D, Effective diffusivity in porous solid
Fo(D), f2(D) Density function for number and
mass distributions, respectively
F Shape factor (=1,2, and 3 for flat
plates, long cylinders and spheres, re-
spectively)
F(D) Distribution function [see Eq. (162)
or (167)]
g(X) Conversion function [=1—(1~-X)V¥)
G Molar flow rate per unit cross—sectional
area
k Reaction-rate constant
k» External mass-transfer coefficient
L Length of a fixed or a moving bed
mp Mass of solid reactant B remaining in
a particle at any time
Mp, Total number of moles of solid reactant
B initially present in the system
N Total number of particles in the system
2(X) Conversion function defined by Eq. (26)
@ Volume flow rate
R4, Rp Rate of generation per unit volume of
the fluid reactant A and the solid rea-
ctant B, respectively
Sh* The modified Sherwood number [= (&,
1D (FpVy/Ap)]
t Time
t* Dimensionless time defined by Eq. (22)
or (89) for a nonporous or porous pat-
ticle, respectively
i* Dimensionless residence time defined by
Eq. (158a) or (158b)
{" Superficial velocity of fluid
v; Time rate of change of property j defin-
ed by Eq. (175)
V'  Volume
X Fracional conversion of the solid
7 Distance from the fluid inlet into the
bed
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Greek Symbols

ap

Fraction of volume occupied by reactant

solid B

o8,0p Rate per volume at which particles are
“born” and “die,” respectively, as the
result of discrete changes
I ith property of interest
¢p Voidage of bed (not including the por-
osity of solid)
p Mass density
pp True molar density of solid reactant B
& Generalized gas-solid reaction modulus
for a porous solid defined by Eq. (102)
o, Shrinking-core reaction modulus defined
by Eq. (23)
v Nominal holding time defined by Eq.
(190)
¢» Function defined by Eq. (171)
Subscripts
A Fluid A
B Solid B
¢ Value at reaction interface
g Grain
p Particle or pellet
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