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Abstract

The Laplace domain solution of three coupled partial differential equations descriptive of the
mass transfer phenomena that occur within a Support Coated Open Tubular (SCOT) Column is
used to derive an expression for the Height Equivalent to a Theoretical Plate (HETP) for any
SCOT Column. The final correlation is developed by calculating the theoretical second moment
about the mean for a chromatogram and using this result in traditional chromatographic theory to
construct the desired expression. Typical experimental values and those calculated from the correl-
ation derived in this work are presented as a verification of the proposed dispersion medel employed
to describe the mass transfer phenomena within this dynamic system.

complex samples has created a great deal of

Introduction interest. Few theortical studies pertaining to
While the introduction of the Support Coated this subject are available to supplement the
Open Tubular (SCOT) column in gas chromato- increasing number of studies oriented toward
graphy is still a fairly recent event, its use in practical applications. The introduction of the

achieving chemical separations of relatively thin porous layer characteristic of the SCOT
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column greatly complicates the mathematical
description of this separation/identification sys-
tem. One of the goals of this research was to
formulate a sound mathematical description of
the flow conditions that prevail within a SCOT
column so as to contribute to the fundamental
knowledge available on this subject.

The use of mathematical modeling techniques
has been employed in many studies in the
traditional areas of packed and open tubular
columr. chromatography. Physical and chemical
properties of various samples and support ma-
terials used in chromatography, such as gaseous
and liquid diffusivities, surface areas of porous
supports, and thermodynamic properties such
as heats of vaporization, equilibrium constants
and boiling points, have all been calculated
from various relations developed from the the-
cretical solution of a mathematical model pro-
posed for each column geometry. In most cases,
the validity of a proposed model can be verified
by using the relationships developed from the
model to calculate parameters such as those
previously mentioned ard by comparing those
theoretical values to experimental values. The
calculation of theoretical HETP (height equiva-
lent to a theoretical plate) values for chromato-
graphic columns presents a good example of a
theoretically correlated value that is often com-
pared with experimental values to verify both
the validity and the applicability of the partic-
ular mathematical modeling techniques em-
ployed. This work will use a theoretical correl-
ation for HETP values derived from the mathe-
matical description of a SCOT column and the
use of moments to show the applicability of the
correlation by comparing theoretical values to
experimentally determined values and values
calculated through the use of correlations deve-
loped indepent of this work.

While chromatography has received its great-
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est interest since the early 194(’s when Martin
and Synge'® were awarded the Nobel Prize for
their work in liquid-liquid chromatography, a
tremendous amount of literature has been pub-
lished over the last three decades. The first
theoretical analysis of a chromatographic column
was made by Wilson!® in 1940. The mathe-
matical theory of chromatography has been
made more precise by such authors as Lapidus
and Amundson'®, van Deempter, ef al.’® whose
expression for HETP is one of several packed
column correlations, and Golay*® for open
tubular column HETP correlations. Correlations
developed by these authors have resulted from
mathematical models characterized by the inclu-
sion of a finite mass transfer resistance and the
use of a convective flow model involving the
solution of one or more partial differential equ-
ations ard the boundary conditions descriptive
of the particular geometry employed.

The use of moments for correlating the theory
of mathematical models for packed column
chromatography to experimental data has been
He lists the first

five moments in terms of mass transfer coeffici-

demonstrated by Kucera!?,
ents, distribution coefficients, diffusivities and
flow terms. Work by Grubner® and Masamure
and Smith'*!® closely followed Kucera’s mo-
deling techniques. The calculation of dispersion
coefficients by means of moments has been
accomplished by Horn!®. However, the use of
moments in SCOT column modeling has seldom
been used.

Literature descriptive of SCOT column geo-
metry has been minimal. First suggested by
Golay?, this idea was a compromise between
a packed column and the standard open tubular
column. The SCOT column, as suggested by
Golay, contained a porous layer adhering to
The layer

was coated with the traditional stationary liquid

the smooth wall of an open tube,
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phase. Golay5® later extended his original work
by deriving an HETP correlation suitable for
SCOT column geometry. This study combined
many of the concepts mentioned earlier to
develop a more realistic mathematical correlation
for SCOT column HETP calculations.

A Three-Region Model of a SCOT
Column

Because of the novelty and the complexity of
the physical structure of the SCOT column,
little work has been done on its theoretical
description as has been mentioned earlier. An
accurate mathematical description of this dyna-
mic system must account for several chemical
and physical phenomena. Considering the
geometry of the system, three ;eparate concent-
rations could be measured at any cross section
of the column. The basic cylindrical shape of
the center of the column suggesis the use of
cylindricel coordinates. A differential material
balance of the bulk flow area taking into
account longitudinal dispersion, convective trans-
fer, and mass transfer from the bulk region to
and from the liquid coated porous layer
adhering to the wall, results in the following
unsteady-state equation describing the change
in concentration of the bulk material:

aC/ot+a3C /02— Dy°C/02*=N, (1

The exclusion of any radial dispersion from
this differential equation is based on the usual
assumption that radial dispersion can be negle-
cted in comparison to the axial disparsion when
the ratio of the column diameter to length is
small. Although the assumption depends on the
because
D/L is of the order 1075 the existence of large

flow regime (laminar or trubulent),

radial gradients is unlikely. Also of interest
in this equation is the inclusion of a dispersion
coefficient to take into account both molecular

diffusion and any velocity effects which may

influence the axial concentration profile. The
use of such a dispersion model was first
suggested in the work of Taylor'®”. The use
of this dispersion model will simplify the mathe
matical description of the transport processes,

while still

normally occurring with a laminar profile. Since

accounting for velocity effects
this work will be in the laminar flow region,
the use of the Taylor-Aris>!® solution for the
effective axial dispersion coefficient will be
approprite where D, can bz determined from
the following relation:

D,=D,+R%/48 D, (2)

The approximate range of applicability of
the Taylor-Aris solution was given by Anatha-
krishnan, et al. The criteria presented there
was given in terms of the Peciet number; a
minimum value of D, #/R? must be maintained.
Because of the size of R in this study (1072
centimeters), this group is always very large
except at the entrance of the tube where ¢ is
small, thus demonstrating the validity of the
Taylor-Aris solution to this application.

As is typically done in the theoretical analysis
of chromatographic columns, the mass transfer
rate in this differential balance is defined by
the following linear equation:

Ne=—Hc (KcC—C) 3
where H¢ is a mass transfer coefficient repre-
senting transfer of material between the bulk
flow region and the porous layer region. K¢ is
a linear equilibrium constant defined by the
relation:

C*=KcC (4)
Here, C* is the equilibrium concentration in
the porous layer, while C represents the bulk
flow region concentration.

A differential balance on the porous layer
taking into account that no axial convection or
dispersion can occur, results in the following

equation:
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6C/ot—D,sys (3°C/or>+1/r 9C/3r) =N, (5)
This unsteady-state equation indicates that
C, the concentration in the porous layer adhe-
ring to the column wall, can vary in the radial
direction because of the effective molecular
diffusion through the porous material and
because of adsorption and desorption of material
into and out of the liquid adsorbent which
This last

effect, represented by N, in Equation (5), is

coats the porous support material.
again represented by the following linear
equation:

N,=—H, (K,C—n) (6)
where H, is a mass transfer coefficient repre-
senting transfer of material between the void
volume in the porous layer and the liquid phase
coating the support material. K, is a linear
equilibrium censtant defined by the following

relaticn:
n*=K,C (7

where 7% is the equilibrium concentration in
the liquid phase coating the porous material.

The rate of change of # with time can be
described by the following expression:

N,=—2¢n/ot 8

Since Equations(1), (5), and (8) represent time
dependent concentrations, the following initial
conditions describing the initial concentrations

in each of the three regions are appropriate:

Clz,t)=0  for t<0 9
Cir,t)=0 for t<0 10)
n(t) =0 for ¢<0 (11)

Equation (5), which has a second order
partial differential as its highest order deriva-
tive, can be solved only if two radial boundary
conditions can be obtained from physical consi-
derations of the SCOT column geometry. The
first of these boundary conditions comes from
the symmetry of the porous layer and the phy-
sical boundary of the tube wall. This boundary

condition can be written zs follows:
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8C/3r) -2, =0 (12)

Here C is again the concentration in the
gaseous void volume of the porous material. R,
is the internal radius of the tube extending
completely through the porous layer to the-
stainless steel wall. Physically, this condition
satisfies the requirement that no mass can be
transported farther than R, distance from the
center line of the tube in a radial direction
because of the physical boundary created by
the tube wall.

The second radial boundary condition required
for the solution of Equation (5) can be obtained
by equating the flux of material in the direction
normal to the surface of the porous layer (Jg)
to the diffusional flux of material into this
porous layer. This results in the following
relation:

JRLZ—Deff EC/ar i (1‘3)

r=R,

By defining a, as follows:

a,= (Surface available for mass transfer on the
external surface of the porous layer) /Unit
volume of column (14)
and by realizing that the rate of influx of ma-
terial into the porous material at r=R; must
also be equal to the rate of mass transfer
through the available area open to mass tranter
into the porous liner, Equation (13) can be
extended to the following general relation:
Jr,=—D,ss 6CJor | =N,/a,
l r=R;

The solution of Equation (1), which also
contains a second order partial differential term
as its highest order term, will require two axial
boundary conditions. Since the SCOT column

and L

is itself very large, the following axial condi-

emploved has a very large L/D ratio,

tion is suggesied for one of the two necessary
conditions:

Clz,t)=0 at z=+o0 (15)
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In most general form, this study was based

on the evaluation of SCOT column performance
Therefore, the

boundary conditions at z=0 will be those corre-

using pulse tracer techniques.

sponding to the introduction of a pulse injection

at z=0. This condition then becomes:

Cls,t)=C, for tu<te<ty, 2=0 (16)
and
C(z,t)=0 for £>¢4;, 2=0 an

This completes the specification of both initial
and boundary conditions necessary to determine
a solution for the problem represented by
Equations (1), (5), and (8).

Having derived the mathematical expressions
that describe the transport properties that occur
within the SCOT column, one would normally
proceed to the solution by methods of applied
mathematics. However, the complexity of solv
ing-threecoupled usteady-state partial differential
equations of the type previously described has
prevented a determination of an analytical
solution in the time domain. The validity of
this model for SCOT columns, as well as other
useful correlations for characterizing the per-
formance of a SCOT column can be verified by
the solution of these three coupled equations in
the Laplace domain. The following property of
the Laplace transformation allows one to deter-
mine the theoretical statistical moments for any
mathematical model as long as C(s,2) can be
obtained and the following limit exists:

[i# e d@r=(—D* lim #C (5,2 /st

0 s
(18)
where
J:t"C(t) dt = (19)
and
M,=k-th moment =/ (20)

In order to obtain C(s, z), the transformation
of Equations (1), (5), and (8) into the Laplace

domain must be performed. Using traditional

Laplace transformation techniques, Equations
(1), (5), and (8) become:
sC+udl/dz—D, d°C/dz*=N. (21)
sC—D,ss (d°Cldr+1/r dC/dr)=N, (22)
si=—N, (23)

These equations must be solved with the fol-

lowing transformed relations:

Nc_—‘ —Hc(Kcé—*é) (25)
aC/for ‘} =Ry=0 (26)
r
Jr,=—D,ss 8C/or | =N./a, (27
| T:R1

C(s,2)=0 for x=+c0 (28)
and

C(s,2) =e~(1/s—e*¢/s) Co  for ==0
where e=t;—¢, (29)

This transformation has now altered the
mathematical complexity by replacing the pro-
blem of solving three coupled partial differential
equations with the problem of solving three
coupled ordinary differential equations.

The actual soultion of these three equations
in the Laplace domain and the evaluation of
the limits as s approaches zero in order to
chtain the desired statistical moments is
impossible unless a simplifying assumption 1is
incorporated into the solution. This assumption
involves neglecting any radial concentration
gradient that may appear in the porous layer
on physical grounds. Calculations as well as
actual observance of the porous layer within
the SCOT column show this layer is very small.
The capacity of this layer to accept tracer
material depends on the volumetric amount of
liquid phase coating the porous support material.
However, since the porous layer itself is very
small, the amount of liquid phase available to
accept tracer material is small. Therefore, the flux
of tracr into the porous region must also be

small. Since this flux can be defined as
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Ny=—D,;5 0C/or (30)
9C/5r must be small to account for the size of
Ng4. Since the driving force for the mass trans-
fer phenomenon between the bulk flow region
and the porous layer void volume, as well as
that between the porous layer void volume and
the liquid coating on the support material, is
the difference in concentrations C, C, and =,
the assumption that C varies only slightly across
the porous layer allows the replacement of C
(r,t) with Cayg(¢). This assumption permits
the mathematical solution for ¢ (s, 2) from
Equations (21), (22), and (23). The mathe-
matical techniques employed were relatively
although
lengthy. The resultant expression for Cs, 2) is:

C(s, z) =esto(1/s—e¢/s) Co exp

straightforward cumbersome  and

(@/2Dy— 5 V@ Dy —4(E—5)/Dpz)
(31)
where
p=- @ arKcDesy ARHc
9R;Hc—a a, Dy AR?
@’=(1/D,ss) ($*+ Hus+ H,K,s) | (H,+5)
(33)

(32)

and dR=R,—R;

The use of this expression for determining
statistical moments has been accomplished.
Generally, the first and scond moments, and
highest

can accurately be used for

the second central moment are the
moments that
correlation of experimental data. The following
relationships are appropriate for determining

these moments:

to=--Coe (34)
11=(Coe/2) {e—2L/a+L a,dR? (35)
(K¢ +K)/Ry}

tta=(Coe) {2L D,/@? [1—a2dR?*(Kc+K) /R,
+a,2(4R?)? (Kc+K)?/4RA)+€/3
+(L/@) [1—a,dR? (Kc+K)/2R;)

(L) 2ROHCH 2y AR+ REHGH,?

2R14HC4
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ap’(AR)*(H,+ H,K,)*]
H}?
+ (L&) (1—a,pdR (K + K) /R,
+a,2(AR?)*(Kc+ K) /4R,"1} (26)
and
My =L D,/ {1-a,dR*(Ke+K) /R,
a2 (AR) Ko+ K)2/AR +&2/12
_{2RPHCH,® apdR?K+ R\*Hc H,?

+(L/a) ORHS
2 2)2 o 2

where K=K.K,.

For practical applications, these equations for
thetheoretical statistical moments are too cum-
bersome. Unknown variables contained within
these relationships are 1) the two mass transfer
coefficients H, and He, 2) the two equilibrium
constants K¢ and K,, 3) the product «,4R?
and 4) the dispersion coefficient D,. In order
the moment

to reduce the complexity of

relationships, scveral simplifications may be

introduced.

First, by earlier definition, H¢ represents

the rate of mass transfer across the boundary
between the bulk flow region and open areas
available for stagnant diffusion into the porous
layer, and H, represents the rate of mass
transfer across the film boundary between the
stagnant gas pockets within the porous material
and the surface of the liquid phase coating the
porous support material. However, van Deem-
pter'® has demonstrated that resistance to mass
transfer in chromatography is located almost
Also, Ettre®

relates that, for columns with high values of 3

entirely in the liquid phase.

(ratio of the total volume of gas in the column
to the total volume of stationary phase in the
column), the resistance to mass transfer in the
liquid phase is large when compared to the
resistance in the gas phase. For the three-region
model, this is equivalent to stating that the rate

of mass transfer into the liquid phase dominates
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mass transfer effects in the gaseous regions, or
He is much greater than H, Employing this
fact in the previous moment the relation for
the second central moment yields:
My =(2LD,j#*) {1—a,dR®> (Kc+~K)/R,
+a,2(4AR?)? (Ke+K)?/4R % +¢%/12
+L/a (apdR* K/R,H,) (8
Further simplification of Equations (35) and
(36)is possible by combining classical chemical
equilibrium theory with the theory of chromat-
ography. Theequilibrium relationships represen-
ted by Equations (4) and (7) can be combined
to give:
n*=K,KC (39)
By defining the product of the two equilibrium
constants as M=K,Kc,
n*zMC’ (4—0)
In the theory of chromatography, the parti-
tion process, associated with partition columns
(columns in which the stationary phase is held
either by a solid support material or by the
column wall), is defined by the partition
conefficient (K), and is equal to the equilibrium
ratio of the concentrations of the sample in
equal voulumes of both the stationary phase
and the gas phase. The capacity ratio (%) in
the theory of chromatography is defined as the
equilibrium ratio of the amounts of sample in
the stationary and gaseous phases of the column.
The partition coefficient and the capacity ratio
are ralated by the g value. These factors are
related by the following relation:
K=pk=Concentration in Liquid Phase/Con-
centration in Gas Phase (41)
By comparing Equations (39) and (40), it is
evident that K and M are equivalent forms.
Since 8 is a physical characteristic of the
column being used, and % can be obtained by
correlations involving resolution times in chro-

matography, the value of K is obtainable.

Also, making the appropriate simplifications

as outlined previously and solving for M, from
Equation (20), the following result is obtained
for the theoretical variance as predicted from
the proposed model:
My={(2LD,/#%) (1—a,dR? (Kc+K)/R,

+ (a,dR%)2(Ko+ K)?/4R7)

+€*/3+ (L/a) (apdR? K/RH,)

+(Lia) (1—apdR* (Kc+K)/2R;]

+ (L% @%) [1—apdR? (Kc+K)/R;
+a,2(4R?%)? (K¢+K)?/4R,2)} (42)
Application of Equation (20) to determine

M; results in the following expression:
M, ={¢/2—L/i+a,dR? (Kc+K) /2R a}
(43)
Of great interest in analyzing the performance
of a chromatographic column is the determina-
tion of the HETP associated with a particular
column and its stationary phase. By definition,

HETP is:

H=¢"/L (44)
or in terms of temporal variance,

H=Lz%/t? (45)

Therefore, by employing Equations (45) and

(38), the following expression for the theore-
tical value of HETP can be obtained:
H=(L/t2) {(2LD,/@®) (1—a,dR?
(Kc+K)/Ry+ (a,dR%)? (Kc+K)2/4R )
+(L/#) (apdR?* K/H,R,+¢*/12} (46)
Then, by
relation
t,=t, (1+F) (47)

where ¢, is the elution time of a non-adsorbent

substituting the chromatographic

material; i.e., {,=L/%, and % is the capacity
ratio discussed earlier, Equation (46) becomes:
H={2D,/(1+k)%)} {1—adR*(Kc+K) /R,
+ (a,4R?)?(Kc+K) /4R %}
+{a/(1+48)?% (a,dR* K/RH,)
+ae?/ {12¢,(1+ %)% (48)
Although this expression represents the HETP
as produced by a finite width pulse, most
expressions for HETP in chromatography are

HWAHAK KONGHAK Vol. 15, No. 1, February 1977
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For this
case, the & (pulse width) that appears in

based on and impulse type injection.

Equation (48) approaches zero and results in
the following simplified relation for HETP for
an impulse type injection:
H=1+k)"2 {(2D,/a) (1—a,dR*(Kc+K) /R,
+ (apdR?)*(Kc+ K)?/AR 2 +aa, AR
K/R\H,} (49)

Experimental Equipment and Results

The experimental data necessary to calculate
the actual HETP values for comparison to the
predicted theoretical values was taken by using
a Perkin-Elmer Model 990 Gas Chromatograph.
The unit was factory equipped with both dual
flame ionization detectors and the standard hot
wire thermal conductivity detector. The carrier
gas employed was helium. The actual separation
device used was a fifty foot, 0.02 inch diameter
SCOT column. The support material coated to
the wall was diatomaceous earth with an
uncoated surface area of six square meters per
grams of material. Since ethanol was selected
as the sample, Carbowax 1540 was used as the
liquid phase to coat the solid support material.
The SCOT column was fabricated to provide a
beta factor of 50.

The experimental results were straightforward
measurements of retention times for both the
ethanol and air samples as well as the flow rates
of carrier gas through the column and physical
parameters such as column temperature, inlet
pressure, etc. These measurements, in addition
to the factory supplied column characteristics
mentioned earlier, thus permitted the calcula-
tion of many of the parameters that appear in
the HETP correlations developed earlier, i.e.
Ry, @,k and K. H, K¢ and a,4dR® were
calculated from independent experimental tests

and other moment considerations.

HETP values from correlations produced by
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Golay®>®
results available for comparison with values
calculated from Equation (49). The Golay

correlations were derived from the theoretical

are presently the only numerical

modeling of a gas sample flowing through an
open tube and later modified to account for a
thin porous layer adhering to the tube wall
the use of Golay’s final HETP

correlation for SCOT columns has been seldom

However,
used in chemical literature. Table 1 presents
the values of the HETP as calculated from the
Golay correlation as well as from Equation
(49). These results indicate the validity of the
originally proposed three-region model as well
as the applicability of the analytical results of
the solution of these equations in the Laplace
domain.

However, two discrepancies can be noted
from the results listed in Table 1. First, while
the differences in the HETP values calculated
from Equation (49) and the experimental values
are significantly less than the differences pro-
duced from a comparison of the experimental
values and results calculated from Golay’s
correlations, several numerical results produced
from Equation (49) are much larger than the
equivalent experimental HETP values. It is
felt that these relatively large errors due to
experimental measurement errors resulting in
Since both of

final HETP
correlation, these errors could affect the final

inaccurate values for K and #.

these factors appear in the

calculated HETP values. The second discrepancy
in Table 1 is noted when Golay’s HETP values
are compared to both experimental HETP values
and HETP values calculate from Equation (49).

It is obvious that Golay’s values are much
smaller than either those values calculated from

While

no apparent reason for this phenomenon is

Equation (49) or experimental values.

evident, the failure of Golay’s correlations to
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Table 1.

31

Experimental and theoretical values of HETP using impulse injection techniques.

Velocity (cm/min)  Temp.  HETP-Golay HET-This Work HETP-Exp. 9% Error® 9% Error®
1092 & C . 836mm 4. 37mm 4. 04mm 79.3 8.2
1740 85 C - . 493mm 3. 2Imm 5. 09mm 90. 3 37.0
2221 85 C . 417mm 3. 66mm 6. 71mm 93.8 45. 4
1072 105 C . 801mm 4. 20mm 4. 57mm 82.5 81
1619 105 C . 567mm 6. 08mm 5. 59mm 89.9 8.8
2129 105 C . 435mm 6. 36mm 6. 85mm 93.7 7.2
650 125 C 1. 290mm 3. 83mm 4. 80mm 73.1 20.2
1036 125 C . 844mm 3. 57mm 3. 89mm 78. 4 8.2
1180 125 C . 763mm 2. 28mm 4. 42mm 82.7 48.4
1523 125 C . 608mm 4. 40mm 5. 28mm 88.4 16.7
1967 125 C . 443mm 5. 12mm 6. 21mm 92.9 17.6
2510 125 C . 385mm 7. 60mm 7. 75mm 95.0 1.9
2) % Error=(HETP-Exp. =HETP-Golay) /(HETP-Exp. ) X100
b) 9% Error=(HETP-Exp. —HETP-This Work) /(HETP-Exp. ) X100
accurately account for dispersional effects in the coefficient (1/min)
bulk flow region of the SCOT column during H, Porous to liquid phase mass transfer
his modeling attempts could contribute to this coefficient (1/min)
error. Jr, Flux of material at r=R; (g-mol/cm?-
min)
Nomenclature k Capcaity ratio
K Product of K, and K¢
a, Effective specific area (1/cm) K¢, K, Linear equilibrium constants
C Gaseous concentration in porous layer M Product of K, and K¢
(g-mol/cc) M;* Second central moment (min?)
C* Equilibrium concentration of C (g- n Liquid concentration in liquid phase
mol/cc) (g—mol/cc)
C Gaseous concentration of bulk flow n* Equilibrium value of # (g-mol/cc)
region (g-mol/cc) n Liquid concentration in Laplace domain
C Porous layer concentration in Laplace (g-mol/cc)
domain (g-mol/cc) N,, N¢ Rates of mass transfer (g-mol/cc-min)
C Bulk Region concentration in Laplace N, Molar Flux (g-mol/cc-min)
domain (g-mol/cc) r Radial distance from center-line (cm)
C, Pulse height (g-mol/cc) Ry, R Tube radius (cm)
D, Gaseous diffusivity (cm?/min) R, Average radius of bulk flow region
D, Axial dispersion coefficient (cm?/min) (cm)
D,ss Effective gaseous diffusion coefficient s Laplace domain variable (1/min)
(cm?/min) t Independent variable, time (min)
H; Bulk to porous phase mass transfer tn, Air peak time (min)
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S

Resolution time (min)
Peak width (min)

Average bulk velocity (cm/min)

o~
~

& o

Independet variable, axial distance(cm)
o 1 sTHIHEK,

D.sr 1+H,/s
5 — XasKcDesrrARHe

2R He—a’a,D,srAR?
¢+ Integral relation defined by Equation
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Spatial variance (cm?)

I

Temporal variance (min?)
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