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Abstract

An equation of state, which can best represent the P-V-T data ethylene gas below the cirtical
point (9.5°C, 51 bar), and its coefficients were determined by means of the non-linear least-squares
technique using recently published experimental data. A total of 90 data points, ranging 243—297°
K temperature and below 50 bar pressure, were fitted to the modified Bender equation and the
coefficients of the 6-parameter and 10-parameter equations were obtained. The RMS deviations of
the calculated denities are 0.1% from the experimental data used in this curve fitting, and 0.15%
from Michels data. Therefore these equations of state can be used within the experimental range
with a probable error of +0.15%
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1. Introductian

Ever since the discovery of ethylene by,
among others, the Dutch chemists at the end
of 18th century, the importance of ethylene in
the field of chemistry as one of the basic chem-
ical compounds has been ever increasing. Unlike
methane, which is abundant in nature as the
main constituent of natural gas, ethylene has
to be manufactured artificially from other organic
alcohol,

materials such as ethane, propane,

etc. Nevertheless its importance was firmly
established early in the 20th century because
of the versatility of its chemical reactions with
other compounds due primarily to its unsatura-
ted double bond. The use of ethylene on a
tonnage scale as a raw material in synthetic
organic chemistry dates from 1933 when the
process of polymerization of ethylene into
polyethylene was discovered in the Winnington
Laboratories. of ICI Ltd. by Gibson

Fawcett. ¥

and
Despite the importance, actual volumetric
measurement data for ethylene and for its mix-
tures with other gases are quite rare in the
literature mainly due, it is believed, to the
difficulties associated with accurate pressure
measurement in a low temperature system. Thus
the work of Michels et al, 3% published more
than two decades age, is still regarded as the
most reliable data. Although there are some
other sources of data published, in most cases,
the
accurate than what was originally claimed.
For this reason both Angus® and Miller?

have presented P-V-T data according to Mich-

however, data are believed to be less

els work almost exclusively in their extensive
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‘IUPAC ETHYLENE TABLE’,

and ‘Ethyvlene and Its Industrial Derivatives’

compilations,

respectively.

The experimental range of Michels work,
however, extends only from 0°C upwards and
for this reason the region below 0°C in the
IUPAC table is left blank (see Fig. 1).
1976 Lee® reported the results of experimental

In

P-V-T measurements on ethylene in the temp-

erature range 243—297°K upto 41 bar pressure
and for the methane-ethylene system using

Burnett type apparatus.®
thermodynamic
or Gibbs free

energy, G, requires either as many data points

Accurate determination of

properties such as entropy, S,

as possible, or an accurate equation of state
which can represent the data points within the
experimental error.

Therefore many equations of state, both the-
oretical and empirical, have been proposed,
such as van der Waals,” Redlich and Kwong, ®
and Benedict-Webb-Rubin or simply BWR
equation, ¥ etc. Among these the BWR equation
is very complex (8 parameters), and therefore,
For

it has

it is laborious to solve such an equation.
this reason, despite its high accuracy,
rarely been used until recently in the field of
engineering. The difficulties, however, have
been overcome by the use of computing machi-
nes which allow one to solve quite complex
equations of state.

In general the most accurate equations are
also the most complex, thus various equations
with more parameters have been proposed. In

1963 Strobridge proposed a  16-coefficient
equation, whose parameters for nitrogen from
63 to 300°K upto about 200 bar were determined

by a least-squares curve fit.!® In 1970 Bender
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D modified and further extended it to a 20~

«coeflicient equation which can be expressed as

P=pT{R+ Bo+Cp®+Dp*+Ep*+ Fp®
+(G+ Hp?) pPexp(—azo0?)} ey

whre, B,C,---H are expressed as functions of
‘temperature containing a total of 19 coeflicients.
The 20 coefficients in Eq. 1 were determined
for nitrogen, argon, oxygen'? carbon dioxide
and methane'® for the whole fluid region from
the experimental P-V-T data. Steward and
Jacobsen increased the number of parameters to
33 and determined them for nitrogen and oxy-
gen by means of a least-squares curve fitting
-technique. ¥

Another important equation is the virial
-equation of state which is an expansion of the
.compressibility factor as an infinite series in

powers of density.
Z:PV/RT:1+BP+Cp2+Dp3+... (2)

Statistical mechanical considerations show that
-the 2nd virial coefficient, B, is a function of the
interaction between pairs of molecules, the 3rd
-virial coefficient, C,is a function of the intera-
.ction between three molecules, and so on. Thus
the 2nd virial coefficient is one of the few
macroscopic properties which can provide quan-
titative information on the intermolecular forces
between a pair of molecules, 1617

Although a power series in density such as
the virial equation can be used represent simul-
taneously both liquid and gas phases it has not
been particularly successful in the past, hence
the use of an exponential term in the B-W-R
and succeeding equations. Moreover it is believed
that the statistical mechanical virial equation
does not converge at high densities. ?

From a practical point of view there is an

-important difference between the virial equation

and the modified B-W-R equation (e. g. Bender
equation) in that, in Eq.1 the compressibility
factor is expressed in terms of density as well
as temperature, while in the virial equation the
compressibility factor is expressed in terms only
of density. It follows that the coefficients of
the virial equation being functions of tempera-
ture can be fitted to P-V-T data only for a
given isotherms. This makes Eq.1 particularly
valuable when handling experimental P~V-T
results which contain only a limited number of
data points on each isotherm.

As will be discussed below, not all the 20~
coefficients in Eq.1 are necessary in represent-
ing a restricted range of P-V-T surface (e
gas phase only). In this work, therefore, the
best form of an equation of state and their
parameters are determined by modifying the
Bender equation, Eq.1, using the experimental
P-V-T data by means of the non-linear least-

squares method.

2. P-V-T data

As was mentioned earlier, few PVT data of
ethylene have been published. Above 0°C the
principal data, which have been available for

many years, are due to Michels and his co-
workers of the van der Waals Laboratory. The
data produced by the laboratory, however, are
limited in temperature range from 0°C to 150°C,
although ranging widely in pressure, from 16
to 3042 bar. Michels, de Bruyter and Nissen
published, in 1936, density measurements along
isotherms from 0°C to 150°C at 25°C intervals
measured at pressures from 16 to 274 bar. In
1942 Michels and Geldermans corrected the
previous data due to inaccuracy of the thermom-
eter used in their experiment.® There is a
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group of 16 points from the Kammerlingh Onnes
Laboratory in the range of 272—293°K and 22
—38 bar. ®

accuracy of the data due to lack of selfconsist-

However Angus criticised the

ency. ¥ Butcher and Dadson reported the exper-
imental 2nd and 3rd virial coefficients of
ethylene by using a Burnett type apparatus in
the range of 263—473°K. 2"

[ & CTICIUE T in mtm

snilration litu'\

Pressiure, har
g

Temperature, K

Fig. 1. The experimental range

In this paper, however, the authors dealt
only with the virial coefficients and did not
present actual experimental PVT data. Besides,
the 2nd virial coefficient at 0°C(—161. 4cc/gm-
mole) differs from that of Michels(—167.8)?"
and of Lee (—169.11).

In 1976 Lee reported a totalgof 90 data points
along 12 isotherms from 243.7°K to 293°K at
pressures from 3 to 41 bar.® These data are
the most recent experimental values and to be
considered most accurate (the maximum probable
error in the compressibility factor was estimated
as less than 0.001).

Thus, for the reasons given above, Lee's
data were basically selected for the non-linear
least-squares curve fit and the comparison was
made between this work and that of Michels
and co~workers at two temperatures, 0°C and
25°C.
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3. The Non-Linear Least-Squares
Procedure

The equation of state chosen for the curve:
fitting is the Bender equation,

P=p7{R+ Bp+Cp*+ Dp’+ Ep*+ Fp°
+(G+Hp?) p* pexp(—azp?)}

B=a,—ay/T—a3/T?*—ay/T?—as/T*

C=a¢+a;/T+as/T?

D=ay+ay, /T

E=ay;+a,/T

F=a;,/T

G=ay/T*+ a5/ T+ ay/ T®

H=a,;/T3+a8/ T*+ a1/ T5

Ay, Qgy gy are parameters.

where

As a primary test the Bender equation was:
modified into a series of equations, each having
different number of coefficients of 6, 9, 10 and
13. The exponential term, or correction term,
of the equation was out of consideration, since-
this term was considered to be unnecessary in
the gas phase alone. As will be seen, the 6-
coefficient equation was good enough to represent
all data points selected in this work. In order
to compare the results from the different
equation, 6 and 10-coefficient equations were
chosen and the experimental data were treated
accordingly.

The final forms of the two equations are,

P=pT{R+ (a1—a/T—a3/T?*p

+ (ay+as/T) p*+ago’} 3y
and
P=pT{R+ (ai—ax/T—as/T?—ay/T3%)p
+ (as+ag/T+az/T?) p*
+ (ag+ay/ T) p*+ a0} 4)

The basic principle of the least-squares pro-

cedure is that the m parameters a1, ay, ---a,, are
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‘best fit to the equation of state when the objec-
tive function, S, which is defined as the sum
of the weighted squares of the residuals, is a
minimum with respect to the m least-squares

-parameters,
n 2 _
= .Z,;w jR j (O)
i=

where o; is a weighting factor which is
defined as the reciprocal of the expected variance

in the j’th residual,
w;=1/0%, (6)
-and 7 is the number of data point.
The residual, R;, is defined as the difference
between an observed dependent variable, P,
and its adjusted value, P’

R;=P; —P} )

The adjusted value, P, is calculated from the
.equation of condition with m least-squares
' parameters,

f’ (ley Ojs T}y ay, Ay, =000t am) =0 (8)

This is the general formulation of the least-
squares problem as described by Deming. 22
0%, in Eq.6 is given by®™®

={YmS) - P;}? )
The root-mean-square deviation of the adju-

-sted pressure calculated from the current values
.of a/’s is given by

(B P, 1 ©

Now the objective function, S, is to be mini-

YmS=

mised with respect to each of the m least

:squares parameters, aj, @g, ****** Qs thus
oS _
a; =( for k=1,2,+m (11)

‘By substituting Eq. 5 into Eq.11, we obtain

aR;
B (Tos R =2%0; Ry =0

or

Tos R gfkf =0 12)

for k=1,2, - m (m is 6 for Eq. 3, and 10 for
Eq. 4).

This set of m equations are known as the
normal equations and they are non-linear in
the parameters. The non-linear normal equation,
Eq. 12,
Gauss-Newton method of linearization.

can be linearized by means of the
In this
method it is assumed that there exist the appr-
oximated values of the parameters, a,’, such
that

ay =ay+Ja, (13)

The residual, R;, then may be expanded as a
Taylor series about its value when S is a

minimum,
Rj'(ai,a, -an') =R;(ay, az, **an) +
<Aa1 D dar v, 'a >R +
oay

1 0 0 0 \?
—2”!—(41(11 a +Aa2 a + - Aa,,, a >
Rjteeenes (14)

By assuming 4a; be small enough so that the
terms higher than the first derivatives in Eq. 14
may be neglected,

“aw’) =Rj(ay, az, am) +
aR, et aR,

’ ’
Rj (@, ad, -

Aa1 aRJ + Aaz (15)

or by rearranging Eq.15 we obtain
Rj (ay, az, ***am) :-Rj’ (a), @), ~+an")

—{Aal( gR )+A - 0Ri )+

A »—2%)} (16)

This residual, which is now expressed in terms
of the approximated values, a;’, is substituted
into Eq. 12,

Zw,( ){R (@, a'y, an’) —
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Hence
OR; \( OR;
ualjZ}w,( S, >( B0, )+Aa22w,

(B8)(55 ) s o

Bay /\ day .
OR; OR;
( aak >< aam >
= ij<—?-BL>R “al,ar,aw)  (18)
j oag
In matxix notation, Eq. 18 are
X da=Y 19

whre

S { PR (2R} (280 (3Re)
----- S 85} (54

Bl 5N Gar) Bl S 5

7 \ Oa, 7 Oas /\day / |

a 6R; (3R ‘
A= S (U S O8)

‘;—. J aaz r) \ aam ) |

t

ARG B3R

thus X is a(mXm) square symmetric matrix
and both Y aand da are column vectors, i.e.

20; <-a&>R/ (ar', ), --ay")

ij(aa )R (dl,a’z,'“ ml)

l

1

| ,

| Zoi( ZRVR @y, a

and
da, )
da= Jzaz
\ da,
By multiplying both sides of Eq. 19 by the
inverse mitrix of X,
2{“1 X - Aa_- X‘l . Z (20)
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da=X"1.Y (21y

Eq. 21 is the solution to Eq.19. After having

calculated the solution of Eq. 21, the new
approximation to a; is given by
ap=ay —da, (22)

These new values of a; are used in the calcul-
ation of R/ in Eq.16,

normal equation, Eq.19. The iteration was

and the solution of

continued until all the 4a,’s have converged to

predetermined accuracies of each parameter.

4. Computation and Description of
Computer Program

The computer program was written in FCR-
TRAN IV language for use on the KIST CDC
CYBER computer. Unlike the graphical method
of data reduction, in the non-linear least-squares.
method, first approximated values of the least-
squares parameters must be supplied before the
iteration commences. These first supplied values.
must be near enough to the true values so that
the conditicn for the convergence of this prece-
dure(i.e. from Eq. 14 to Eq.15)is not violated,
otherwise the iteration mnormally does not
converge or, sometimes converges to any false
values. 2 In the case of the virial equation
(Eq. 2) reasonably accurate virial coefficients for
the initial values can be found in the literature
1 In the case of the modified Bender equations
no information was available as to the values
of these coeflicients.

The first approximated values were, therefore,
determined from the experimental [data and the
equation of state. Thus from N points of data
a set of N equations were established according

to the equation chos

Pi=piTi{R

en, for example,

+{ar—ax/Te—as/ T2 pe+



2z} &

Iyl
8]
JiA

(as+as/ T pi+aeps®) (23)

for £=1,2,---N({for N is greater than 6 in this
case). or

P R
<WEF'1>":“1—“2/T1—@/TE

O1
+aso1+as01/T:+aep)?
_Px__\ R __
(TR 1) on @l Ty

—ay/TY+ aspn+aspy/Tn+aepd (24)

Eq. 24 can be written in matrix notation

[1 "1/T1 "1[T12 01 pl/Tl Pli}
|1 VT —UT? py 0a/Ty 0
St —1/.TN _1/'T§, P'N PN’]TI\' 10§ )

ARSI
( a 1 L1

—1)\

! 2 = (Z: %/ 02 (25)
\ ag J H R

Zy—-1)—

oN
or

X-4=Y (26)

where X is a (NX6) matrix and both 4 and Y
are column matrices.

By assuming that all the PVT data in the
matrices X and ¥ were ‘exact’, the solution
of A in Eq. 26 is straightforward:

XT-X-A=XT.Y (27)

where X7 =transpose of matrix X, thus(X7 - X)
becomes a(6X6) square matrix. From Eq. 27

XT-XH71-(XT-X)-A
=xT-Y)7t- (¥T-Y) (28)

or

A= (T X7 (XT-Y) 29)

where(X7T - X)™! is an inverse matrix of
(XT - X). The column matrix 4 was solved
(for which a computer program was written)
and the a’s were supplied as the first approxim-
ate values of the least-squares parameters.

In Fig. 2. the flow—chart for the computer

gkefl 4] Ethylene Gase

e g2 265

{ sTART ’

[l
/ READIN DATA/

[COMPUTE 1st APPROX.
|Gf Qy, k=1,2,--'m

«—— APPROX

NIT =1

CO‘«‘PUTEP}. from
T, {) and o

NIT = NIT +

{cowpura o 8 R, | ~——RESID

e 25 ] ~———MATRIX
1 2% | RESIG
SET UP X-Ac=Y
NORMAL EQS.

l

-———GALSS

Fig. 2. Flow chart

program of this work is shown in connection
with their relevant SUBROUTINEs at various
parts of the main program.

Although the SI units are recommended, the
pressure and density in actual computation are
expressed in bar(=10°N/sq. m) and gm-mole/cc
(=10°kg-mole/cu. m) due mainly to the incon-
veniently large number of pressure in SI unit
and partly to convention.

The descriptions of main program and each
subroutine are as follows.

In the main program, JWLEE, P;, .T;, and

HWAHAK KONGHAK Vol. 15, No. 4, August 1977
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p; are read in first. Then by calling APPROX

the first approximated values of 2} are calculated
according to Eq. 29. After computing P;’ from
T;, p;, and the @ using Eq.3 or Eq. 4 subro-
utine RESID is called, in which the weighting
factors, wj, is calculated by means of Egs. 6, 9,
Ry,
caleulated basically from Eq. 7 together with the

and 10. The approximated residual, is
equation of condition Eq.3 or Eq.4 using a;

instead of ;.

The elements of the matrices X and Y in
Eq. 18 are calculated and stored by calling
another subroutine MATRIX. The calculation
of the partial derivatives in Eq. 16 is in princ-
iple impssible without knowing true residual

R;. The derivatives, aaR 4
(93

ermined numerically by changing each value of
ay’ b y0.001% in turn and recalling RESID.

. . Ly
These are used as approximations to—="".
£

This approximation, however, is exact at the
that is, when da,=0.

are therefore det-

convergence point,

The pormal equations, Eq. 19, are then solved
by calling GAUSS, which solves aset of simul-
taneous linear equations (upto 100 equations)
by means of a Gauss-Jordan double-pivotal
elimination. The calculated 4a’ys by GAUSS
were ther. compared with predetermined values
e.g |4a;1<107. When the
da’ys are larger than the accuacies, new appro-

of accuracies,

ximated values were calculated according to
Eq.13 and suboutines RESID, MATRIX and

GAUSS.

In the main program and the subroutines
COMMON statement (labelled or unlabelled)
all the

transferred between the main program JWLEE

was not used and informations were

and relevant subroutines throug the ‘argument
lists’ of subprograms so that each subprogram
can be used, by other users independent of the

main program and of any other subprograms.
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5. The Results

all the 20
parameters in Bender equation (Eq.1) were not
needed to represent the PVT data within the
Thus the

number of the parameters of the original Bender

As was mentioned in section 3,

range of this work (see Fig.1.).

equation was adjusted and the non-linear least~
squares procedures showed that equations with
6 or more coefiicients could represent within the
experimental range of this work. 6 and 10~
parameter equations, as examples, were therefore
chosen and their least-squares parameters are
presented in Table 1.

With appropriate first approximated values (see
section 4) the iteration of this procedure took
normally 90 seconds (in CP time) for 6 coeffi-
cients and 130 seconds for 10 coefficients on
CDC CYBER machine.

6. Discussion

From the point of view of the least-squares
principle better equation necessarily gives smal-
ler value of the objective function, S, given
by Eq.5. With parameters in Table1. the two
equations gave similar values of the objective
functions, i.e. ’

S6=0. 1223E—05
S10=0. 1151E—05

Moreover the root-mean-square deviations of
the calculated values of densities from those of
experimental ones were, in both cases, less
than 0.19%, which is within the experimental
error of the data (0.15%).

In order to test the goodness of the Eq. 3 and
Eq. 4 together with the parameters in Tabdle 1.
the comparison was made between this work
and that of Michels® at two isotherms 0°C and
25°C, by calculating the densities at Michels

experimental pressures by Newton-Raphson iter
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Table 1. The Leasi-Squares Parameters

' Eq.3 Eq.4

I
a(l) —. 7281539658 04| . 9039078502 E 05
a(2) —.4313535711E +07| . 7123659771 E 408
a(d) . 1672398620 E +10. —. 1764207277 E +11
a(d) —. 2668364218 E 05| . 1632640065 E +-13
a(s) . 1836241516 E +09, —. 7699390853 E +07
a(6) .1146379717E 408  .4539101816E 10
a(?) |- —. 6074464549 E -+12
a(8) —. 6888533651 E 08
a(9) . 9471465598 E +10
a(10) | . 6392976579 E --10

ation method (for which a separate computer
program, RHO, was written.) The results are
listed in Table 2.

Table 2. shows that the maximum deviation
at 0°C and 25°C are 0.05% and 0.1% respec-
tively.

Thus from the reasons discussed above it
<can be concluded that the equation of state,
either Eq.3 or Eq.4 together with the least-
squares parameters presented in Table 1 can
represent the P-V~-T data within the experim-
ental range with errors less than 0.15% in

compressibility factor.
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