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Abstract

Axial invariance of production performance encountered in a horizontal tubular reverse osmosis
has been analyzed by assuming that the free convection is the dominant transport mechanism.
The governing equations, which had been deduced from dimensional analyses used in heat tra-
nsfer problem with a large Prandtl number, have been solved approximately by the integral
method. The numerical computations show that the system performance in terms of concentra-
tion polarization and wall permeation velocity, even if axially constant, is better at the top of
the tube than at any other circumferential positions. The effects of system parameters such as
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feed concentration level, operating pressure and tube radius can also be explained from the results

obtained.

Introduction

The importance of {res convection effect in a
reverse osmosis system has bsen cited by some
investigator”~®, since the expsrimental parfor-
mance is much better than that predicted by
the forced convection only models? ™9,

Derzansky and Gill? showed, from their
experiments for a horizontal tubular reverse
osmosis unit, that the system behavior is al-
most constant over the down-stream region of
laminar flow and dictated by combinel free
and forced convection mechanisms.

Some theoretical analyses on the free conve-
ction effect in reverse osmosis have been made.
Notably Ramanadhan and Gill® solved the
combined free and forced convection problem
in a vertical semipermeable parallel plate
ducts by a perturbation method. Johnson and
Acrivos® obtained the concentration polarfza-
tion at the wall on a vertical flat membrane
by using a series expansion including the sim-
ilarity variable. Srinivasan and Tien!'® applied
the integral method to solve the reverse osmo-
sis problém consisting of a vertical membrane
with a liquid stream flowing upward.

Recently Chang and Guin'? examined the
influence of combined forced and free convec-
tion on the performance of a reverss osmosis
system in a horizontal pips. They ussd the
axial velocity profile proposed by Berman!?®
which introduces three dimensional character
into the secondary motion. Perturbation equa-
tions were solved numerically by stream fun-
ction-vorticity scheme, while nonparturbation
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equations are explained by approximate solu-
tions obtained from the literature®™~®,!13.19,
In the present analysis, however, the inte-
gral method is applied over the boundary layer
near the membrane. Only asymptotic regi-
on is considered and, with the axial depzn-
dence neglected, the problem can bz described
by two dimensional equations. Effect of free
convection over the downstream region under
laminar flow through a horizontal tubular
reverse osmosis system is analyzed. The velo-
city distribution to the mass transfer section
is assumed fully-developed and the fesd con-
centration is uniform and very dilute as in a

sea water.
Secondary Flow

It is believed that the free convection due
to concentration polarization at the membrane
surface causes secondary motion, whose flow
pattern seems to be symmetric about a vertical
plate passed through the axis of the tube,
being supsrimposed on the primary flow in
the direction of tube axis. '

The above mentioned assumption is eviden-
ced by the pictures taken by Mori and Futa-
gami'®»1® from their flow visualization expear-
iments for heat transfer. Hot air flowing inside
the horizontal tubz was cooled at the tubse
wall with constant heat flux. The secondary
motion is downward within the boundary
layer near the wall and upward in the core
region of the tube, Although there is a
mass permeation through the wall in reverse

osmosis, the system behavior seems to be sim-
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ilar to that for heat transfer problem with
large Prandt]l number, because Schmidt number
is generally very large for reverse osmosis;
for example, it is about 700 for sea water.
In the thin boundary layer, velocity and
concentration distributions are affected by
viscosity and molecular diffusivity, and boun-
dary layer approximation may be applied in
an analysis. On the other hand, in the core
region, velocity and concentration fields are
affected mainly by the secondary flow and the
effects of viscosity and molecular diffusivity
may be neglected. Because there is a leakage
of solvent through the wall, the axial velocity
profile is affected along the axial distance'®.
However, any axial variations of secondary
flow fields can be neglected as far as the

permeating flux is small.

Formulation of Problem

For the sake of analysis, the coordinates are
defined for the core region and for the boun-
dary layer region separately as shown in Fig.
1.

For the core region the usual rectangular
coordinates are defined. For the boundary
layer, which is more important in the follo-
wing discussions, X' is the circumferential
distance from the top of the tube and Y™ is
the normal distance from the membrane sur-
face toward the center of the tube. U* and V*
are the velocity components in the direction
of X* and Y* respectively.

The tube radius is @ and the thickness of
the boundary layer is 0 which is a function
of X*. The feed concentration is C, and the
wall permeation velocity is Vw*, being a nega-
tive quantity.

If natural convection is assumed to be the

dominant transport mechanism, and if the core

Fig. 1. Schematic Diagram for the Cocrdinate
(The boundary layer thickness is .a function
of X*. The velocity profile is not an exact
representation but a symbolic one showing
that the velocity field is confined in the bou-
ndary layer)

concentration to be uniform and not much
different from the feed concentration, - the
limiting equations in the concentration boun-
dary layer become

ou* oVt

Sx t 57 =0 n
_ _ . Xt p U
0=8g(C—Co)sin— o oY (2)
+ aC + aC — azc
U'Sx V" 5y =Dy @
with the associated boundary condition being
given by

U*=0; V*=Vw*; C=Cw at Y"=0

U ¢ .
W;“:—aTr——Os C=Cpat Y*=0

s L

—dXT—O at X* =0

Equations (1) to (3) are obtained through
dimensional analysis similar to that applied
to heat transfer problem for a large Prandtl
number'?. The process for dimensional anal-
ysis is too complicated to be introduced in
the present paper but it is only mentioned
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here that one of the criteria for the simplifi-
cation is a large value of Sc/Pe, which is valid
for the reverse osmosis as will bs shown in
the next section.

The wall permeation velocity can bs given
by Merten’s phenomenological expression!®

Vw'=—K(4P—(Tu—75)] (4)

where AP is the difference in static pressure
across the membrane, and 7, and 7, are the
osmotic pressures corresponding to the soluts
concentrations at the membrane surface and
at the product side respectively, and K is the
water permeability constant. Additionally, the
general boundary condition at the high pre-
ssure side of the solution/membrane interface
is given by

oC
a Y’ +

Eq. (5) implies that the salt flux to the me-
mbrane on the solution side is equal to the
salt flux on the product side.

Nw=—pCpVw" =pD—r —oCwVw* (5)

Dimensional Analysis

Dimensionless variables and groups are de-
fined as follows:

. +

A | %4 c-C
u=u+’p_7,¢= COO’
Gr= %—C—o—, SC:%-, Pe.—_-%

where # is the characteristic core velocity, and

#* and D* are the characteristic boundary layer
velocities in the X* and Y* directions respe-

ctively, and d. is the characteristic boundary
layer thickness.

The characteristic quantities can be obtained
by assuming that the viscous and buoyancy
terms in the X*-momentum equation and
convection and diffusion terms in the mass
balance equation are of the same magnitude.
172,19 The results obtained together with the
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continuity equation become

_ a

(Gr-Se)+
' :‘ZL(%V_

Yo ( Gr )—i—
v a \ Sc¢t
Ths characteristic core velocity 4 can be
evaluated by assuming that the secondary

motion is confined in the boundary layer(i.e.,
#@=1y*0c), and given by

u=-{5e) F=om

Se/ Pe becomes(Sc?/ Gr)—i'whose typical value
is around 6(10). Therefore the criterion men-

tioned in the previous section is satisfied.
The governing equations are written in di-
mensionless form as follows

ou* ovt

*a—x»,—+—-a-§r—-0 (6)
2,,*

0=¢sinx* + ngz D

L 09 . 0 ¢

w0 By Ty €))

with the boundary conditions being given by
w*=0; v'=0,"; ¢=¢u at y*=0
ou* o

Ty Py =s
da*t .
W‘O at x*=0

The dimensionless permeation velocity is
written as

Vw ————{1 RB(1+¢w)) ©)]
where Bzzﬁ;—
— Yo
xX= p” (b(, ) /KTQ

Cs
Cv

and R=1—

B, is the ratio of osmotic pressure corres-
ponding to the feed concentration C, and the
static pressure difference, and y is dimension-
less velocity., R is called rejection parameter
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and assumed to be constant in this study. The
system can be characterized by these three
parameters.
On the other hand, the wall boundary con-
dition is given by
S =R+ 10
Exact solutions for the set of differential
equations (Egs. (6) through (10)) can not be
obtained. The following section is concerned

with an approximate analyses using integral
method.

Solution by Integral Method

The convective diffusion equation (Eq. (8))
is integrated over the boundary layer thickness
in conjunction with Eq. (6) to give

d o~ + LN G S a¢
TFSO #' dy’ — o' v0" = oy* y+=o(11)

Let the dimensionless concentration profile

have the following form:

p=¢u Y(n) (12)
where vz%—[: };] (13)
and Y(3) can be chosen as

Y(ip)=(1-n?* a9

<case >

{
1
i
|
i
|
i
i
!

=

i
|
|
.

satisfying the boundary conditions (Y(0¢)=1,
Y(D=Y"(1)=0).

The circumferential velocity profile can be
obtained by integrating the momentum equa-
tion(Eq. (7)) )

u'=—gyesinx*- 47 K (1) (15)

where
K= Yoy dy (16)

(==grr 37—+

satisfying the boundary condition(K (Q)=K'
(1) =0).

At this point, a comment may be appropr-
iate regarding the aforementhioned profile for
u*. At the edge of the boundary layer(y*=
4% and $=0), Eq. (7) results in

at yt=4*

This implies that, at the matching region

of the core and boundary layer, the velocity

. . . 0%t
profile has both inflection (W y*=4’—0)
. .. ou*
and maximum or minimum (——y—,~ ,’,4“—0)'

Siegwarth et al'” suggested that the inflection
point approach the max. or min. point. Two
cases'” may be considered as shown in Fig.2.

I <case 1>
t ] Cor
|
|
|
|
i

Fig. 2. Schematic Diagram’of DimensionlessiVelocity Profile near the Membrane.
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In case I, the downstream velocity is of the
same order of magnitude as the upstream one
(i.e., #*=u), while in case II the downstream
velocity is confined in the boundary layer(i.e.,
2#*0=ua). Case II is more reasonable in view
of the criterion of Sc/Pe— oo because Pe= (Gr-
Sc)—2L for case Iand Pe:(Gr-Sc)*
II, and another forms of Y(») can be chosen
by assuming #*(4*)=0 (i.e., K(1)=0) and
from Ea. (&) 5.55| ,,,=0(i.e, ¥"(D=0).

However it should be stressed that integral

for case

method for the boundary layer is an approxi-
mate approach and the more complicated pro-
file does not necessarily improve the estima-
tion.

The substitution of Eqs. (10), (12) and (15)
into Eq. (11) leads to the following differen-
tial equation

sinx*+472(2 ./ 4743 $u) G-
;~ + R ‘ + rd
=—cosx*+-4 3'¢w-43(“ﬁ_’1+R>vw an
o d¢”’
where ¢,,, =g '
Initial condition to Eq. (17).is given by
- dar B
dx* k x;=n_0,

which implies that the boundary layer thick-
ness is symmetric at the top of the tube. From
Eq. (17), we obtain

A*3=—-43(~¢RT—1+R) : ‘;;”:

at x*=0 (18)

In addition, the wall boundary condition (Eq.
(10)) becomes
Y’ (0)
¢"’ A° (19)

and the dimensionless wall velocity is related

:R(1'+¢w)vw+y

to the dimensionless wall concentration throu-
gh Eq. (9).

Now it is possible to solve Eq. (17) together
with Egs. (9), (18) and (19). Runge-Kutta

method?® was used for the numerical .compu-

2vat 38t MI17E X 33 19794 68

7]

tations. The boundary layer thickness becomes
infinity at the bottom of tube (x*=zx) which
is the singular point of Eq. (17).

Once the circumferential variation of 4% is
known, ¢.(x*) and v,*(x*) are obtained dire-
ctly from Egs. (9) and (19). The circumfere-
ntial averages are defined by

o=t gutar)ax (20)

@
Fig. 3 shows how the ratio of the wall

concentration and the permeation velocity to

= +____1_ K g +
and 7= jovw (x*)dx

the circumferential averages change along the
wall position from the top to the bottom of
the tube. The concentration polarization incre-
ases and the permeation velocity; decreases as
the circumferential position moves from the
top to the bottom of tube. The performance
in terms of solvent production can be said to
be better at the top of the tube than at any
other circumferential positions.

5 A

o] xt - 7
top of tube . bottom of tube
Fig. 3. Circumferential Variation of Dimension-
less Wall Concentration, (Cw—Co)/(Cw—
Cy), and Dimensionless Wall Permeation

Velocity, Vw'/Vy' for R=1.0 and B,=0.2
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Fig. 4. Concentration Polarization &, and Dime-
nsionless Wall Permeation Velocity | Vi*|
/Ko for Varying Systca. Parameters

Fig. 4 shows how &. and (being

V'l
KT»’:O
equal to |2,%|x) change with the system par-
ameters, whose effects are discussed in the

later section.

Sherwood Number Correlation

If the local mass transfer coefficient?” is
defined by

aC
—DZ5y+

Y*.o
Cw_co ’ (22)
Sherwood number (S%) becomes
__kia N 1 0P
St =% )_(_-—m .2 0)
Gr-Se) ¥ (23)

The average Sherwood number is given by

k=

(=L shaz=c.- Grsa¥

where

0 5 10 15 20 25

Fig. 5. C; for_Varying System Parameters

_ 1Y ;..
C= T So a* dx (25)

Fig. 5 shows that C, decreases as B incre-
ases, and that for small values of y, C; is
very sensistive to rejection parameter and that
for large values of y, insensitive to R.

Effect of System Parameters

The system performance in terms of C;
increases as R decreases (except for small B,
with large y) and as B, and y decrease as
shown in Fig. 5. The effect of rejection for
small B; with large x is reversed; as R decr-
eases, the performance becomes worse, which
is consistent with the results for the asymp-
totic case of B,=0 discussed in next section.
However, C, is independent of R for the values
of y larger than 15 for B»=0.4.

HWAHAK KONGHAK Vol. 17, No. 3, June 1979
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As C, and 4P increase at the same time so
that B, remains constant and y decreases, the
performance is improved even if the concentra-
tion polarization becomes largar. This implies
that the effect of increase in operating press-
ure overcomes the increased barrier to solvent
transport due to higher concentration polariza-
tion.

The geometric effect of tube radius can be
analyzed by changing y which is proportional
to a'”* As a increases (and so y decreases),
C, increases. However, the concentration pola-
rization increases and dimensionless wall velo-
city decreases. The enhancement of free con-
vection due to the large tube radius is cance-
led out by the rapid increase in the boundary
layer thickness.

Among the system parameters, the effect of
rejection seems to be less important especially
when B, and y are large even if it directly
affects the product quality.

Analysis for the Case of B,=0

B;=0 is an asymptotic case where the feed
concentration is very dilute while the opera-
ting pressure is high. Because the wall per-
meation velocity is constant(i.e., V.*=—K-

o

~

1 1 ’ i 1 1 1
O 002 004 006 008 0OI0 Oi2 0l4 06

v

Fig. 6. Concentration Polarization for B,=0
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4P), vu* is itsslf a parameter. The system
performance is uniform around the tube wall.

The effects of rejection parameter on the
concentration polarization and C; are shown
in Fig. 6 and Fig. 7. As R increasss, both
concentration polarization and C, increase. The
trend of this result is in agreement with that

predicted by the forced convection only model
4~6)

[0X-]
04
Q3

G
02

| 1 i - d 1
002 004 Q06 008 CIO 0I2 0l4 018

2
v

Fig. 7. C; for B;=0
Discussion

Chang and Guin'V obtained the Sherwood
number correlation for R=]1.0 and B,=0 by
converting their local Sherwood numbers thro-
ugh film theory into asymptotic ones for no
wall permeation, being expressed as

Shoc-6,=0. 863(|vw] + (Gr+Sc) 0168

where v,=— %

(26)

. Note that the Sher-
wood number here is based on the tube radius
instead of the diameter.

Similar correlation can be obtained here from
the result by the integral method, since the
value of C, in Eq. (24) (i.e., Sk=C, (Gr-Sc) ¥)
is depending upon the system parameters. Es-
pecially for R=1.0 and B,=0, C, is a func-
tion of only |v.*|, which is equal to |v.](Gr-
Sc)'+. We fit the courve for R=1.0 and B,
=0 in Fig. 7 according to

Ci=0.588]v," |22 @0



34 qAFRAAY AddlF A4 175

which was found to be a good correlation for
the values of [v,*| less than 0.04. According
to the film theory, the asymptotic Sherwood
number is related to the local Sherwood num-

ber by

Sh=04pSh, (28)
where correction factor fag is given by Bird ef
al?V as

Os=¢an/(exp $an—1) (29)
and the rate factor ¢ap is defined by

¢AB:__[_V5I_5_ (30)

From |Vw|=KA4P for B,=0 and d=a/(Gr-Sc)

, we find

Pap=—[vu"| 31
The asymptotic Sherwood number becomes
Shom—C1(Cr-S0F 32)

exp(—|vx"]) —1
For |v."]<K1, exp(—|vs*|)=1—|v»"|, and
Eq. (32) together with Eq. (27) can be wri-
tten as
Shy==Cy(Gr-Se) ¥

or Sho==(.588(|vw|+(Gr-Sc))°2*  (33)
Once the asymptotic Sherwood number is ob-
tained, the axial onset position of free conve-
ction dominant region can be estimated by
equating the theoretical Leveque solution for
the inlet region where the forced convection
is the dominant transport mechanism. The
Leveque type solution is given by

_L
Sho(Leveque):"L_gOiz s (34)
where z:—DZ~— is dimensionless axial di-

4 Wo)a?
stance. From Eqs (26) and (34), Chang and
Guin'? give the axial onset position as
Ztr(C..G)ZO- 753([”&9! (Gr'sc)]-ud“ (35)
From the present analysis, Z:, becomes
Zir=1.1X (] (Gr+Sc)) 02 (36)

Summary

Free convection in a horizontal tubular
reverse osmosis is known as a dominant tran-
sport mechanism over the downstream region
of laminar flow. Chang and Guin'? solved the
pertubation equations numerically by stream
function-vorticity scheme, accounting for the
axial dependence of axial velocity profile. In
the present paper, however, the integral me-
thod is applied to the concentration boundary
layer near the membrane and, the secondary
motion was described by two dimensional equ-
ations according to the experimental findings
of axial invariance in the performance of re-
verse OSmosis.

The velocity field at the inlet to mass tra-
nsfer section was assumed to be fully-developed
and the feed concentration to be very dilute
and uniform. Numerical solutions show that at
the top of the tube the concentration polariza-
tion is smaller and the permeation velocity is
larger than at any other circumferential posi-
tions. Also the effects of system parameters
such as feed concentration level, operating
pressure and tube radius can be explained from
the results obtained.
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Nomenclature

2 tube radius(cm)

B, ratio of osmotic pressure of feed solution
to the difference of static pressure, i.e.,
To/ AP

HWAHAK!KONGHAK Vol. 17, No. 3, June 1979
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C solute concentration in mole fraction
CD:CWJ
at the membrane surface and in the pro-

C, solute concentrations in the feed,

duct respectively
C, correlation coefficient for Sherwood num-
ber, i.e.,Sk/ (Gr-Se) ¥
D molecular diffusivity of solute(cm?/sec)
& gravitational acceleration
Gr Grashof number defined by @*8gC,/ve?
K water permeability constant of membrane
(cm/sec/psi)
kr local mass transfer coefficient(cm/sec)
N. local salt flux on the product side
Pe Peclet number defined by az/D
4P difference in static pressure across the
membrane (psi)
R rejection parameter defined by 1—C,/Cu
Sc¢ Schimidt number defined by vo/D
S#; local Sherwood number defined by kie/D
S# circumferentially averaged Sherwood num-
ber
Shy asymptotic Sherwood number for no wall
permeation
SligLeveaney Sherwood number obtained for
inlet region from Leveque solution

characteristic core velocity for the secon-

74

dary flow defined by
2 () =2 6rsat)

w' characieristic circumferential velocity in
the X* direction for the bounday layer
defined by

ZO ( gz >%[E—‘g—(6r286)_&]

U* circumferential velocity in the X* direc-
tion

2" dimensionless circumferential velocity def-
ined by U*/y*

p* characteristic velocity in the Y* direction

for the boundary layer defined by
(i) Fr=m

star3 et AI17H ® 3 5 1979 6

23

7]

V* wvelocity in the Y* direction

Vw* water permeation velocity through the

membrane
v+ dimensionless velocity defined by V*/p*
v, dimensionless permeation velocity for B,

=0 defined by ——42P2.
v,* dimensionless permeation velocity defined

by Vw*/ U*

{Woy bulk averaged axial velocity

X boundary layer coordinate in the circumf-
erential distance from the top of the tube

x* dimensionless boundary layer coordinate
defined by X*/a

Y* boundary layer coordinate perpendicular to
the wall inwards

»* dimensionless boundary layer coordinate
defined by Y*/dc

Z axial distance

z dimensinless axial position defined by

DZ

4a*(Wy)

z:» dimensionless transition length for the
onset of asymptotic region
Greek letters

B volumetric expansion coefficient due to

" concentration difference
d concentration boundary layer thickness

d. characteristic boundary layer thickness
defined by L
(Gr-Scy ¥

4% dimensionless bhoundary layer thickness

defined by d/0.

y  similarity variable defined by
y*/4*(=Y"/0)

@4p correction factor for the film theory

¢ viscosity

vo kinematic viscosity defined by #/po

Zo, Tw» Tp Osmotic pressures of solution with
corresponding concentration C,, C.. and C,

respectively
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0 solution density (g/cm?)
¢ dimensionless concentration defined by
C—C,
Co
¢ dimensionless wall concentration defined
C.—C,
Co
$. concentration polarization defined by
éw—‘co
Co
of ¢w
¢ap rate constant for Gag

by

or the circumferential average

y  dimensionless velocity defined by p*/Kro
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