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ABSTRACT

Steady axisymmetric source-sink flows of a compressible viscous fluid in a rotating cylin-
der is simulated numerically. The source and the sink are, respectively, the feed and the
discharge slits at the end plates of the cylinder. Compressibility of the fluid is taken into
account in the form of steady-state density stratification in the radial direction formed by
rigid body rotation in the absence of the source and sink. Stream function-vorticity formu-
lation is chosen for this study. Stability problem ocurring at high angular speed is overco-
me by using upwind difference scheme.

The solution techniques used for the resulting finite difference equations are SOR and SIP
(Strongly Implicit Procedure), and the latter is found to be more efficient for this set of
equations. Additionally, when using SIP, we adopted the method devised by Jacobs (1974) to
compensate for the error due to the artificial viscosity.

The simulation results give streamlines and axial velocity profiles for the flows through
the detached shear layer and the Stewartson layer near the side wall.

To check the results of numerical simulation. a model cylinder was driven at an angular
velocity of 200-500r.p.m. The air containing paraffine mist as a tracers is fed into the cy-
linder through the inlet slit at the upper end plate and is withdrawn through the outlet
slits at the upper and lower plates.

Values of axial velocity from the present numerical simulation were compared with those
from experiments.

cts of the top and bottom plates are negli-

1. Introduction

Dynamics of fluids in a rotating system
has been actively investigated in recent ye-
ars because of its applicability to geophysical
flow problems and design of gas centrifuges.
One of rotating flow problems which has
attracted many people’s attention is the
axisymmetric flow of a viscous fluid in a
rotating cylinder. Attempts have been made
to obtain an analytical solution of the velo-
city field for gases in a rotating cylinder.
Parker and Mayo®?, and Ging? have obtain-
ed such solutions by assuming that the effe-
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gible. But in reality the flow pattern is de-
termined not only by the Stewartson layers
along the side wall but also by the Ekman
layers along the end plates. If we want to
take into account both of these boundary
layers and the nonlinearity of Navier-Stok-
es equation, we have to rely on the nume-
rical analysis.

For a complete solution of this problem,
energy equation has to be solved together
with the Navier-Stokes equation. However,
this technique would require large computer
memories and tremendous amount of comp-
utation time. In the present work, the den-
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Fig. 1. Description of the System

sity field in the rotating cylinder is assum-
ed identical to that of the rigid body rota-
tion. With this approximation, stream func-
tion-vorticity function approach can be ado-
pted. This simulation will accurately give
the flow pattern in a rotating cylinder wh-
en the feed rate of gas is small.

To check some of the numerical simulat-
ion results, model cylinder of 10cm radius
and 60 cm height was constructed and axial
velocity in the detatched shear layer was
measured with cathetometer and stopwatch.

2. Theory

2-1. Mathematical Formulation

The system to be simulated is depicted in
Figure 1. A circular cylinder with slits on
its top and bottom plates is rotating about
its axis with a constant angular velocity.
These slits, through which gas is allowed to
pass into and out of the cylinder, have the
role of source and sink of the system. The

present analysis is performed under the fo-

llowing assumptions.

(1) The gravitational acceleration is negli-
gibly small compared with the centrif-
ugal acceleration,

(2) The gas is ideal

(3) The system is isothermal

(4) The system is axisymmetric

The governing equation in the reference
frame which is rotating at the same angul-
ar velocity as the system is as follows.

(B +20 % 0) = —pp + wrp +

@+ 7 (7.2) + Sograd(1Q X 71)? (1)

Continuity equation in the rotating referen-

ce frame is
5 -
Bt o Tt g (0 =0 @

Next, consider the rigid body rotation of a
gas in a cylinder. If there is neither source
nor sink, the gas motion is simply a rigid
body rotation when steady. In this state, all
components of the velocity vector bhecome
zero with respect to the rotating frame.
Then, Equation (1) is simplified to

ph=Lpgrad (Qxr{) ®)

Where the superposed bar means the state
of rigid body rotation. That is, the pressure
gradient balances the centrifugal force. Su-
bstituting —é%, for g (ideal gas assumpti-
on), we obtain the following relation for

pressure and density distribution.

5 Mo,

b —poexp< SR ) (€Y)
3)
Where p, and p, are the respective values
of p and p at the center of the cylinder in
the state of rigid body rotation. Equation

(5) shows the density distribution in the st-
eady state when there is no source and si-
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nk. But when the source and the sink are
present, the density field deviates from it.
When the feed rate is small, however, the
deviation can be neglected and the density
that of the

rigid body rotation. Substituting p = p and

distribution approximated by

0 = g, we obtain the equations of motion,

D
(ﬁy +20 X zz) w2y 4 (A -+ )

F-» 6)
where pressure gradient and centrifugal
force terms cancelled out each other. Cont-

inuity equation becomes

L 7] _ J .
Ve(pp) = — —-(rup) + TR (fw) =0

@
After a rearrangement, we obtain the

following continuity equation

ou . 11[9
= — (ru)=0 (8)
Now we 1ntroduce the Stokes stream func-
tion.
_ 1 8¢
“= rp 0z ©)
199
- rp or (10)
And define the vorticity (10)
0 0
{= - — == an

and a variable

I =uor (12)
From the r-and the z-components of Equat-
jon (6), we obtain the following vorticity

transport equation.

0L L L0908 L 0% 1 ol
‘0[_57 TGy T Yo i 0z
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2
where p?2 = -5%; + —%—_’and the superposed

bar has been omitted for brevity. The azi-
muthal component of the momentum equat-

ion becomes, in terms of /7

,0(%7— + % %9 gf 297‘2{)
= uf 1 2 a4

And from the definition of vorticity, we ob-
tain stream function equation

MQ? ;
Po—(F+ ) b=t 0®

Introducing the following dimensionless var-

iables,
z*:w%, r*~—£‘, t* = {0
7 i v L wr=Y
T @R T QR QR

=g~ g =g [T
e = ol T ),
¢* = pogRs v :}, Re = 9}52
(Stokes’ hypothesis) (16)

and omitting the asterisks for brevity, we
obtain a new set of governing equations,

TR
= Res (Pr-+ 5 ary
% %%+W~§§—— o
= RGep <"gi tLHarg
FVErGE )+ Ré7 (e L+ 5
=) a8
pip — (L + Gr)sbr = {rp (19>
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Fig. 2. Determination of Boundary Conditions

The equations (1)-(19) are generally valid
for unsteady states. Even though we consi-
der only the steady state in the following
calculations, the time derivatives 0/"/0¢ and
9C/0t have been retained in the above for
future applications. Boundary conditions for
these equations are postulated in the follo-
wing manner. On the symmetric axis shown
in Fig. 2, we have ¢ =0 and { =0. From
the definition of the stream functions, we
get

b — o = —Kprwdr = %

Taking ¢. =0, we can write ¢» = Q/2r.
Since the paths of the gas through the slits
are very short in actual geometry, the flow
is not expected to be fully developed. Thus,
we make the simplest possible speculation
by assuming plug flow of the gas through
the slits. This gives the constant gas velocity

@G 20
exp(jGrbz) — exp(EGrJ)

at the feed slit. The treatment is similar

w = —

for the discharge slits.

For the boundary values of vorticity, we
take the following form, which is most fre-
quently used and, in fact, most stable.®

Cm = _2 ((A‘G"’(-Zr;z ¢7U) (21)

where subscript w denotes the no slip wall
and Jdr is the distance from w -+ 1 ito w,
normal to the wall.

2-2. Numerical Schemes

There are two approaches to numerical
fluid dynamics. That is to say, asymptotic
approach(time dependent approach) and st-
eady state approach.

In the asymptotic approach, we solve the
governing equations from initial time(t = Q)
and repeat the procedure at each time step
as time is increased until steady-state is at-
tained. But when we use steady state appr-
oach, time derivative terms are dropped at
the start and the resulting elliptic equati-
ons are solved by the available standard m-
ethods.

Here, we employ steady state approach
and the finite difference equations are sol-
ved by the successive over-relaxation meth-
od and the strongly implicit procedure.

Let the finite difference discretization of
the steady state from of the governinglequ-
ations be

A= (22)
where ¢ is the solution vector ‘which may
be azimuthal velocity, vorticity or stream
funciton. The matrix 4 is pentadiagonal if
the five point formula for the Laplacian
operator is adopted. Because of its large di-
mension, iterative inversion technique is
generally employed. A general iteration for-
mula for Equation (22) may be obtained by
adding an auxiliary term 15 to each side of
Equation (22) and putting the iteration nu-
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mbers to ¢ as

4+ Dg® =L + S (23)
where N is the number of the iterations,
and 4 is chosen so that the inversion of
(4 + 4) may become easy. The convergen-
ce rate becomes faster as 4 becomes close
to Q. The techniques employed in this study
are SOR (Successive Over-Relaxation)and SIP
(Strongly Implicit Procedure). The SOR sc-
heme is

A=0—-w) L+U (24)

¢ = (D — wl)™ (1 —w)D + wl)

N + (D — wl) wS (25)
where w is the relaxation parameter to be
determined computationally, and [ and ¥
are lower and upper triangular matrices
respectively. In the SIP%% 4?1' is chosen so
that (4 + 15) can be factorized as

A+ A4A=LU (26)
Because of the nature of L and U the inve-
rsion of L-U is easily done. Additionally
the auxiliary matrix 4 for SIP is very sm-
all, from which the name “strongly impli-
cit” originates.

2-3. Upwind differencing and Jacobs’
Correction Method

For a successful iteration scheme(Equation
(23)), the matrix 4 of the coefficients of
finite difference equations, should be irred-
For high
Reynolds number (in the present case, high
angular velocity), the matrix get out of

ucible and diagonally dominant.

diagonal dominance. To remedy this diffic-
ulty, upwind difference scheme is used for
azimuthal velocity equation and vorticity tr-
ansport equation. But the upwind difference
scheme is accurate only up to the first ord-
called
artificial viscosity, increases with the Reyn-

er in 4dx. The second order error,

olds number®. Recently Jacobs proposed a
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correction method® for it. The set of finite
difference equations resulting from centered
difference scheme, which is accurate up to

the second order, is represented by, in a
matrix form
A¢=S @7)

and the equation resulting from upwind di-
fference scheme by
4'¢=5
=3—(4—-4)¢ 28
The term (4 — 4")¢ represents the second
order error introduced by using upwind diff-
erence scheme. We form the matrices L
and U in a way such that
LU=4"+4 (29)
That is, we use matrix 4’ instead of the
matrix 4 to determine the factorization
matrices L,U.
The iteration scheme is derived as follo-
ws.
dg=S
Adding both sides 4'¢, and adding and
sub tracting the term 4’¢ in the left hand
side, we find
(4' + J:I') N+D (4 — 4')25(57) — glggun
+ S i.e. (30)
(4' -+ 4"') (¢(N+1) — Eguw) — § — 4?(;:)
éggém = —RW (31)
where LU = 4’ -+ A’ and 0N = gW*D —
¢M. Accordingly, when we compute factori-
zation matrices [ and [J, we use matrix 4°
thus ensuring stability. And, when we com-
pute the residue vector R, we use matrix 4,
causing the iteration not to cease until sec-
ond order accurate solution of centered dif-
ferencing is obtained. Additionally we intr-
oduced a relaxation factor to avoid the div-
erging of iteration scheme.
égaéw) = —wRW
This relaxation factor was not proposed
in the Stone’s original paper®. Finite diffe-
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rence discretizations of the governing equa-
tions are presented in the appendix. Here,
the convergence of the solution for 77,Z and
¢ was considered to have occurred when the
maximum relative error for each stream

function is less than . Namely,
max | L | (32)

@ij

where ¢ is about 107 It has heen obser-
ved that ¢ is more sensitive than the other
two variables. In other words, when the
stream function distribution satisfies Equa-
tion (32), the { and [ distributions are
also found to satisfy the analogous converg-

ence criteria.

3. The System for Numerical
Simulation

The particular problems of our interest
concern the rotation of a cylinder when
its radius R is 9cm and its height H ranges
from 20 to 60 cm. Thus the aspect ratio
H/R varies from 2.2 to 6.67. The inlet slit
is located at 2.5cm from the axis of revol-
ution on the top plate and the outlet slits
located at 8 0cm from the center on the
top plate and 2.5cm from the center on
the bottom plate.

The cut ratio, @ is allowed to vary from
1.0 (no flow to the outlet slit on the top
plate) to 0.5. The properties of the gas
are similar to that of the air at 25°C.

The density and the viscosity of air at
this temperature are 1.295x107° g/cm® and
0. 0182 cp. respectively. Air is introduced
at the rate of 3-12g/min and the angular
speed of the cylinder varies between 50 r.p.
m. and 10,000 r.p.m The finite difference
computations are carried out according to

the conventional procedure,” using Cyber-
174.

4. Experimental

4-1. Experimental Apparatus

To check the results of numerical simul-
ation, a model cylinder of radius 6cm and
height 60cm was constructed. It was driven
in the air by a variable speed % hp motor
at 200-500 r.p.m.

A schematic diagram of the experimental
setup is shown in Fig. 8. It consists of a
rotating cylinder, its base frame, paraffine
mist generator and flowmeters. The side
wall of the cylinder is made of transparent,
1-cm thick acryl plates, and the top and
bottom plates are fabricated with alumini-
um to make the cylinder lighter.

The feed slit is located on the top plate
at the relative radius of 0.278. One discha-
rge slit is located on each plate; at the rel-
ative radius of 0.889 on the top plate and at
0.278 on the bottom plate. The air is supp-
lied by a pressurized container, fed into the
cylinder through the feed slit on the top
plate and discharged from the discharge sli-
ts on both plates. The cut ¢, which denotes
the fraction of feed through the bottom di-
scharge slit, is controlled by the valves on
the discharge lines.

To visualize the motion of the air, mist
of liquid paraffine is added to the feed int-
ermittently. Paraffine mist is made in the
paraffine mist generator. Unlike the comm-
only used Preston-Sweeting paraffine mist
generator, a heating coil is immersed dire-
ctly into the liquid paraffine to generate
sufficient amount of mist here. By control-
ling the electric current from the power

HWAHAK KONGHAK Vol. 19, Ne. 2, April 1981
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supply to coil, the mist is introduced into
the air stream intermittently. The stream-
lines are most clearly visualized near the
detached shear layer located at the radial
position coinciding with the feed slit, and
the axial velocity of this boundary layer
was measured at each axial position.

A stroboscope was used to measure the
angular speed of the rotating cylinder.

4-2. Experimental Procedure

(1) Determine angular speed of the cylinder
with the aid of stroboscope.

(2) Open the valve of air regurator and wait
until the flow reaches the steady state.
Feed flow rate is controlled by the val-
ve on the feed line.

Adjust the valves on the discharge line
so that the cut reaches the desired value.

(3) Connect heating coil with the power
source, thus making liquid paraffine ev-
aporate.

(4) When the front of air stream burdened
with paraffine mist approaches the ax-
ial position where the measurement is
desired, the axial velocity is measured
with the cathetometer and stop-watch.
In advance, the optical part of the cat-
hetometer is arranged to move up and
down a certain interval, at the center
of which is located the point of measur-
ements. Actually this interval was 10
cm, that is, +5cm from the center.

(5) Disconnect heating coil from the power
source such that only air is fed into the
cylinder. Wait until the paraffine mist
is completely discharged from the cyli-
nder. By this moment, all parts of the
cylinder are clearly visible. Repeat the
procedure (1)-(5) changing r.p. m., feed
flow rate, etc.

2izt3s AI19™ M 22 19818 48

5. Results and Discussion

5-1. Discussion of the Numerical Scheme

Optimum parameter of SOR was determ-
ined computationally. For low angular velo-
city(less than 500 r.p.m.), the values of this
parameter were found to lie in the range
of 1.2-1.6, and this value decreased as the
angular speed increased. When the angular
speed was 10,000 r.p.m., the relaxation par-
ameter decreased to the order 0.01 for vor-
ticity transport equation and the number of
iterations required for convergence was ap-
proximately 2,000 for 20 x 20 meshes.

Since we adopted non-uniform mesh stru-
cture, the mesh was mostly rectangular ra-
ther than square. It was found that this te-
nded to make the numerical procedure rela-
tively unstable, thus requiring the relaxati-
on parameter to have smaller values than the
square mesh for the stabilization of the nu-
merical scheme. The instability arises pro-
bably from the round-off error due to exces-
sive divisions by small numbers.

It was also found that the convergence
rate also decreased as the number of mesh
increased.

Besides SOR,a new strongly implicit iter-
ative method, SIP was used. In this case,
we iterated the scheme 4 times for each eq-
uation using the sequence of Stone’s iteration
parameter a. These iteration parameters
were spaced geometrically as suggested by
Stone?®

1—ar= (1 — Anax) L0,
-1
where L is the number of parameters in

]l = 0,1, ...,L

a cycle and @max is the maximum iteration
parameter. The value of amax was taken as
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_ — 2(dr)? 2(4z)?
1 — Gmax = mln(l " dr)? - (12)?
. (4z)2 , (4dr)?

If amax is too large, the iteration scheme
diverges and we have to reduce amax. Howe-
ver, if it is too small, the convergence bec-
.omes proportionally slow. The appropriate
value of amax is determined computationally
‘in the end. For a high angular velocity or
for a mesh aspect ratio far different from
1 (say, about 6), @max has to be as smll as
0. 6 so that the system can converge. In ad-
dition to the iteration parameter, it was
necessary to introduce the relaxation para-
meter o with values in the range of 0-1.
This parameter was not proposed in the St-
-one’s original paper. This may be due to
the fact that his model equation was the he-
at conduction equation with variable therm
al conductivity. The equation for the nonli-
near heat conduction is much more moderate
than the nonlinear Navier- Stokes equation
in the degree of nonlinearity. Typical val-
ues of this relaxation parameter are about
0.5 for 500 r.p.m. and 0.01 for 10,000 r.p.
m. for vorticity transport equation. The ot-
her two equations for the azimuthal veloci-
ty and the stream function can have a lit-
tle larger values for the relaxation param-
eter than the vorticity transport equation
can. When using Jacob’s correction method,
we must choose for this relaxation parame-

“Table 1. Comparison of computing time between
simple SIP and SOR

r.p.m | #of outer itera- | in SOR | ratio of comp-
tion in SIP uting time
SIP/SOR
50 | 12 321 0.74
500 18 658 0.55
10, 000 46 2,210 0.41

ter a value smaller than that for a simple
SIP to attain the stability.

The rectangular grid systems, particularl-
y the nonuniform, lead to instabilities for
SIP as for SOR, but it is severer for SIP
than for SOR. In order to succeed in itera-
tion, it was necessary to make the values
of the relaxation parameter smaller than
the square grid systems.

In general, simple SIP was found to be
2-3 times as fast as SOR iteration. When
Jacob’s correction was taken into the SIP,
additional time required over simple SIP
was about 209% more at 10,000 r.p.m. The
comparison of computer time required for
simple SIP and SOR is shown in Table. 1.

The model equation is the set of our gov-
erning equations (Equations 17, 18 and 19)
with the uniform grid of 10 x 10.

R ¥

Fig. 3. Axial Velocity Profile and Streamlines
Q = 3g/min, § =0.5, Q@ =2,000 r.p.m.
H/R=6
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Fig. 5. Axial Velocity Profile and Streamlines
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5-2. Results

Streamlines and axial velocity profiles at
the relative axial position of 1/3 from the
top plate for various feed flow rates, the
cut ratio #, angular velocities and the cyl
inder aspect ratio H/R are shown in Fig. 3
through 7. All contours were obtained by 1-
inear interpolation of the nodal point va-
lues.

Fig. 3 and 4 show the axial velocity pr-
ofile and streamlines when the cylinders
with the aspect ratio of 6 are rotating at
two different angular velocities (2,000 r.p.
m. for Fig. 3 and 10,000 r.p.m. for Fig. 4)
Air is introduced at the rate of 3g/min to
the top slit and discharged through the si-
its on the bottom and on the top plates
(6 =0.5). It is seen that rechanneling flow
approaches nearer to the side wall and to
the bottom plates as the angular speed in-
creases. Fig. 5 shows the results when the
aspect ratio is reduced from ¢ (Fig. 3) to
3 while other conditions remain the same
as in Fig. 3. Rechanneling flows come down
to the bottom plate even at a lower angu-

1. rotating cylinder

2. variable speed motor

3. paraffine mist generator

4. flowmeter

5. check valve

6. heating coil

8. Schematic Diagram of Experimental App-
aratus

117
fzed flow rite g pm. HIR
——{w) 3 gimin 1 300 6
' —----(A) 6 05 300 6
| ——{®) 3 05 300 6

“EF
A
AN /
\ \\‘ I,
sér \:\ . T ///
v\ Ay ‘ ) /;
\ oy
N *oom ,// y
“2r \ ST
\\ ® y
cm/sec — o

Fig. 9. Axial Velocity in the Detached Shear La-
ver (Lines represent the computational

values and @, A, M are from the exper-
iments.)

lar speed (2,000 r.p.m.) Fig. ¢ shows the
results when the air feed rate is increased
to 12g/min in comparison with the condit-
ions given in Fig. 2 (3g/min). Fig. 7 sho-
ws that the streamlines are crowded toward
the wall than at other locations in the cy-
linder when all of the gas is discharged
through the bottom slit (6 = 1.0). In this
case, there are two main routes of flow.
One route is the detached boundary layer
and the other is the Stewartson layer on
the side wall. Axial velocities in the detac-
hed shear layer are shown in Fig. 9. They
take the shape of plateau in the middle
section of the cylinder.

Values of the axial velocity from our
experiment are compared with those from
numerical simulation in Fig. 9.

In this figure, solid lines are values from
numerical simulation and dots are values
from experiment.

As previously explained, these experime-
ntal values are the average value of the:
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:axial velocity in the axial interval of 10cm
-centering the indicated point.

Common to all these cases, the absolute
value of axial velocity obtained from expe-
Timent is somewhat larger than that from
simulation. All data show about lcm/sec
higher values than predicted. It appears to
be due to a systematic error in the measu-
rement. The main cause of this deviation
is attributed to the difficulties associated
with the measurements of the velocity in a
rotating frame and the use of relatively
«crude technique for it. We believe, however,
that the experiment sufficiently demonstr-
.ates the general pattern predicted by the
numerical analysis. The density stratifica-
tion of air estimated by Equation (5) is al-
most negligible in this numerical experime-
nt. Namely, When we assume the rigid body
rotation of air in the cylinder, the air at
the wall is only 0.29% heavier than the one
in the center for 2,000 r.p.m. and 5.2%
for 10,000 r.p.m. in the geometries used for
this investigation.

6. Conclusion

Source-sink flow in a rotating cylinder
has been simulated numerically and axial
velocity measured experimentally to demo-
nstrate the result of the simulation. Under
the assumption that the density distribution
is the same as that in the rigid body rotation,
stream function—vorticity formulation has
been attempted. The resulting equations
have been discretized and solved by SOR
.and SIP, Experimentally determined axial
ve!~ ities have been compared with those of
simulation, which tended to have larger
values than the simulation in all cases.

Major results are summarized as follows.
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(1) SIP is more efficient than SOR for the
present system.

(2) Numerical error due to artificial visco-
sity is eliminated_by using Jacob’s cor
rected form of SIP.

(8) In SIP, the relaxation parameter must
be introduced in addition to Stone's ite-
ration parameter to ensure stability.

(4) As the angular velocity increases, the
rechanneling flow approaches nearer to
the side wall and to the bottom plate.

(5) Axial velocity profile takes the shape
of plateau in the middle part of the
cylinder.

Nomenclature

Roman letters

A matrix formed by finite difference dis-
cretization
D diagonal matrix decomposed from mat-
rix 4
L lower triangular matrix formed from
matrix 4
H height of a cylinder, (cm)
P pressure
R radius of a cylinder, (cm)
r variable in the radial direction of the
cylindrical coordinate, (cm)
@ feed flow rate, (g/min)
R; gas constant, 8.3 X 107 (g cm? sec™? g-
mole ! k1)
t time
u# radial velocity, (cm/min)
U upper triangular matrix formed from
matrix 4
v azimuthal velocity, (¢cm/min)
w axial velocity, (cm/min)’
z variable in the axial direction of the
cylindrical coordinate, (cm/min)
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Greek letters

a; Stone’s iteration parameter
€ relative error tolerance

{ vorticity

¢ cut ratio

A second viscosity coefficient

L viscosity

v kinematic viscosity, (cm?/sec)
¢ stream function,

o density, (g/cm?®)

Q angular velocity, (rad/sec) or r.p.m.
I rv

Subscript

~ vector
~~ matrix

Supercript

— the state of rigid body rotation
* dimensionless variable
° quantities with respect to the fixed fra-

me of reference

Operators

4 difference operator
7 gradient vector
;7% Laplacian operator

—DD? substantial derivative
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Appendix

The steady state form of governing equa-
tions in the finite difference form are form-
ulated as follows.

(i) Azimuthal velocity equation

iy (Az Ii; *k‘i_[:i-l»i + A, fnl,jhi— I; )
+ ﬂh‘j<A4"—‘—Fﬁ ;jfitj'—l%-/ls—rf'idk—j_ i )

+ 2riui; = T}I}T (kg i1y — ke Tij +

kLT vi + kgi"Tiin — ke T
+ kLM — 71_— (hri'Licrys + hei’ T
— k' lis,)])

(ii) Vorticity transport equation

P - o v

Gij = Gi-1hj Givlyi — Gij

AU ik 3 L + As__*AAA
hi

uij( 2 hi 1
11—

+ w;J<A4 Gij ; Sbiot A, gi,jukf Ciyj )

i-1 J

— % Difkai Tiior + kei' Tig— ki L i1y

- %(km'l’i,m + kei' Ii; — ke’ T'iy521)
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—_ % u:i;0i; — Grul; = —

Cri(hei'Casyes + hei Gis — hod Gionys) +
+ Gri2(kri'ti ;1 + kei' i — ki, q)
+ VGr?(kri'ths, 5.1 + kei'tti; — ki stie;_))]

Crri"Cirys — ke Tis + BriCiov,j)

1
+ R eli

G
.R efdi

- (Bri"Cirie1 — keiCii + Rril!i;o1)

+ %(hRi'Cia,hi + ke Gis — hui'liv,)

‘—1—&7]
ri?

«iii) Stream function equation
hail’$iei — hed’dis + hriiov,; + Eri'ivian

— kei"¢i; + kri’di ;g — (—37 + Gri)

(ri' Givi + hei’ Gis — i di_n,3) = Curies

in which
A =1
A, =0
A =1
Ai=0
.and,

As=0
As=1
As=0
As =1

for
for
for
for

ceteb3E 193 23 1081 43

;220
%#:;<0
wi; =0

wi; <

R

hri’ = m%;_hT hei = _h;z.,;*,_l%l—
hri’ = mﬁm,— hei! = ]z.-kzs_h
hﬂ:vzxz%?:T

R = m ki’ = %1%—1
ki = m@%

b = AR R =
k" = 2

ERCENTD)

where %: and &, denote grid spacing in the
r-direction and z-direction respectively., If
centered difference scheme is used, all of
the convective terms are changed in the

following way.

ug; = U (hRi'[’i+1:j+hCi'[7i;—hLi'Pi-},j)

etc,



