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OPTIMAL DESIGN OF SEQUENCE OF
CONTINUOUS—FLOW STIRRED-TANK
REACTOR WITH CROSS FEEDS

Shik Namkoong, * Young Soo Kwon*

The optimal design for carring out arbitrary reactions in a sequence of continuous-flow stirred-tank

reactors with cross feeds is determined by using the discrete maximum principle.

Concise relations are developed by matrix operation which enable the reactor volume,

temperature

and cross-feed flow rate at each stage to be chosen such that the total profit is maximized.

A numerical example is solved by means of the iterative solution method by using Green’s Tensor.

I. Introduction

Consider, for example, the following two reactions

occurring simultaneously in a process.
A+B—-P ,with Rp=£C4Cy
A+A-X ,with Ry=k,C%y (6]

P is the desired product and X a waste product,
while A is an expensive reactant which cannot be
easily removed from the product stream. It is there-
fore required to obtain a high relative degree of
conversion of A together with a relatively high pro-
duction, 7.e. high yield of P.

The rate equation indicates that the latter may be
achieved by keeping the concentration of A in the
reactor system relatively low.

The problem of yield optimization about such a
reaction system was illustrated by Denbigh with
regard to the production cyclonite from hexamine
and nitric acid in the tank reactors
as constant temperature by using

the differential selectivity.

reactant A is properly applied as an additional degree
of freedom, and studied strategy of multiple injection
of component A for obtaining a high yield of P.

One of these type of reactors is a sequence of
continuous-flow stirred-tank reactor with cross-feeds,
illustrated in Fig. 1. There are many practical parallel
reactions which need some reactants to be injected
by means of cross-feeds to maximize the yield of the
desired product.

To maximize the total profit, reaction

however,
capacity must be considered together with the yield
optimization, and the cross-feed flow rate, reactor
volume and temperature at each stage should be
optimized.

In this paper, it is discussed by using the discrete
maximum principle to solve this problem with arbitrary

complex reaction systems.

Similar discussions was made by cross-feeds
Trambouze and Piret®» and by d s, S: S
Oden®,

main feed / . / /
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Van de Vusse and Voetter Foe QZ F, J F, Fuy §Z
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Fig. 1. A sequence of continuous-flow stirred-tank
reactors with cross-feeds

(25)



II. Developing Relations

We will denote by C; and d; the concentration of

the 7 th substance in the reactor and in the cross-
Let T, V and R(T,C) be the

reactor temperature, volume and molar rate of prod-

feed, respectively.

uction of the i-th substance per unit volume of reac-
and let F and S be the

stream and of cross feeds, respectively

tor, flow rates of main
If suffix n denotes the values at the n-th stage in
Fig. 1, a material balance for the i-th substance and
amount of flow rate gives the following equations,
supposing densities invariable during the reactions,

Fncm x'_Frthrhh i_Sndi”_'VnRru i(Tna Cn) =0

f=1, 2, coerreene s (2
Fo—Fpy—8,=0 &)
where C,, ;, F, are the state variable, §,, T, and

V, the decision variable and d; predetermined values,

and s is the number of variables representing conce-

ntration, C,, . This system of eq. (2), (8) should
satisfy the initial condition
Co: i=Cu*, is FuzFo* (4)

We want to maximize a total profit function of
state variables in the last stage,

P(Cy, Fy)

Now, we are to apply the
principle to this system. Observing eq. (2) and (8),

&)

discrete maximum

however, indicates that the system is somewhat more
complicated in evaluating Katz’s Hamiltonian function®
of it,
explicit relation(,/")

for the transformation equation is not an

DG, i=Ch, i(Cony, Fypy, Tiy Vi, S0 1=1,2, 0eee §
Fn?Fn(Cn-}s Fn—l: Tns Vm Sn) B 6

,but an implicit one

F0 i€y oy Foy Foyy Toy Vi S=0
i=1,2, -s+1 )

For the most cases, it is impossible to transform the
former relation into the latter, unless all R,,; in eq.
(2) are linear function of the concentrations C,, L e.
the first order reactions.

Difficulty is easily overcome by noting that we

need only partial derivatives of H, for all calculations.

Thus, taking partial derivatives of eq. (7) with
respect to some variable g, (say C,_;,;, F.1, S,

T, or V,) we obtain,

culations.

by the chain rule of cal-

afmi

acm k

g
0Cn 2
aqy

afm i
T GF,
k=1
st 1 ®

i=1,2,--

Ui
n =
and 3

n n

5C,, i oF

. which will be solved for to obtain

o . . .
oq %~ We then obtain not only Green’s Vecto:®’D’®
n

. aH, oH, .
from iCo and SF but optimal values of

S T, and V), by setting gg" ?;1{"

0H,
o6V,

and

equal to zero.

Substituting eq. (2) and (3) for f,, ; into eq. (8)

and representing the result with matrix notation gives

/vy 2R vy R vy Ry s G s O
| E=Vaic,., Va3 Voo, Sl e |
i |
* ;R o R ST R o _ofns
| Ve, B, s S| o | o
! |
i ................................................................................................ cerbeciearie ==l ddeeeeiienis eeceen (9)
| - ~ Pl ~p
! r URm s UR,,, s v BR,,, i l( s ()f,,, s
I o Y23C0 FamVegCs o 94 dan
| 0 T, 0 1 ‘ ! OF, U fmsn \
\ ) \ 34, S i
The matrix convention by which partial derivative convention, it yields
of a vector X with respect to another vector ¥ means F, I —V,8,C, . 8C,
. ‘ aq,, 7 afn
matrix - l=—"3g, ,»10)
P i
aX; . X 8X; . el
= = 7 1 /0~ }
[ 3Y; ] , that is, 3Y [ 3Y; , will be used 0 ; gy
, where I is identity matrix and
threughout.
oR )
Partitioned equation (9) and simplified by the above Rp= aC" (11
n

(26)
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o 2 _
By equation (2) and (3), Tq'*'* vields C,_,,
n

Foo, S, T, and V,, separately,

ac?:',', ,- :[F"_S “]

,where e; is the /-th unit vector.
(G ‘
o “[ 1 13

—35=(1) )

12

aRn\
- Ve (13)
o s
if (R, ‘
=17 ) | as)

Substitating  eq. (12) into eq. (10), solving and

swinming up it from 7=1 to s gives

o Fyy TR VR, "\
T _ an
»aF,, —0 |
Coy /

By similar method, substituting eq. (13), (14), (15,
and (16) into eq. (10), respectively, we obtain fol-

lowing equations.

o F =V ,ReT " [Can= €] !
‘n‘l ; (IS)
oF |
Fus ’
iCo - " )
g =lFRI- VR, [d-C,] i
o ; (19)
e _
i, 1 ’
DC" '3 N b4 9-1 _‘A’E”_.
T VAL L= ViRT 5 1
Qo
[
/!
3

Y (31)

We will denote Green’s vector by

[ ::rn ] (22)
i 22
¥, in which e, corresponds to €, and ¢, corres-
ponds to F,. Then, the adjoint system (9), (10), (11),

(3) (8) can be represented, by matrix notation, as

23)

a3, Hs5HE H1E, 19674 3H

Substituting eq. (17) and (12) into eq. (23) and

solving it gives

("n-lzb‘n»![‘pnl; 1771‘0\4'1]77‘"% (24)

{:I)HAI ::[Crhle:z]T:FnI'A Van:_T Wy - f’)ﬂ (25)

or, by eq. (24,

. 1 - ,

Cn-17 b 'T[Cn—l *CuJT"’m} ey ('ZG)
n—

To maximize the profit function P(Cy, Fy), the

boundary conditions® for @, and ¢, are

oP
g s
CNTEGC ‘
. ; (€5
2 N 01),
“N ‘V’ZF,\" /
From the definition of ITamiltonian function
H FC T e
T 28
" J\ I‘n sooN Y S ( b)
,its partial derivatives with respect to g, say S,
T, or V,, becomes
ac,
S
- (- O
o, | e (29
JQH i Valf‘n_ } i‘ Oy |
\ ‘7‘1':1 A )]

By substituting eq. (19), (20) an:l (21), separately,
into eq. (29) and setting each derivative of H, equal
to zero, the following set of equations representing the

optimal condition are obtained.

. of,
I‘rom a5 =0,
[d - c;z]r[ljnl_ "’van] T Gyt '.}rl =0 (JO)
1
or, -7,:,___1_ [dﬂclz]’r"'n»l +,=0 (3])

o
IFrom T, =:(),

-\R T
_Ua’n'_ <')”_1=0 («32)
n

-~
“

From DV,,_ ={),

RnT‘”n—l::O (‘5;)
If able to solving the above eq. (31), (32), and
(33) for S,

obtain the optimal condition, 1

T, and V, simultaneously, we can

jut, there rewmains still
a problem that, no one of equation (31), (32) and
(33) containing decision variable §,, they can not be
solved. Disappearance of S, results from that it affects
the systemy only by additional form as eq. (2) and
(3) shows.

Difliculty is overcome by taking F, as decisien
variable in stead of S,. Thus, after solving them for

F,, 1, and V,, we obtain S, by eq. (3).

(27)



Eliminating ¢, from eq. (31) will make the relations
much more simplified and amount of calculation
reduced.

Consider two successive stages, asy the z th and the
n—1 th. If it is assumed that eq. (31) for the n th
stage has already been satisfied, by substituting eq.
(31) into eq. (26), it is reduced to

frr= o [Cni—d]" wrm en

Substituting eq. (34) into eq. (30) for the n—1 th
stage and replacing suffix n—1 with 2 gives
[d—C, T {F,[Fl—V,Ry} T —Tlw,=0
n=1,2,=-N—1 (35)
, which can be used, no longer, for the last stage.

For the last stage, by eq. (27), eq. (31) yields

il - CyTTon 0 36)

Now, ¢, has been entirely eliminated from the
relations, neccessary for calculation. Solving eq. (35)
or (36) together with eq. (32) and (33) gives the

optimal values of Fy, T, and V.

III. Numerical Example

The following reaction system is employed, showing

how to use the relations

k Ra=—k,Ca—kC?
AZLB , with N A
24 *2 C Rg=hCa €

This reaction is carried out isothermally in a sequ-
ence of three continuous-flow stirred-tank reactors of
equal volume. C is regarded as a waste product and
A as desired product. We wish maximize the reaction
capacity as well as the amount of B produced for a
given usage of A.

This reaction is one of the parallel reactions which
need reactant A to be injected into each reactor by
means of cross-feeds to maximize- the yield of B,

because the reaction A-—B is of the first order and

the reaction 24—C of the second order. The main( ")

(M\)feed into the first stage is an inert liquid stream, not

containing the reactant A, and keeping concentration
of it in reactors to be dilute, so as to restrain the
reaction 24—C. But, cross-feed contains the reactant
A with concentration dj.

If suffix A and B denote the values of substance A
and B, the state variables at the n th stage are Cy, ,,
Cpg, » and F, the decision variableis S,.

The problem with unconstrained output may then
be stated as follows: Given d4 and F,, maximize the
total profit function

PBcmB, 3—PA(F3'“F*0) dA (38)

by optimal choice of cross-feed flow rate at each
stage, S;, Si S, subject to

0<S, 59

pa and ppg are the unit prices of A and B per
Kg-mole. Since d4 and F, are given and p4 and pp
constants, the maximum of eq. (38) is obtained when

objective function

P(C,, Fa):FscB, s—AF, (40)

N

is maximized. A is a constant as following

b
A=po-da “n

The material balance at the z th stage gives the
following equations,

F,.CA, n"Fn—lcm ,,_r*'S,,dA— Vn("'leAv n

—kC?p, ) =0
Fo.Cpy n—F-iChy n-r— Vil Cay =0 (42)
F,—F,.,—S8,=0 ,n=123
Cy, =0, Cg, =0, F,=F*

These are implicit functions of the form of eq. (7)
or eq. (2) and (3).
This reaction system is characterized by matrix
an[ —k—2kCyn 0
k, 0

, where %, and %, are rate constants indicated eq(37),

3

Substituting eq. (43) into eq. (24) gives the adjoint

( D = S
| Wana Fot Voo +2Vak:Coa,
\ W n .

, which can be simplified as following relation,
H/Bv n-1___ Fn+ "nkl+2‘/’nk2ACA: n

Wit F,,(—%’—"*) LV ok 45

(23)

system,
Fn—l Vnkl ,
(FrF Vb +2V,kCa DI, Wa,
, . (CEY]
lﬂl WB; n

n

and the boundary condition of Green’s vector is
given, by eq. (27) and (40),
Wa, 5=0, Wg,,=F; (46)
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By substituting eq. (43) into eq. (35), we obtain
optimal condition for the first stage and the second,

~ ,.,MkL _}YBsn =
Can="op, ( W, L ) n=1,2 D

and for the last stage, by substituting eq. (43)

and (10) into eq. (36),
Fo= (Vo (da= D= (Vaki+21V,kDCs ) (D)

For a given set of numerical values of %, %, V,,
d4, Fo* and 2, solving eq. (42), (43), (46), (47) and
F, and F),

cptimal values of S,, S, and S;. But, this is much

(48) simultaneously for F), gives us

complicated problem and can not be solved by straight-
iterative methods®> D> 1D
The one

chosen here is the iterative solution method by using

run method. Various

were employed to solve such a problem.

Green’s Tensor®> s #> which is used to improve
the assumed last stage state variables for the next-
iteration.

Green’s Tensor of this problem is given by multipl-
ving the transformation matrix of eq. (44) for n=3,
by the matrix for =2 and by the matrix for n=1.

In general cases, by using Green’s Tensor, an

improved values of Cy is given by

Cy=Cn+7G-[Co*—C,] (49)

, where Green’s Tensor is

G=FFy - Fy [FI-VR]T [FI—VR,]Teeeree
CFxI—VyRyTT (50)

, Cn is the previously assumed values of Cy
, C, is the calculated C, started with Cy

In this
example eq. (49) yields, to give an improved value

of Cas

and r is a parameter controlling convergence.

Ca, 3=Ca, +7r(C*4,,—Ca,,) -

3 Fn—l =
N For Vb £ 2VECH GD

Because of the irreversibility of this reaction system,
we may assume only Ca,; not Cp, ;. Thus, value of
Ca, , is first assumed. The corresponding value of F;
is then calculated by eq. (48).

From this value, F,, together with the assumed
value, Ca,;, Wpg,o,/Wa,, is calculated using eq. (43).
The corresponding value of Ca, , is then computed us-
ing eq. (47) and then F, using eq. (42), by similar
method, Wg,,/Wa,,, Ca,; and F, are computed. Then,

C'a,, is calculated by using the initial condition F,=

atetne), M5 H18E, 19674 33

Fy* and compared with the initial condition-value,
C*4,,=0. When the calculated Ca,, differs from the
initial condition-value, using Green’s Tensor gives an
improved value of C4,; for the next iteration. This
procedure is repeated until the calculated value of
Ca,, agrees with the initial condition-value, C*4,,=0,
within allowable error limit.

It should be pointe.d out that as S,’s are nonnegative

values, eq.(39), F,’s must satisfy the following
restriction
Fo*gFlngng G2)

Therefore, the optimal value of I, is given by
I' Foo i F2>2F,
Fy=( F,, if FF<F,<F, (33)
Sk, P> F
which gives the eptimal S, by eq. (3).
The following numerical values were taken in the

computation;

V.k =10 M*min™!

V,.k.=10 MPmin~! Kg-mole™
F* =1 M3*min™?

da = 3 M-*Kg-mole

A o= 3 M-*Kg-mole

During computation, the value of r was chosen to
be 1 for iteration 1 to 10, to be 2 for iteration 11 and
12, and to be 4 for iteration 13 to 18, to control
convergence, After twenty iterations, optimal condition
was obtained as following;

§;=0.9230 S,=0.8572 S3==0. 2804

Table 1. Calculation assuming C,,;=0.1

No. of
iteration Cy, 4 S Sy S Caso r
1 0. 1000 1. 2900 1. 0443 0. 0000 —5.5000 1
2 0. 1109 2.1101 0. 8835 0. 0854 —5.4292 1
3 0. 1214 1. 9251 0. 8772 0. 1318 —4.5982 1
4 0. 1300 1. 5888 0. 8720 . 1725 —3.0492 1
5 0. 1310 1. 4798 0. 8695 0. 1907 —2.5510 1
6 0. 1389 1.3723 0. 8661 0. 2083 —2.0610 1
7 0. 1410 1. 2900 0. 8633 0.2215 -1.6820 1
8 0.T1431 1. 2330 0. 8640 0.2307 —-1.4210 1
9 0. 1450 1.1814 0. 8629 0. 2390 —1.1850 1
10 0. 1464 1. 1495 0. 8620 0. 2452 —-1.0432 1
11 0. 1490 1. 0731 0. 8604 Q. 2565 —0.6892 2
12 0. 1505 1. 0392 0. 8595 0. 2562 —0.5238 2
13 0.1530 0. 9700 0. R52 0. 2742 —0.2173 4
14 0. 1540 0.9378 0. 8574 0.2781 —0.0699 4
15 0.1542 0.9324 0. 8569 0.2790 —0.0450 4
16 0. 1544 0.9270 0.8571 0.2798 —0.0202 4
17 0. 1545 0.9243 0. 8571 0. 2802 —0.0078 4
18 0.15454  0.92324  0.85708 (.28041 —0.00283 4
19 0.15455  0.92297  0.83708  0.28046 0.00160 —
20 0.15156  0.92237  0.85746  0.28044 0. 00309
(29)



Ca, s=0.15455  Cg, ;=2.51495

The convergence and numerical solution were shown
in Table 1 and Fig. 2. If r had been chosen to be
4 through all iterations, the optimal condition would

have been obtained more swiftly.

3

8,

ez ] ] 8 1 1z " 5 3 »
Number of Hterations

Fig.2. Interaction Tranjactories

Conclusions

The discrete maximum principle may be used to
determine the optimal design for carrying out any
arbitrary reaction in a sequence of continuous-flow
stirred-tank reactors with cross-feeds.

The method allows the design variables (reaction
temperature, reactor volume and cross-feed flow rate
of each stage) to be chosen such that the maximum
profit is obtained for specified feed flow rate and feed
concentration. This method may be applied to optimal
design of the sequence of reactors without cross feeds,
only putting S,=0 in rvelations, and to the problem
of tubular reactors, looking upon the continuous case
as the limit of the discrete when the number of stages
approaches infinity, whether with cross-feads or not.

This paper illustrates how the relations are concisely
obtained by matrix operation, and how Green’s Tensor
technique may be employed to obtain numerical
solution of the difference equations which result when

the discrete maximwn principle is employed.

Nomenclature

C, : concentrations in stage » (state vector):component,
("
C,*: feed concentrations {constant vector): component,
A
[N
Cy @ assumed values of Cy, component C*y, ;

Cy : calculated values of € assuming Cy=Cyicomponent,

Co,

d : cross-feed concentrations (constant vector); compon-

ent, d;

(30)

e; : the / th unit vector
F, : main flow rate from stage #(state variable)
Fg*: main feed flow rate (constant)
f, : implicit transformation function
G : Green's Tensor, defined in eq. (50)
H, : Hamiltonian function for stage =
I @ identity matrix
k; : reaction rate constant of the i th substance
P : total profit function (objective function)
pi : unit price per mole of the 7 th substance
. : some varlable
R,: reaction rate (vector function of C',, T,);component,
R, ;
R. : characteristic matrix for stage », defined in eq. (11)
7 parameter in eq. (49)
S, : cross-feed flow rate into stage 7 (decision variable)
s : number of state variables, C,,;
T, : temperature of stage n (decision variable)
V. © reactor volume of stage 2 (decision variable)
wy: Green’s vector to C,. component, W, ;
X : some vector
Y : some vector
A @ constant in eq. (40)
¢, : one component Green’s vector to £,
suffix
A : substance A
B : substance B
¢ the / th substance

~.

it ostage u

o : feed
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