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Abstract − The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between

two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the

kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the pri-

mary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. Re ≥ Re
G
 sec-

ondary motion sets in, starting at a certain time. For R
e
≥ Re

G
 the dimensionless critical time to mark the onset of vortex

instabilities, τ
c
, is here presented as a function of the Reynolds number Re and the radius ratio η. For the wide gap case

of small η, the transient instability is possible in the range of Re
G
≤ Re ≤ Re

S
. It is found that the predicted τ

c
-value is

much smaller than experimental detection time of first observable secondary motion. It seems evident that small distur-

bances initiated at τ
c
 require some growth period until they are detected experimentally. 
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1. Introduction

In flows along concavely curved walls, the destabilizing action of

centrifugal forces can produce an instability motion in form of sta-

tionary vortices. This instability is analogous to that of Taylor-Gör-

tler vortices. The impulsive spin-down of initial rigid-body flow

between two coaxial cylinders evolves into a secondary flow pattern

which consists of a series of Taylor-like vortices. In this transient

boundary-layer system the critical time tc to mark the onset of sec-

ondary motion becomes an important question. In this connection

the instability problem of decelerating circular flow has attracted

interests.

Tillman[1] first investigated experimentally the onset of instabil-

ity in the flow system of spin-down from solid-body rotation of

coaxial cylinders filled with liquid suddenly brought to rest. The ana-

lytical difficulties involved in the application of conventional stabil-

ity theory to this kind of transient flow has been considered[2] and

the related instability analysis has been conducted by using the

strong and the marginal stability criteria[3-5]. The strong stability

criterion pursued the stability bounds in terms of time interval where

the kinetic energy of disturbances starts to increase. The marginal

stability criterion which relaxes the strong one shifts the stability

bounds to a more stable direction. However it has been faced with

mathematical difficulties. These models consider some finite, initial

disturbances and trace the temporal growth of their kinetic energy. 

In the present study, we will analyze the onset of Taylor-Görtler

vortices in impulsively decelerating transient circular flow between

coaxial two cylinders. This problem was already analyzed using the

aforementioned models. We will relax the strong stability criterion

by introducing the relative one, which has been used in the various

problems[6-10]. The new stability equations will be derived for the

whole time region and the resulting predictions will be compared

with available experimental and theoretical results. Also, the effects

of stability criteria on the critical conditions will be examined. Since

the present system is a rather simple one, the present results will be

helpful for comparison among available models. 

2. Theoretical Analysis

2-1. Governing Equations

The system considered here is a Newtonian fluid confined between

the cylinders of radii Ri and Ro. Let the axis of the cylinders be along

the vertical z'-axis under the cylindrical coordinates (r', θ, z') and the

corresponding velocities be U, V and W. The entire fluid/cylinder

system is assumed to be in a state of rigid-body rotation with angular

velocity Ω. Starting from time t = 0, the outer cylinder is impul-

sively stopped. The ensuing unsteady flow is known as spin-decay

one. The schematic diagram of the present system is shown in Fig. 1.

Such transient circular flow is known to be subjected to instability in

form of Taylor-Görtler vortices and the governing equations of the

flow field are expressed as 

, (1)

, (2)

where U, P, ν and ρ represent the velocity vector, the dynamic

pressure, the kinematic viscosity and the density, respectively.

∇ U⋅ 0=

∂
∂t
---- U ∇⋅+
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The primary-velocity field is represented for the case of constant

physical properties:

, (3)

with the following initial and boundary conditions,

,  and . (4)

where  and . Neitzel [4] obtained the fol-

lowing analytical, exact solution as 

, (5a)

where

. (5b)

In the above J and Y are Bessel functions of the first and the sec-

ond kind, respectively, r = (r' - Ri)/d, η = Ri/Ro and τ = νt/d2, here

d = Ro - Ri. (λi, ci) are the roots of the equations 

(5c)

and

(5b)

where

(5d)

For the limiting case of η→1, i.e. very narrow gap, the curvature

effects can be negligible and the above velocity profile can be

represented by using the complementary error function as 

 for η→1. (6)

For small time, the velocity profiles of Eqs. (5) and (6) can be

approximated as

for τ→0. (7)

The instantaneous base flow profile is shown in Fig. 2. As shown

in this figure for τ ≤ 10-3, the deep-pool solution (7) approximates

the exact solution (5) quite well. To reduce computation time, Eq. (7)

is used in stability analysis for the region of τ ≤ 10-3. From this profile

the centrifugal instability near the outer cylinder wall can be expected

based on the Rayleigh criterion for the inviscid flow[5]. However,

sophisticated stability analysis is required to obtain stability limit

since present system is time-dependent and viscous. 

2-2. Energy Method

Following the work of Serrin[11] and Neitzel[4], the energy iden-

tity is written as

, (8)

where , , φ=(1/r−∂/∂r)ν0 and .

Here u(=U/Vi) is the dimensionless velocity vector, Re(=Vid/ν) is

the Reynolds number and  represents the average over the system.

The conventional energy method determines the critical times to

mark the onset of secondary motion at which E is the minimum, i.e.

 at τ = τs. (9)

This condition is known as the strong stability criterion[2]. Neitzel[4]

relaxed this strong stability criterion by considering the growth of the

disturbance kinetic energy. For a given Re, the marginal stability

τm is determined implicitly from the condition of 

, (10)
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Fig. 1. Top view of the system considered here. Fig. 2. Primary-velocity profiles for η = 0.1.
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where the growth rate is defined as

. (11)

The time τm means the fastest time for the disturbance kinetic energy

to recover its initial value, i.e. 

 at . (12)

As discussed by Gummerman and Homsy[12] and Neitzel[4] the

growth rate σ(τ) cannot be obtained explicitly and therefore, the cal-

culation of τm suffers from serious computational burden. Owing

to this kind of difficulties Gummerman and Homsy[12] and Neit-

zel[4] obtained the stability limit for the limited domain. 

Here, we relax the above stability limits by introducing the rela-

tive stability concept: the temporal growth rate of the kinetic energy

of the disturbance velocity should exceed that of the base velocity at

the onset condition of secondary motion. This stability criterion was

proposed by Chen et al.[2], and applied into the various problems by

Kim et al.[6-10]. In the relative stability model the critical time τr is

determined, based on a most dangerous mode of instability:

 at , (13)

where , dτ and E0 is the basic

centrifugal potential energy, i.e. E0= . The

above criterion means that secondary motion sets in at τr when the

growth rates of the energy of disturbance and base quantity are the

same. In the strong and marginal stability criterion, only the decay

or growth of disturbance quantity is taken into account. Based on

Eqs. (8) and (13), the relaxed energy identity for the relative stability

model becomes

. (14)

Now, the relative stability limit is given by

. (15)

Under the normal mode analysis the typical axisymmetric distur-

bances, which have been observed experimentally[1,13,14] and

known as the energetically most unstable mode[5], are well rep-

resented by

, (16a)

w1 = w' sin az, (16b)

where a is the dimensionless wavenumber representing the peri-

odicity in the z'-direction, z = z'/d and the primed quantities rep-

resenting disturbance amplitudes are a function of r and τ. Here

we assume the infinitely long cylinder and neglect the endwalls

effects. Then this maximum problem can be solved by the varia-

tional technique[11]. By eliminating the Lagrage multiplier term

with the aid of continuity equation, the Euler-Lagrange equations

for the relative stability model are obtained:

, (17)

. (18)

The proper boundary conditions are

 at r = 0 and 1. (19)

Based on the velocity profile of Eq. (5), the growth rate of basic

kinetic energy is given as

, (20)

where f(η) = {1/4 − 3η2/4−η4lnη}/{(1+η)(1−η)3}, and bi and ci

are bi(λi, η) = , and =

.

For the limiting case of η→1, σ0 is obtained from Eq. (6) as 

. (21)

For the case of τ→∞, the above stability equations with σ0 = 0

degenerate into the strong stability formulation. And, for the limit-

ing case of τ→0, based on the velocity profile of Eq. (7), it is found

that σ0 = (1/E0)(dE0/dτ) = 1/2τ and therefore, the terms containing

σ0/2 should be changed as 1/4τ.

2-3. Solution Method

The stability equations (17)-(19) are solved by employing the

shooting method[15]. In order to integrate these stability equations

the proper values of ∂2u'/∂r2, ∂3u'/∂r3 and ∂ν'/∂r at r = 1 are assumed

for a given τ and a. Since the stability equations and their boundary

conditions are all homogeneous, the value of ∂3u'/∂r3 at r = 1 can be

assigned arbitrarily and the value of the parameter Re is assumed.

This procedure can be understood easily by taking into account the

characteristics of eigenvalue problems. After all the values at r = 1

are provided, this eigenvalue problem can be proceeded numeri-

cally. Integration is performed from r = 1 to r = 0 with the fourth order

Runge-Kutta-Gill method. If the guessed values of Re, ∂3u'/∂r3 and

∂v'/∂r at r = 1 are correct, u', ∂u'/∂r and ν' will vanish at r = 0. The

minimum Re-value is found in the plot of Re vs. a.

3. Results and Discussion

The stability conditions obtained from the present relative and the
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conventional strong stability model are illustrated in Fig. 3. It is known

that the approximation (8) produces the same values as those from

Eq. (5) as time decreases. As discussed below Eq. (19), the present

relative stability model yields the strong stability limit as τ→∞. For

the limiting case of τ→∞, the stability equations (15)-(17) are

reduced to

, (22)

, (23)

under the very narrow gap condition, i.e. η→1, where φ→1 and

σ0→0 from Eqs. (5) and (19), respectively. The proper boundary

conditions are

 at r = 0 and 1. (24)

According to the calculation of Chandrasekhar’s[16], the critical

condition is (ReS/2)
2 = 1,708 and ac = 3.117, i.e. ReS = 82.66 for η→1,

here ReS is the steady state critical Reynolds number. And, for the

another limiting case of small τ, the critical time to mark the onset of

a fastest growing instability decreases with increasing Re. Based on

the base velocity field given in Eq. (7), they approach :

 as τ→0, (25a)

for the relative stability, and 

 as τ→0, (25b)

for the strong stability, as are illustrated in Fig. 3.

For the case of a rather wide gap η ≤ 0.5, there exists the subcriti-

cal region where the global minimum of the critical Reynolds num-

ber, ReG is lower than ReS. In the range of ReG ≤ Re≤ ReS, the

instability is transient and decays out as τ→τf, here τf is the decay

time from which the instability cannot be guaranteed. Therefore, for

the region of Re > ReG the curves in Fig. 3 correspond to the decay

time. Neitzel[4] and Chen and Neitzel[5] analyzed this problem by

employing the marginal stability criterion. As shown in Fig. 4, their

marginal stability results shift the strong stability curve to the more

stable direction. However, they found the stability limits for the lim-

ited range. For the limiting case of η→0, the system is uncondition-

ally stable and all instabilities are transient, i.e. all instabilities should

be disappeared at a certain time. Even though τf has been predicted

for the case of ReG < ReS, it has not been determined experimentally

even for the asymtoptically unconditionally-stable case of η→0. 

For the case of η = 0.5 the above results are compared with the

predictions in Fig. 4. Neitzel’s[4] marginal stability gives slightly

more stable results than the present relative stability ones. Following

the Neitzel’s[4] idea, we have retried to find τm. First, for a given Re

we found σ which satisfys Eq. (11) and constructed the relationship

of σ vs. τ by employing a regression analysis. As shonwn in Fig. 5,

the regression equation σr(τ) represents the calculated results quite

well. Then, the marginal stability time τm is obtained by integrating

the regression equation σr(τ) numerically. For the region of Re ≥ 150,

1

2
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2
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2

dr
2

------- a
2

–
⎩ ⎭
⎨ ⎬
⎧ ⎫

u′ 0= =
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2
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2
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2
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2

–
⎩ ⎭
⎨ ⎬
⎧ ⎫

ν′ 0= =

u′ ∂u′
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2–

=

τs 223.80Re
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=

Fig. 3. Characteristic stability curves in the Re-τ diagram. Fig. 4. Comparison among predictions for η = 0.5. 

Fig. 5. Comparison of calculated growth rate with its regression func-

tion.
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the present τm reconstructs Neitzel’s [4] τm. However, for the region

of Re < 110, we cannot find τm satisfying Eq. (10). The integration

given in Eq. (10) based on the present σr(τ) is always negative for

Re < 110, i.e., ReG,m = 110 for the case of η = 0.5 under the marginal

stability concept. The present ReG,m is slightly higher than Chen and

Neitzel’s[5] global minumum Reynolds number, ReG,m = 102. This

minor difference may be come from the method to calculate the defi-

nite integral given in Eq. (10). To calculate that integral, Neitzel[4]

used 3-points Gausse-Legendre quadrature which gives exact defi-

nite integal value only for a polynomial equation of the 2nd degree.

The present ReG,m is nearly same as the global minumum Reynolds

number based on the relative stability concept ReG,r = 109. 

The above results are compared with the available experimental

data in Fig. 6. By using the suspended particle Tillman[1] visualized

Taylor-Görtler vortex motion for the case of η = 0.625. Later, Kohuth

and Neitzel[13] determined the onset time systematically by a photo-

diode array and visual observations for the experimental set-up of

η = 0.5. Ikeda and Maxworthy[14] visualized the onset of vortex by

adding aluminum flake into water placed between two coaxial cylin-

ders of η = 0.464. As expected, none of the above stability criteria

predict the onset time observed experimentally, as shown in Fig. 6.

This may be caused by several factors. The time for disturbances to

grow to finite amplitude before being observed seems to be a major

one. Furthermore, the transient stability region was not observed in

all the experiments, as mentioned above. 

4. Conclusions

The onset of a fastest growing, axisymmetric instability in tran-

sient spin-down flow has been investigated theoretically. The strong

stability results give the lower bounds on the stability limits, and the

present relaxation of the relative instability shifts the stability limit to

the more stable direction for the whole time, as expected. All the pre-

dicted critical times to mark the onset of vortices, which are shown in

this study, are much smaller than available experimental data. It

seems evident that disturbances require some growth period until

they are detected experimentally. 
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