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Abstract − Natural convection is driven by the compositional buoyancy in solidification of a binary melt. The stabil-

ities of convection in a growing mushy layer were analyzed here in the time-dependent solidification system of a near-

eutectic melt cooled impulsively from below. The linear stability equations were transformed to self-similar forms by

using the depth of the mushy layer as a length scale. In the liquid layer the stability equations are based on the propa-

gation theory and the thermal buoyancy is neglected. The critical Rayleigh number for the mushy layer increases with

decreasing the Stefan number and the Prandtl number. The critical conditions for solidification of aqueous ammonium

chloride solution are discussed and compared with the results of the previous model for the liquid layer.
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1. Introduction

In the solidification system of a binary alloy a mushy layer forms

between the melt and the solid layer. The mushy layer is a two-phase

region of dendritic crystals and the residual liquid. Thermal and

compositional fields develop in the liquid and mushy layers and

compositional convection can be induced by the buoyancy force due

to an unstable density profile. Compositional convection in a mushy

layer causes freckles in the resultant solid and deteriorates the qual-

ity of solid products in the materials processing, such as the crystal

growth [1-5]. Natural convection in the mushy layer during direc-

tional solidification is observed in the experiments of aqueous

ammonium chloride solution [6,7]. In the liquid layer, convection is

unstable first in the solutal boundary layer above the liquid-mushy

interface. When the mushy-layer mode of convection occurs, con-

vective plumes rise into the liquid region from chimneys in the

mushy layer [8]. 

Emms and Fowler [9] employed a quasi-static stability analysis in

the solidification of binary alloys and investigated the onset of con-

vection in a mushy layer using the model for a finger-like convection

in the liquid layer. Choi et al. [10] and Kim and Choi [11] analyzed

the stabilities of thermal convection in a fluid layer and in a porous

layer saturated with liquid using propagation theory. This theory uses

a length scale that is proportional to the thermal penetration depth,

i.e., the square root of time. Propagation theory predicts a larger

onset time for the time-dependent heating fluid layer, compared to

the convectional frozen-time method that assumes the time-depen-

dent basic state to be frozen and considers the time as a parameter in

linear stability analysis. 

We applied propagation theory to the solidification of the mushy

layer in aqueous ammonium chloride solution. The onset of convec-

tion in the mushy layer solidifying impulsively from the bottom

boundary was investigated and the self-similar stability equations

were used for the liquid and mushy layers [12-16]. The critical con-

ditions for compositional convection during time-dependent solidifi-

cation were found numerically. In the mushy layer the simple model

for solidification of a near-eutectic melt was used [9,12,15]. In the

liquid layer the compositional boundary-layer and the thermal buoy-

ancy were neglected [14,16]. The critical conditions for aqueous ammo-

nium chloride solution were discussed, and the critical Rayleigh

numbers were compared with the results from Emms and Fowler’s

[9] model for the liquid layer. 

 

2. Governing Equations

The present study assumes that the initial composition of the solu-

tion is close to the eutectic composition. Consider the liquid and

mushy layers in time-dependent solidification of a near-eutectic melt

cooled from a bottom boundary (Fig. 1). The binary melt is initially

quiescent at a temperature T
∞
 and a composition of the less dense

component C
∞
. At time t = 0 the melt is cooled impulsively from

below, and the mushy layer grows upwards with time. The liquid-

mush interface H(t) is assumed to be planar. The mush-solid inter-

face is at a eutectic temperature T
Ε
 and a eutectic composition C

E

[12-16]. 

The dimensionless governing equations in the mushy layer during

solidification of a near-eutectic melt are given by [9,12,15]

(1)1 S+( )
∂
∂τ
----- u ∇⋅+⎝ ⎠
⎛ ⎞c ∇2

c=
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 (2)

. (3)

The variables are defined as follows:

 (4a~c)

where e
k
 is the unit vector in the z-direction, L is the characteristic

length scale, g is the gravity acceleration, κ is the thermal diffu-

sivity, and μ is the viscosity. And u is the dimensionless velocity

and τ is the dimensionless time. The dimensionless pressure p is

scaled with μκ/Π, where Π is the permeability in the mushy layer,

and Π is assumed to be constant. The dimensionless temperature

and composition are defined as 

, , (5a~c)

The liquidus temperature far in the melt is defined by T
L
(C

∞
) =

T
0
-ΓC

∞
, where T

0
 is the melting point of the solvent and Γ is the

slope of the liquidus curve. The Stefan number is defined by

S = L/C
P
ΓC

∞
, where L is the latent heat of fusion and C

P
 is the

specific heat. The Rayleigh number for the mushy layer is defined

as

 (6)

where ν is the kinematic viscosity. The effective expansion coef-

ficient is defined by β
m

= β + αΓ, where α and β are the thermal

and compositional expansion coefficients, respectively. 

In the liquid layer the governing equations are considered in the

limiting case of zero Lewis number (=D/κ), where D is the solute

diffusivity. The compositional boundary-layer thickness is neglected

and the compositional field is not considered in the liquid layer. And

the thermal buoyancy force in the liquid layer is neglected. The gov-

erning equations in the liquid layer are given by [16]

(7)

 (8)

 (9)

where Pr is the Prandtl number (=ν / κ). 

The thermal-conduction state is assumed to be in the liquid and

mushy layers. The basic-state governing equations are given by 

  for ζ > 1 (10) 

  for ζ < 1 (11)

where ζ (=z/2λ ) is the similarity variable [12,15]. The phase-

change rate λ has the relation of h = 2λ , where h is the depth

of the mushy layer. The boundary conditions are 

 for ζ → ∞ (12)

,  at ζ = 1 (13a,b)

c
0

= 1 at ζ = 0 (14)

The superheat θ
∞
 is defined by 

 (15) 

3. Stability Analysis

When linear stability theory is employed in the time-dependent

heating or cooling fluid layer, the boundary-layer thickness is used as

a length scale in the propagation theory. The time-dependent pertur-

bation equations are transformed to functions of the similarity vari-

able. In the present system the mushy-layer thickness H (=2λ )

was used as a length scale, which is proportional to the square root of

time. The self-similar stability equations for the marginal-stability

state are expressed as [12-16] 

in the mushy layer:

(16)

 (17)

in the liquid layer:

 (18)

(19)

where , , and . The Rayleigh number

R
m

* (=gβ
m
ΔCΠH/μκ) and the wave number a* are based on the

mushy-layer thickness H. The Darcy number Da* is defined as

Π/H2. In the mushy layer the concentration disturbance c* has the

scale of κνΓ / (gβ
m
L3), and the velocity disturbance w

m

* has the

scale of Πκ/L2. In the liquid layer the temperature disturbance θ*

has the scale of κνΓ / (gβ
m
L3), and w* has the scale of H2κ/L3.

The following boundary conditions are applied to the self-similar

u ∇p– Rmcek+=

∇ u⋅ 0=

x y z, ,( ) X Y Z, ,( )
L

---------------------  u
L

κ
---U,  τ κ

L
2

-----t==,=

θ
T TL C∞( )–

TL C∞( ) TE–
-----------------------------= c

C C∞–

CE C∞–
------------------= θ c–=

Rm

gβmΔCΠL

κν
--------------------------=

∂
∂τ
----- u ∇⋅+⎝ ⎠
⎛ ⎞θ ∇2θ=

1

Pr
-----

∂
∂τ
----- u ∇⋅+⎝ ⎠
⎛ ⎞

u ∇p– ∇2
u+=

∇ u⋅ 0=

d
2θ0

dζ2
---------- 2λ2ζ

dθ0

dζ
--------+ 0=

d
2
c0

dζ2
---------- 2λ2ζ 1 S+( )

dc0

dζ
--------+ 0=

τ

τ

θ0 θ∞→

θ0 c0 0= =
∂θ0
∂ζ
--------

∂c0
∂ζ
-------–=

θ∞
T TL C∞( )–

TL C∞( ) TE–
-----------------------------=

κt

D
2

2 S 1+( )λ2ζD a
*2

–+( )c* S 1+( )Rm

*
wm

*
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D
2
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*2
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2
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D
2
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Fig. 1. Schematic diagram of time-dependent solidification of near-

eutectic melt.
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stability equations:

for ζ → ∞

θ* = 0, w* = 0, w* = 0 (20a,b,c)

at ζ = 1

θ* = −c*, θ* = − c* (21a,b)

w* = w*

m
Da*, w* = 0 (21c,d)

, (21e)

at ζ = 0

,  (22a,b)

The no-slip condition is applied to the liquid on the liquid-mush

interface [5]. The continuities of vertical velocity and pressure are

applied at the liquid-mush interface. 

The parameters a* and R
m

* are assumed to be eigenvalues. The

minimum value of R
m

* and its corresponding value of a* are found

numerically. The phase-change rate λ was obtained by solving the

basic-state equations. We used the shooting method to solve the

basic-state equations and the self-similar stability equations. For

numerical integration of the self-similar stability equations we assumed

the appropriate initial values at the liquid-mush interface. We used

the Newton-Raphson iteration method to correct the assumed initial

values. 

4. Results And Discussion

In the present study the time-dependent solidification system was

considered for a near-eutectic ammonium chloride solution. The

dimensionless parameters are the superheat θ
∞
, the Stefan number S,

the Prandtl number Pr, and the Darcy number Da*. The physical

properties of aqueous ammonium chloride solution (NH
4
Cl-H

2
O)

are L = 3.14×102 kJkg-1, C
P

= 3.25 kJkg-1K-1, Γ = 490 K, and c
E

= 0.8

[9]. For 26~28% NH
4
Cl (c

∞
= 0.72~0.74) the parameters are assumed

to be S =0.27, Pr=10, and Da* = 10-5. 

Figure 2 shows the marginal-stability curves for various Prandtl

numbers Pr for S = 0.27 and θ
∞

= 0.6. The minimum value of the

Rayleigh number  represents the condition for the onset of com-

positional convection in the mushy layer. The critical values for

compositional convection were obtained as = 10 and a
c

* = 1.53

for S=0.27 and θ
∞

= 0.6. With decreasing Prandtl number the critical

Rayleigh number  increases and compositional convection in

the mushy layer stabilizes. However, the change of  between

Pr=10 and 0.01 is not much (10%), since the compositional convec-

tion of the mushy-layer mode is not influenced sensitively by con-

vection in the liquid layer. The Prandtl number Pr represents the ratio

of the viscous diffusion rate to the thermal diffusion rate of the melt.

In the present model we can obtain the critical conditions for the low

Prandtl-number system, such as metal alloys. The Prandtl numbers

are orders of 10-2~10-1 in metallic alloys. The solidification system

of metallic alloys is convectively more stable compared to the aque-

ous solution system. 

In Emms and Fowler’s [9] model the following equation is sug-

gested for the liquid layer:

 (23)

where  is the vertical velocity in the mushy layer at the

liquid-mush interface. The upward flow from the mushy layer is

included in the temperature field in the liquid layer based on the

boundary-layer theory for a finger-like convection. This model

considers the salt-finger convection above the liquid-mush inter-

face and assumes that the boundary-layer mode of convection in

the liquid layer little influences the onset of convection in the

mushy layer. From Eq. (23) Hwang and Choi [12,15] derived the

self-similar stability equation in the liquid layer:

 (24)

with the boundary conditions Eq. (20a) for ζ→∞, (21a,b) at z=1,

and (22a,b) at z=0. The permeable velocity condition ( = 0

at z=1) is applied at the liquid-mush interface. The liquid-mush

interface was assumed to be planar and the disturbances at the

interface were not considered. The deformable liquid-mush inter-

face was studied by Hwang and Choi [12].

In Eq. (24) the momentum equation is not used in the liquid layer,

while in the present model (Eqs. (18) and (19)) the convective

motion is considered and the Prandtl number is included in the

momentum equation. The marginal-stability curves from Eq. (24) for

various values of the Stefan number S are shown in Fig. 3. Numerical

results give the critical values of = 9.53 and a
c
* = 1.53 for S = 0.27

and θ
∞

= 0.6 (λ = 0.606). When θ
∞

= 0.6, the critical Rayleigh num-

ber from Eq. (24) is 5 % smaller than that from Eqs. (18) and (19).

The critical Rayleigh number  decreases with increasing S, and

the critical wave number a
c
* slightly increases with increasing S. The

D

D D

D

Dwm

*
Dw

*
3– a

*2
Dw

* 2λ2

Pr
--------– Dw

*
D

2

w
*

–( )–=

c
*

0= wm

* 0=

Rm

*

Rm c,

*

Rm c,

*

Rm c,

*

∂θ
∂τ
------ wm

z h=

∂θ
∂z
------+ ∇2θ=

wm
z h=

D
2

2λ2ζD a
*2

–+( )θ* Rm

*
wm

*

ζ 1=
Dθ0=

Dwm

*

Rm c,

*

Rm c,

*

Fig. 2. Marginal-stability curves for various Prandtl numbers Pr

with S = 0.27 and θ
∞
=0.6.
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Stefan number S is proportional to the ratio of the latent heat to the

specific heat of the melt. When the material with the larger latent

heat solidifies, the system is more unstable to the compositional

convection. With increasing S the phase-change rate λ decreases

(λ = 0.619 for S = 0.1 and λ = 0.590 for S = 0.5) and the basic com-

positional profile becomes more linear. The system is more stable for

a curved compositional profile with a small boundary-layer thick-

ness in the mushy layer than the linear one. 

 In Figs. 4 and 5 the present results from Eqs. (18)~(19) are com-

pared with the model of Eq. (24) from Emms and Fowler [9]. These

figures show the distributions of velocity and composition distur-

bances, which is normalized by its maximum absolute value, at the

critical conditions for St = 0.27 and θ
∞

= 0.6. The velocity distur-

bances in the mushy layer show almost no differences between the

two models though the momentum equation in the liquid is not con-

sidered in the model of Eq. (24). And the maximum point of velocity

disturbances is at the liquid-mush interface. Therefore, the perme-

able velocity condition =0 at the liquid-mush interface is a

good approximation for a mushy-layer model. In a simple model of

the mushy layer a constant-pressure boundary condition (permeable

condition) is considered on the liquid-mush interface [17]. In Fig. 5

the composition disturbances in the mushy layer show no significant

differences between the two models; however, the temperature dis-

turbances in the liquid layer of the present model (Eqs. (18)~(19))

are more confined to the region on the liquid-mush interface than

those of the model of Eq. (24). The gradient of the composition dis-

turbances at the liquid-mush interface is different between the two

models, and this difference influences the critical condition for the

onset of convection. In the horizontal porous layer the critical

Rayleigh number for an insulating boundary is smaller than that for a

conducting boundary [18].

 In Figs. 6 and 7, the present results of the critical conditions are

Dwm

*

Fig. 3. Marginal-stability curves obtained by using Eq. (24) derived

from Emms and Fowler’s [9] model for various values of

Stefan number S and θ
∞
=0.6. 

Fig. 4. Distributions of normalized velocity disturbances for S = 0.27,

Pr=10, and θ
∞
=0.6.

Fig. 5. Distributions of normalized composition disturbances in

mushy layer and temperature disturbances in liquid layer

for S = 0.27, Pr=10, and θ
∞
=0.6.

Fig. 6. Variation of critical Rayleigh number  with superheat θ
∞

for S = 0.25 and Pr=10. Tait and Jaupart [8] obtained 

=25 for 0<θ
∞
<0.2 in the experiment of solidification of aque-

ous ammonium chloride solution.

R
m c,

*

R
m c,

*
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compared with the model of Eq. (24) from Emms and Fowler [9].

They investigated the onset of convection in the mushy layer by

employing a quasi-static analysis with ∂(·)/∂τ = 0, which is a frozen-

time model. They assumed the initial composition to be the eutectic

one, that is, c
∞
≈ 0.8 and in this case S is approximately 0.25 for

aqueous ammonium chloride solution. In Figs. 6 and 7, the critical

values are plotted as a function of the superheat θ
∞
 for S=0.25, Pr=10

and Da* = 10-5. The critical conditions  and a
c

* decrease with

increasing θ
∞
, and  approaches a constant value for a large value

of θ
∞
. The superheat θ

∞
 represents the ratio of the temperature differ-

ence in the liquid layer to the temperature variation across the mushy

layer. When the initial temperature of the melt is large, the superheat

θ
∞
 is large and the basic compositional profile is linear in the mushy

layer. The superheat θ
∞
 makes the solidification system of binary

melts more unstable to the compositional convection in the mushy

layer. The critical Rayleigh number  obtained from the present

model (Eqs. (18) and (19)) is larger than the model of Eq. (24). When

θ
∞
 is small (θ

∞
= 0.1), the difference of  between the two model

is very small. For a small superheat θ
∞
 the growth rate of the mushy

layer is large and the temperature difference in the liquid layer is

small. Tait and Jaupart [8] obtained the critical Rayleigh number for

the mushy layer = 25 for 0 < θ
∞
< 0.2 in the experiment of solid-

ification of aqueous ammonium chloride solution. The experimental

critical Rayleigh number for the onset of compositional convection

in the mushy layer is 1.3 times larger than the present prediction. The

critical wave numbers a
c
* are almost the same between the two model

for θ
∞
≤1. Hwang and Choi [13] studied the onset of convection in

the mushy layer and compared the critical conditions with existing

theoretical and experimental results of aqueous ammonium chloride

solution.

The relation for the phase change-rate  as a function of θ
∞
 is

obtained from the interface condition (13b), i.e., ∂θ
0
/∂ζ = −∂c

0
/∂ζ

at ζ = 1:

 for λ<<1 (25)

The phase-change rate λ approaches zero for an infinite θ
∞
 and

the asymptotic relation is λ~ /2θ
∞
 for θ

∞
>>1 [9]. If θ

∞
 is large, the

growth rate of the mushy layer is very small and the time-depen-

dency is weak.

When the superheat is very large (θ
∞
→∞ and λ→0) the terms

including λ, which is transformed from ∂(·)/∂τ, are neglected. The

self-stability equations in the mushy layer for θ
∞
→∞ are given by

 (26)

 (27)

These equations are similar to Emms and Fowler’s [9] quasi-

static stability analysis. In the mushy layer the basic composition

profile is written as 

 (28)

The formula erf(b) = 2b(1-erf(b)) for b<<1 was employed to

produce the expansion c
0

= 1-ζ + O(λ2) for λ<<1. Therefore, the

gradients of the basic state become  and  as

θ
∞
→∞. In this case the critical values were obtained numerically

using  in the liquid layer as = 5.99 and

a
c
* = 1.09 for S = 0.27. 

5. Conclusion

 

The onset of convection in a binary melt during time-dependent

solidification was analyzed. In the mushy layer the near-eutectic

solidification model was used for aqueous ammonium chloride solu-

tion. In the liquid layer the Lewis number was assumed to be zero

and the thermal buoyancy force was neglected. The self-stability

equations for the liquid and mushy layers based on the propagation

theory were solved numerically. The critical Rayleigh number 

decreases with increasing the Stefan number S and with increasing

the Prandtl number Pr. When the Stefan number S is large, the

growth rate of the mushy layer is small. The present model (Eqs. (18)

and (19)) for the liquid layer predict a larger critical Rayleigh num-

ber  than the model of Eq. (24) from Emms and Fowler [9], but

when the superheat θ
∞
 is very small (the growth rate of the mushy

layer is large), the difference of   between the two model is very

small.
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