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Abstract − The onset of buoyancy-driven convection in an initially isothermal and quiescent horizontal fluid layer was

analyzed theoretically. It is well-known that at the critical Rayleigh number Rac = 669 convective motion sets in with a

constant-heat-flux cooling through the upper boundary. Here, based on the momentary instability concept, the dimen-

sionless critical time τm to mark the onset of convective motion for Ra > 669 was analyzed theoretically. The energy

method under the momentary stability concept was used to find the critical conditions as a function of the Rayleigh

number Ra and the Prandtl number Pr. The predicted critical conditions were compared with the previous theoretical and

experimental results. The momentary stability criterion gives more reasonable wavenumber than the conventional

energy method. 
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1. Introduction

Buoyancy-driven convection plays an important role in many

engineering problems, such as chemical vapor deposition, solidifica-

tion, electroplating, and also conventional heat and mass transfer

systems. Most of these processes involve nonlinear developing tem-

perature profile, so it becomes important to predict when the buoy-

ancy-driven convection sets in. But a general approach to predict the

critical conditions to mark the onset of buoyancy-driven convection

under these circumstances is still under controversy. 

When an initially quiescent, horizontal fluid layer is cooled from

above or heated rapidly from below, the basic temperature profile of

heat conduction develops with time and buoyancy-driven convec-

tion setting in at a critical time. In this transient system, the critical

time tc to mark the onset of convective motion becomes an important

question, which may be called an extension of classical Rayleigh-

Bénard problems. The related instability analyses have been conducted

under linear stability theory and nonlinear energy method. Based on

the linear stability theory, the frozen-time model [1], amplification

theory [2] and propagation theory [3] have been derived and applied

to the various systems. Homsy [4], Gummerman and Homsy [5], and

Wankat and Homsy [6] applied the nonlinear energy method to ana-

lyze this kind of problem. Straughan [7] summarized the theoretical

aspects of the energy method for the various systems. Also, Harfash

and Straughan [8] used the energy method to study the magnetic

field effect on the convective instability. 

Based on the relative stability concept, Kim and colleagues [9-14]

analyzed the energy stability of the various systems. Their relaxed

energy method gives the critical time tc for the whole range of Pr and

Pa, but the conventional energy method yields the stability criteria

independently of Pr. Here we concentrated on the instability prob-

lem in an initially isothermal, quiescent fluid layer. Starting from

time t = 0, the upper free boundary is cooled uniformly by evapora-

tion. For this specific system, the stability criteria were obtained

based on the original energy method and its modification, and they

were compared with available experimental and theoretical results. 

2. Theoretical analysis 

2-1. Governing equations and base system

The system considered here is a Newtonian fluid layer with an ini-

tial temperature. For time t ≥ 0, the horizontal layer of fluid depth, d,

experiences evaporative cooling with heat flux, q, through the upper

free boundary, and its lower boundary is kept at the initial tempera-

ture, Ti. A schematic diagram of the basic system of pure conduction

is shown in Fig. 1. For a high q, buoyancy-driven convection will set

in at a certain time, and the governing equations of flow and tem-

perature fields are expressed by employing the Boussinesq approxi-

mation as 
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dynamic pressure, ν the kinematic viscosity, T the temperature, g

the gravitational acceleration, β the thermal expansion coefficient,

and α the thermal diffusivity.

Let’s assume the evaporation rate and corresponding heat flux q

are constant. The validity of this assumption will be discussed later.

Then, the basic state of heat conduction the dimensionless tempera-

ture profile is represented by [15].

, (4)

with the following initial and boundary conditions,

θ0 = 0 at τ = 0 and z = 1, (5a)

 at z = 0, (5b)

where τ = αt/d 2, z = Z/d and θ0 = k(T-Ti)/(qd). Here, k is the ther-

mal conductivity of the fluid. The subscript ‘0’ denotes the basic

state. The exact solution of Eqs. (4) and (5) is well-known: 

, (6a)

, (6b)

where , , and . Equa-

tion (6b) is obtained in terms of the integral of complementary

error functions by using the Laplace transform.

2-2. Stability equations

Consider the following velocity, pressure and temperature per-

turbations: U1 = U−U0, P1 = P−P0 and T1 = T−T0, and let’s intro-

duce these perturbations into Eqs. (1)-(3). Then, using α/d, ρα2/d 2,

and qd/k as the scaling factors of velocity, pressure and tempera-

ture, respectively, we can obtain the following dimensionless equa-

tions:

, (7)

, (8)

,  (9)

under the following boundary conditions: 

 at z = 0, (10a)

 at z = 1, (10b)

where k is the unit vector of the positive z-direction, and subscripts

0 and 1 represent the base and perturbation quantities, respectively.

Here,  and are the Prandtl num-

ber and the Rayleigh number, respectively. 

Now, multiply Eq. (8) by u1 and Eq. (9) by θ1 and integrate over

the system volume Ω, then Eqs. (8) and (9) become,

,

(11)

.

 (12)

Using the divergence theorem, the following relations can be

obtained:

, (13)

, (14)

where ,  and . In above der-

ivation, the boundary condition of Eq. (10) and the periodicity in

x- and y-direction are used.

In the present system the dimensionless natural energy can be

defined as a linear combination of Eqs. (13) and (14) with the cou-

pling constant γ > 0:

(15)

and the following energy identity can be derived

(16)

where w1 is the vertical component of the velocity perturbation

vector and the primes are dropped for the sake of simplicity. By

setting , the above energy identity can be expressed as

(17)

where . After dropping the hats, the above

relation can be represented as

  

(18)
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Fig. 1. Sketch of the basic conduction state considered here.
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where

(19)

. (20)

Even though we can describe the temporal evolution of the pertur-

bation energy through Eq. (18), care must be taken in defining the

stability criterion for the system having time-dependent base states.

Shen [16] first observed, in a study of time dependent parallel shear

flow, if the kinetic energy of a perturbation decreases in time but that

of the base state decreases at a faster rate, then the kinetic energy of

perturbation will appear amplified in time. Conversely, if the kinetic

energy of the perturbation increases in time but that of the base state

increases faster still, then the kinetic energy of the perturbation will

appear to decay in time. To determine the stability characteristics of

perturbations of time variant base states, Shen [16] introduced the

concept of “momentary stability” where the stability of the system is

guaranteed if

, (21)

where

(22)

is called the relative energy [17] and the momentary stability has

been known as relative stability [18]. Here E and E0 are the energy

of the disturbance and that of base state, respectively. For the

present system, E0 is defined as

. (23)

With these definitions, the criterion for momentary stability of

unsteady base state is given by

. (24)

Here σ and σ0 are the growth rate of the disturbance and that of

base energy defined as

 and . (25)

For the present system, based on Eq. (6a) the growth rate of base

energy is 

. (26)

For the limiting case of τ→∞, σ0→0 is obtained.

It is well-known that the present system with Ra > 669 is asymp-

totically unstable [19]. Therefore, our primary concern is the instan-

taneous instability, which is defined as

, (27)

under the momentary instability concept [16]. The neutral stabil-

ity condition under the momentary instability can be determined

from

. (28)

And, therefore the momentary stability limit can be obtained as

. (29)

under the condition of

= 1. (30)

This maximum problem can be solved by the variational tech-

nique. And, under the normal mode analysis, the following Euler-

Lagrange equations can be obtained:

,

 (31)

 

(32)

under the following boundary conditions: 

 at z = 0, (33a)

 at z = 1, (33b)

The momentary stability limit Ra is given by

(34)

Since σ0→0 as τ→∞, for the limiting case of large τ, the above

stability equations degenerate into the conventional strong stabil-

ity equations. 

3. Solution Method

The stability equations (31)-(33) were solved by employing the

outward shooting scheme [20]. To integrate them, trial values of the

eigenvalue R and the boundary conditions d 3
w1/dz

3 and θ1 at z = 0

are assumed properly for a given a and γ. Since the boundary condi-

tion, Eq. (33) are all homogeneous, the value of dw1/dz at z = 0 can

be assigned arbitrarily. This procedure is based on the outward shoot-

ing method in which the boundary value problem is transformed into

the initial value problem. The trial values, together with the three

known conditions at the lower boundary, give all the information to

make numerical integration smooth. 

The integration based on the 4th-order Runge-Kutta method is
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performed from z = 0 to z = 1. By using the Newton-Raphson itera-

tion the trial values of R, d 3
w1/dz

3, and θ1 are corrected until the sta-

bility equations satisfy the upper boundary conditions within the

relative tolerance of 10-10. For the strong stability limits, the solution

procedure is almost the same as above.

4. Results and Discussion

Since, for large τ, the base temperature field becomes linear and

therefore σ0→0, the present momentary stability degenerates to the

conventional energy method. For this case, the critical condition is

Ra = 669 [19]. The present stability limits given in Fig. 2 reconstruct

this condition. By employing the momentary stability concept, we

tried to relax the conventional energy method and to reanalyze the

well-known transient Rayleigh-Bénard problem. The present relax-

ation can show the Prandtl number effect on the stability conditions,

which has been ignored in the original energy method based on the

strong stability criterion. The present relaxation shows that the criti-

cal time τm based on the momentary stability concept decreases with

an increase in Ra and also Pr. The Pr-effect becomes pronounced for

Pr < 1, which means the inertia term  in Eq. (31)

makes the system more stable. 

For the isothermally heated system, Neitzel [21] reported the global

stability limits under the conventional energy stability method. The

global limits are Ra = 1699 (at ) and 1013 (at ) for

the rigid-rigid boundaries system and free-rigid boundaries one,

respectively. This global stability limits are lower than the asymp-

totic stability limits, which are 1708 and 1101, respectively. However,

this global minimum cannot be shown in the rigid-free boundaries

system. The free-rigid boundaries system corresponds to rigid-free

boundaries system cooled from free, upper boundary, which is simi-

lar situation to the present system. Kim et al. [13] reconsidered this

problem using the relative stability criterion. According to their

results, the global minimum was not observed for the various bound-

ary situations. And, as shown in Fig. 2, the present system does not

show the global minimum. Therefore, the global minimum phenom-

ena seem to be dependent on the boundary conditions, heating or

cooling history and stability criteria. 

Wankat and Homsy [6] analyzed the stability condition and sug-

gested the minimum bound of stability of the system similar to the

present one. However, they simulated the evaporative cooling as the

ramp cooling rather than the present constant flux cooling and used

free-free boundary conditions for the upper and lower boundaries.

Furthermore, they employed the strong instability criterion σ > 0

rather than present momentary instability σ > σ0 as an instability cri-

terion. They compared their results with Foster’s [22] experiments

for water layer, where the top boundary was cooled by evaporation.

Manifest convection was detected first at t = to by visual observation

of the motion of a thin layer of ink near the bottom layer. The typical

surface temperature record, Figure 2 of Foster’s, might be repre-

sented well by the constant flux cooling model, ,

rather than the ramp cooling one, . In the present study

the experimental data are converted, 

, (35)

where  is the Rayleigh number defined by

Foster based on the cooling rate φ. Due to the differences described

above, direct comparison with Wankat and Homsy’s [6] work is

not possible. 

Foster [22] analyzed the stability limits using the amplification

theory based on the ramp cooling model. In comparing his predic-

tion with his experimental data, he argued that the amplification of

the initial disturbances of somewhere between 10 and 100 is neces-

sary for the detection of manifest convection, as shown in Fig. 3. He

defined the amplification factor  as the ratio of the root-mean-

square quantity of velocity disturbances at t = to to that of the assumed

white-noise ones at t = 0. But we do not know what initial conditions

exist in nature. In Fig. 3, the present predictions are compared with

Foster’s theoretical and experimental work. The present predictions
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are quite different from the experimental data. However, the present

momentary stability criterion is much closer to the experimental data

than the conventional strong stability criterion. The quantitative dis-

crepancy between the experimental data and the predictions based

on the energy method is of foreknowledge, since the energy methods

need not satisfy the dynamical equations which describe the actual

experimental process. Therefore, the energy methods have been

employed as lower bounds of stability. Since no experimental data

lie to the left of the energy stability limits, the present predictions do

not commit the theoretical base point. It is well-known that the

energy method cannot give the information on the crtical wave num-

ber. However, the present modification gives a reasonable wave-

number at the onset of convection. As shown in Fig. 4, the present

momentary stability criterion gives a more reasonable wavenumber

than the original energy method, where the critical wavenumer is

ac = 2.08 for the whole range of Ra.

5. Conclusions

The critical condition to mark the onset of convective motion

driven by buoyancy forces in an initially quiescent, horizontal

layer cooled from above was analyzed based on the energy

method. By considering the growth rate of the relative energy, we

modified the conventional energy method. Based on the present

modification, we defined the momentary stability time τm from

which the growth rate of the perturbation energy exceeds that of

the base energy. The present modification predicts experimental

trends which cannot be explained by the original energy method.

Since the energy methods need not satisfy the dynamical equa-

tions such as Navier-Stokes equation and the heat transport equa-

tion, the growth of disturbance should be studied by solving

dynamical governing equations fully. 

Acknowledgments

This research was supported by the 2018 scientific promotion pro-

gram funded by Jeju National University. 

References

 1. Morton, B. R., “On the Equilibrium of a Stratified Layer of

Fluid,” J. Mech. Appl. Math., 10, 433(1957).

 2. Foster, T. D., “Stability of Homogeneous Fluid Cooled Uni-

formly From Above,” Phys. Fluids, 8, 1249(1965). 

 3. Ryoo, W. S. and Kim, M. C., “Effect of Vertically Varying Per-

meability on the Onset of Convection in a Porous Medium,”

Korean J. Chem. Eng., 35, 1247(2018).

 4. Homsy, G. M., “Global Stability of Time-Dependent Flows:

Impulsively Heated or Cooled Fluid Layers,” J. Fluid Mech., 60,

129(1973). 

 5. Gumerman, R. J. and Homsy, G. M., “The Stability of Uniformly

Accelerated Flows with Application to Convection Driven by

Surface Tension,” J. Fluid Mech., 68, 191(1975).

 6. Wankat, P. C. and Homsy, G. M., “Lower Bounds for the Onset

Time of Instability in Heated Layers,” Phys. Fluids, 20, 1200

(1977).

 7. Straughan, B., The Energy Method, Stability, and Nonlinear

Convection, 2nd ed. Applied Mathematical Sciences, vol. 91. New

York, NY: Springer (2004). 

 8. Harfash, A. J. and Straughan, B., “Magnetic Effect on Instabil-

ity and Nonlinear Stability in a Reacting Fluid,”Meccanica, 47,

1849(2012).

 9. Kim, M. C. and Choi, C. K., “Energy Stability Analyses on the

Onset of Convection Driven by Soret-Effect in Nanoparticles

Suspension Heated from Above,” Phys. Rev. E., 76, 036302(2007).

10. Kim, M. C. and Choi, C. K., “Relaxed Energy Stability Analysis on

the Onset of Buoyancy-Driven Instability in the Horizontal Porous

Layer,” Phys. Fluids, 19, 088103(2007).

11. Kim, M. C., Choi, C. K., Yoon, D. Y. and Chung, T. J., “Onset

of Marangoni Convection in a Horizontal Fluid Layer Experi-

encing Evaporative Cooling,” Ind. Eng. Chem. Res., 46, 5775(2007).

12. Kim, M. C., Song, K. H. and Choi, C. K., “Energy Stability

Analysis for Impulsively Decelerating Swirl Flows,” Phys. Fluids,

20, 064101(2008).

13. Kim, M. C., Choi, C. K. and Yoon, D.-Y., “Relaxation on the Energy

Method for the Transient Rayleigh-Bénard Convection,” Phys.

Lett. A, 372, 4709(2008).

14. Kim, M. C., “Onset of Buoyancy-Driven Convection in Isotro-

pic Porous Media Heated from Below,” Korean J. Chem. Eng.,

27, 741(2010).

15. Vidal A. and Acrivos A., “Effect of Nonlinear Temperature Pro-

files on Onset of Convection Driven by Surface Tension Gradi-

ents,” Ind. Eng. Chem. Fundamen., 7, 53(1968).

16. Shen, S. F., “Some Considerations on the Laminar Stability of

Time-Dependent Basic Flows,” J. Aero. Sci., 28, 397(1961).

17. Matar, O. K. and Trojan, S. M., “The Development of Transient

Fingering Patterns During the Spreading,” Phys. Fluids, 11, 3232

(1999). 

18. Chen, J.-C., Neitzel, G. P. and Jankowski, D. F., “The Influence

Fig. 4. Comparison of the critical waver number with the experi-

mental results.



Energy Stability Analysis on the Onset of Buoyancy-Driven Convection in a Horizontal Fluid Layer Subject to Evaporative Cooling 147

Korean Chem. Eng. Res., Vol. 57, No. 1, February, 2019

of Initial Condition on the Linear Stability of Time-Dependent

Circular Couette Flow,” Phys. Fluids, 28, 749(1985).

19. Davis, S. H., “Buoyancy-Surface Tension Instability by the Method

of Energy,” J. Fluid Mech., 39, 347(1969).

20. Hwang, I. G., “On Compositional Convection in Near-Eutectic

Solidification System Cooled from a Bottom Boundary,” Korean

Chem. Eng. Res., 55, 868(2017).

21. Neitzel, G. P., “Onset of Convection in Impulsively Heated or

Cooled Fluid Layers,” Phys. Fluids, 25, 210(1982). 

22. Foster, T. D., “Onset of Convection in a Layer of Fluid Cooled

from Above,” Phys. Fluids, 8, 1770(1965).


