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Abstract − A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient

temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy’s law and Boussinesq

approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the

onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a

self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential

equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius

ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes

smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal

porous layer.
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1. Introduction

The onset of buoyancy-driven motion in a horizontal porous layer

begins with Horton-Rogers-Lapwood convection [1,2]. In a horizontal

porous layer of infinite extent, all horizontal wave numbers are

allowed. The critical wavenumber at the onset of convection determines

the preferred convection cell. Later, Wooding [3] analyzed the onset

condition of buoyancy-driven motion in a long vertical cylinder. In

the cylindrical coordinate system, the convective structure in the

horizontal plane is expressed in terms of Bessel functions in the radial

direction. Later, Beck [4] generalized the Horton-Rogers-Lapwood

problem to a finite rectangular box but assumed thermally insulating

and impermeable lateral walls. In this case the pure Fourier modes

persist as the horizontal eigenfunctions. Zebib [5], and Bau and

Torrance [6] reconsidered this problem in the domains bounded by a

finite circular cylinder or finite coaxial cylinders, respectively. For

the system bounded by perfectly conducting walls, Haugen and

Tyvand [7] analyzed the onset of convection in a porous medium

bounded by a vertical cylinder. For the various geometries including

coaxial cylinders, Rees and Tyvand [8] suggested eigenfunctions and

the critical Rayleigh numbers. Later, Bringedal et al. [9] conducted

linear and non-linear analyses on the onset of convection in a porous

medium between coaxial cylinders. Barletta and Storesletten [10]

revisited the onset of convection in a cylindrical porous medium by

considering the heating from below and the cooling from above as

caused by external forced convection processes.

The above mentioned work has been conducted on the onset of

convection in a vertical porous cylinder under the linear density

profile. However, most engineering applications relating to rapid

changing of temperature and concentration fields involve a developing

and nonlinear basic field. Therefore, it is important to predict when

the buoyancy-driven motion sets in. Recently, the related stability

analysis has been conducted in connection with CO2 sequestration

process. For the CO2-sequestration system, Ennis-King et al. [11]

were the pioneer researchers who studied the onset of buoyancy-

driven convection systematically. Also, they considered the effect of

the anisotropy of the porous medium on the onset of instability motion.

Later, Riaz et al. [12] analyzed the onset of convection in a porous

medium under the time-dependent concentration field in the similar

coordinate. Kim and Choi [13] extended Riaz et al.’s analysis by

considering the effect of the number of terms on the stability condition.

Recently, for the infinite and semi-infinite cylinder system, Kim [14]

and Myint and Firoozabadi [15] considered the lateral boundary

effect on the onset of buoyancy-driven convection in a similar domain

and global domain, respectively.

In the present study, the stability of initially quiescent, liquid-

saturated, porous layer bounded by coaxial cylinders and heated

from below is considered. Under the linear stability theory, stability

equations are derived in the conventional global domain, and transformed

in the self-similar one. To consider the effect of radial boundaries,

the horizontal eigenmodes are expressed as the cylindrical harmonics.

The critical conditions of the onset of buoyancy-driven convection

are obtained by solving the resulting stability equations analytically

and numerically. Since more complex geometry is considered in the

present study, the effect of the lateral boundaries on the onset of
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buoyancy driven convection is clearly explained.

2. Theoretical Analysis

2-1. Mathematical formulations

The system considered here is an initially quiescent, cylindrical

porous layer saturated with liquid, as shown in Fig. 1. The solid substrate

has a constant porosity ε and a constant permeability K. The interstitial

fluid is characterized by the thermal expansion coefficient β, density

ρ, heat capacity (ρc)f and kinematic viscosity ν. The porous medium

is regarded as a homogeneous and isotropic material with heat

capacity  and thermal conductivity ke.

The effected thermal conductivity can be the weighted arithmetic

mean, , if the heat conduction in solid and fluid

phases occurs in parallel, or the weighted geometric mean,

, if the heat conduction takes place in series.

However, for practical purpose, the weighted geometric mean,

, has been widely used [16]. Here subscripts f and s

stand for fluid and solid substrate, respectively. Before heating, the

fluid layer is maintained at uniform temperature Ti. For time t ≥ 0 the

lower boundary is suddenly heated with constant temperature Tb.

Under the Boussinesq approximation, they can then be written as

follows [3]:

(1)

(2)

(3)

(4)

where  is the Darcy velocity vector in cylin-

drical -coordinates, T the temperature, P the pressure, μ

the viscosity,  the effective thermal diffusivity, ρi

the reference density, and g the gravitational acceleration It is

assumed that the lateral wall is impermeable and perfectly insu-

lating. The boundary conditions for the velocity and concentration

fields are

 at  and R,

W = 0 and T = Tb at Z = 0, (5)

W = 0 and T = Ti at Z =∞. 

The boundary conditions represent no radial mass and heat fluxes

through the cylinder walls and fixed temperature on the lower and

upper boundaries.

The important parameters to describe the present system are the

Darcy-Rayleigh number RaD and radius ratio η defined by

 and  (6)

where ν denotes the kinematic viscosity and 0 < η < 1, i.e., 0 <

Ri < R. For the mass transfer system in a long vertical cylinder,

Wooding [3] suggested the following critical condition of onset

motion:

, (7)

where De is the effective mass diffusivity. Wooding [3] assumed

that the density gradient is fully-developed and linear. For the

case of infinite cylinder, however, the motion can be onset before

the density profile is fully developed. Therefore, the stability prob-

lem becomes time dependent, and the critical time tc and the min-

imum number to mark the onset of buoyancy-driven motion have

practical importance. For this transient stability analysis we define a

set of nondimensionalized variables τ, z, θ0 by using the scale of

time R2 / αe, length R and temperature . Then the

basic conduction state is represented in dimensionless form of

, (8)

with the following initial and boundary conditions,

θ0 = 0 at τ = 0, (9a)

θ0 = 1 at z = 0 and θ0 → 0 as z =∞. (9b)

The above equations can be solved by using Laplace transform

method as follows:

, (10)

where . 

2-2. Stability equations

Under the linear stability theory, the disturbances caused by

the onset of buoyancy-driven convection can be formulated, in

dimensionless form, in terms of the temperature component c1 and

the vertical velocity component w1 by decomposing Eqs. (1)-(3):
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Fig. 1. Schematic diagram of the system considered here.
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(11)

(12)

where ,  and .

The velocity component has the scale of αe / R and the concen-

tration component has the scale of . The proper bound-

ary conditions are given by 

w1 = θ1 = 0 at z = 0 and z = ∞ (13a)

 at r = η and 1. (13b)

Now, the convective motion is assumed to exhibit the periodicity

and the following Fourier mode analysis is employed: 

(14)

The cylindrical harmonics Xl
m satisfies the following relation [6]:

(15a)

where 

,

and (15b)

and

,  and

. (15c)

where αl,m is the space wavenumber, and Jm and Ym are the first

and second kind Bessel function, respectively. The non-axisym-

metric case of m > 0 satisfies the continuity requirement through

the factor exp(imθ). For the axi-symmetric case of m = 0, Eq. (15c)

can be reduced as 

.

(16)

Also, the integral over the annulus cross section becomes

. (17)

Through Eqs. (16) and (17), the continuity is satisfied even for

the axi-symmetric modes. 

Therefore, the stability equations are summarized as:

, (18)

. (19)

under the following boundary conditions:

 at z = 0 and z = ∞, (20)

Our goal is to find the critical time τc a given RaD and minimum

RaD to mark the onset of convection for by using Eqs. (18)-(20).

Recently, Wessel-Berg [17] showed that the stability characteristics

can be described more reasonably in the (τ, ζ)-domian rather than in

the (τ, z)-one. In the (τ, ζ)-domian, it is natural that 

and , where ζ(=ζ/ ) is the similarity variable

introduced already in the base state of Eq. (10). Following a coordinate

transformation to the similarity variable of ζ, the base state and the

perturbation equations can be expressed as,

, (21)

, (22)

with the following boundary conditions:

w* = θ* = 0 at ζ = 0 and ∞. (23)

Here, D = d/dζ α* = αl,m  and RaD
* = RaD  and Dθ0 =

exp .

3. Solution Procedure

For the limiting case of τ→0, i.e. α∗→0 and RaD
* →0, the stability

equations (21) and (22) can be rewritten as

, (24)

, (25)

The above equations are decoupled and the solution of Eq. (22)

with boundary conditions (23) can be obtained as 

w∗→0 as τ→0. (26)

Since Eq. (25) is linear, the concentration disturbance can be

expressed as

, (27)

where fi is determined from the following Sturm-Liouville problem:

, (28a)

under the following boundary conditions:

fi = 0 at ζ = 0 and ∞. (28b)

The eigenfunction fi and corresponding eigenvalue λi of the Sturm-

Liouville Eq. (28) are

 and (29a&b)
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where  is the k-th Hermite

polynomial. The scale factor

 is inserted to guarantee the orthonormal

relation, i.e. 

, (30)

where  is the weighting function of the Sturm-Liou-

ville equation (28).

By applying Eqs. (27)-(30) into Eq. (25), we can get the following

amplitude equation:

 as τ→0. (31)

The above relation means that for the limiting case of τ→0, the

following first mode is the most unstable disturbance:

, (32)

and its growth rate is

 as τ→0. (33)

For the general time-evolving case, from Eqs. (21) and (27), w*

is expressed as

, (34)

where gi can be obtained by solving 

, (35a)

under the following boundary conditions:

gi = 0 at ζ = 0 and ζ→∞. (35b)

Using the method of variation of parameters [17] or the inverse

operator technique [13], the solutions of Eq. (35) can be expressed

as

(36)

After performing the integrations, Eq. (36) can be simplified

recursively as

, (37a)

with

(37b)

Substituting θ* and w* into Eq. (22) and performing the orthog-

onalization process, the stability equations are reduced to the following

matrix form: 

, (38a)

where

, (38b)

, (38c)

, (38d)

for m, n = 1,2,.... It is stressed that the partial differential Eqs.

(21)-(23) are reduced into the simultaneous ordinary differential

Eqs. (38), without spatial discretization. Furthermore, the charac-

teristic matrix B is normal, i.e. B=BT, since Cmn = Cnm through

. (39)

If the characteristic matrix B is normal, it is possible to set da/

dτ = σ*a and therefore, Eq. (38a) can be reduced as [13]

. (40)

Based on the above relation, the growth rate can be given as

, (41)

where  means the maximum eigenvalue of the matrix

B.

For the present normal system, it is possible to set dθ∗/dτ = σ*θ*,

which is equivalent to da/dτ = σ*a, and therefore, stability Eqs. (21)

and (22) can be reduced as 

, (21)

, (42)

Here, note that the above equations are derived without the quasi-

steady state approximation (QSSA) and are slightly different from

Robinson’s [18] (see Robinson’s equation (11) and (12)). In Rob-

inson’s [18] analysis, the -term in Eq. (42) is neglected

and, therefore, his approach corresponds to the well-known fro-

zen-time model. 
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The above stability Eqs. (21) and (42) are solved by employing the

outward shooting scheme [19,20]. To obtain the growth rate σ*, the

proper values of w* and Dθ*at ζ = 0 are assumed for given α* and

RaD
* . Since the stability equations and their boundary conditions are

all homogeneous, the value of w*(0) can be assigned arbitrarily and

the value of the parameter σ*τ is assumed. This procedure can be

understood easily by taking into account the characteristics of

eigenvalue problems. After all the values at ζ = 0 are provided, this

eigenvalue problem can proceed numerically. 

Integration is performed from ζ = 0 to an arbitrary upper with the

fourth-order Runge-Kutta-Gill method. If the guessed values of σ*τ

and Dθ*(0) are correct, w* and θ* will vanish at the upper boundary.

To improve the initial guesses the Newton-Raphson iteration is used.

For the present system, the position of the upper boundary is infinity.

To consider the infinity boundary effect, the Shanks transformation

is used. 

4. Results and Discussion

The neutral stability condition can be determined by setting σ* = 0.

The neutral stability curves obtained from the numerical shooting

method and the present analytical approximations are compared in

Fig. 2. The leading-term analysis, which corresponds to the 1-term

approximation, is also conducted and summarized in Fig. 2. As shown,

for the limiting case of α*→0, all the methods produce nearly the same

stability condition. However, with increasing α*, the lower order

approximations start to deviate from the numerical shooting solution.

This figure shows that the 7-term approximation is sufficient enough

to describe the neutral stability conditions. Using the 7-term approximation,

the neutral stability curve is redrawn in the (RaD , α/RaD)-domain.

This figure means that the disturbance having the wavenumber α/

RaD > 0.101 is unconditionally stable. By comparing the frozen time

model based on the QSSA, the (ζ/2)Dθ*-term makes the system stable.

Unlike the horizontally unbounded system of infinite horizontal

layer, the cylinder walls restrict the feasible wavenumber through

Eq. (15c), that is, the wavenumber has discrete values. For the typical

cases of η, the critical time for a given RaD and several smallest

wavenumbers is summarized in Fig. 3. In this figure, for a given η,

the preferred unstable modes are given as a function of RaD and η.

Fig. 3(b) shows that for the typical case of RaD = 30, as time goes on,

the initially stable system becomes unstable, and the preferred

unstable mode becomes in the order of α2,1, α1,1, α2,1 and α1,1.

Finally, the system becomes stable. Also, these figures show that

the critical conditions obtained for the unbounded system can be

approximately valid for RaD > 100.

As shown in this figure, non-axisymmetric mode of  

− exp(iθ) gives the most unstable mode and

suggests the minimum RaD to induce the convective motion and

RaD.c can be calculated from

RaD,c = , (43)

where 0.101 is the maximum value of α/RaD for the unstable

mode (see Fig. 2). The effect of annulus ratio on the critical RaD

is summarized in Fig. 4. As shown, the system having a wide gap

is more stable. This is opposite to the well-known fact that the

lateral boundaries make the system stable. 

The present critical condition, Eq. (43) is quite different from

 of Wooding’s [3] and Bau and

Torrance’s [6]. They assumed  is constant for a

long cylinder, where Lc is the penetration depth. From the above two

critical conditions, one may say that if RaD >α1,1/0.101, the system is

unstable; however, as the instability motion develops, the density

gradient becomes linear and the instability motion ceases when

RaD' < Ra'D,c(=α
2
1,1). RaD,c is compared with the present RaD,c in

Fig. 4. This transition from the unstable state into the stable one was

observed by Wooding [3]. In the mass transfer system, the transition

condition can be used to determine the diffusivity by measuring the
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penetration depth at a condition of stability [21]. Based on Eq. (43),

the diffusivity can be determined as 

, (44)

where (ΔC)c is the minimum concentration difference to ensure

the onset of convective motion. 

The critical time decrease with increasing RaD and if all the

possible wavenumbers are superimposed, it follows the asymptotic

relation of , which is derived in the unbounded

horizontal domain [13]. For high RaD the buoyancy-driven convection

can be set in at small time, and therefore the buoyancy-driven

instability is confined to the narrow region near the heated boundary.

Therefore, radial boundary effects can be neglected, and the system

can be considered an infinite horizontal layer. For the unbounded

infinite horizontal layer, the minimum value of RaD* and corresponding

α* in the Fig. 2 can be used to determine the critical condition

marking the onset of buoyancy-driven convection. Regardless of the

annulus ratio, the stability criteria can be expressed for the infinite

horizontal system as follows:

 and 

(45)

5. Conclusions

The onset of buoyancy-driven motion in a fluid-saturated, cylindrical

porous layer heated from below was analyzed theoretically by using

linear stability theory. The critical Darcy-Rayleigh number and onset

time of buoyancy driven motion for a given Darcy-Rayleigh number

were determined as a function of the radius ratio. The present initial

growth rate analysis shows that the system is unconditionally stable

regardless of the radius ratio. The present analysis, without invoking

the QSSA, predicts the onset time quite reasonably and the (ζ/2)Rθ*-

term, which is ignored in the frozen-time model under the QSSA,

makes the system more stable. The effect of the ratio of radius on the

critical condition is important for the small RaD-case, however, for

the RaD-system the onset time of the buoyancy deriven instability is
 ( )1,1

0.101

e

c

g KR
D

C

β
=

α ν Δ

 ( )
2

12.944
c D

Raτ =

 
( )

( )

2
*

1/2

167.547
e

c

f

c
t

g K T c

⎛ ⎞ρνα
⎜ ⎟=
⎜ ⎟β Δ ρ⎝ ⎠

 
( )

( )

*

90.406
e

c

f

c

g K T c

⎛ ⎞ρνα
⎜ ⎟λ =
⎜ ⎟β Δ ρ⎝ ⎠

 
,D D c

Ra Ra�

Fig. 3. Critical time from for the smallest seven wavenumbers for

the cases of (a) η = 0.1, (b) η = 0.5 and (c) η = 0.9.

Fig. 4. Effect of the radius ratio on the critical Darcy-Rayleigh num-

bers. 
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insensitive to the radius ratio. 
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