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Abstract − Experimental data of phase equilibrium is reported for caprolactone acrylate in supercritical carbon dioxide.

Bubble-point data was measured by synthetic method at temperatures ranging from (313.2 to 393.2) K and pressures up

to 55.93 MPa. In this research, the solubility of carbon dioxide for the (carbon dioxide
 

+ caprolactone acrylate) system

decreases as temperature increases at a constant pressure. The (carbon dioxide
 

+ caprolactone acrylate) system exhibits

type-I phase behavior. The experimental result for the (carbon dioxide
 

+ caprolactone acrylate) system was correlated with

Peng-Robinson equation of state using mixing rule. The critical property of caprolactone acrylate was predicted with the

Joback and Lyderson method. 
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1. Introduction

Caprolactone acrylate is a low viscosity, high active, low volatility,

low skin irritation monomer for use in free radical polymerization.

This monomer is used for the performance properties as a good

adhesion, good chemical resistance, good weatherability, high flexibility,

high impact strength and low shrinkage, and applications as pressure

sensitive adhesives, chemical intermediates and coatings [1]. Especially,

phase equilibrium data on caprolactone acrylate plays an essential

role in polymer and polymerization processes.

Thermodynamic data for binary mixture of the acrylate group

containing supercritical carbon dioxide plays an important role in the

separation processes, fine chemical industry, polymerization condition

and industrial application [2-5]. So far, our laboratory has reported

various experimental data on the bubble-point, dew-point and critical-

point behavior of binary mixtures containing supercritical carbon

dioxide [6,7]. Supercritical carbon dioxide has a quadrupole moment,

no dipole moment, and low dielectric constant. Carbon dioxide has

been widely used as an eco-friendly solvent because it is inexpensive,

nonflammable, and nontoxic. Also, it is a good solvent with low

molecular weight in nonpolar molecules. Therefore, phase behavior

information for the carbon dioxide + solute mixtures is required for

practical uses.

Phase behavior data for the carbon dioxide + acrylate system were

reported by Yoon and Byun [8], Cho et al. [9] and Jang et al. [10].

Yoon and Byun [8] presented the experimental data of phase behavior

for the binary systems of heptafluorobutyl acrylate and heptafluorobutyl

methacrylate under carbon dioxide at high pressure. Cho et al. [9]

reported high-pressure phase behavior of tri-ethylene glycol dimethacrylate

and tetra-ethylene glycol dimethacrylate in supercritical carbon dioxide

at temperatures ranging from 303.2 to 363.2 K and pressure up to 27

MPa. Jang et al. [10] presented phase behavior measurements for the

binary mixture of carbon dioxide + neopentyl glycol diacrylate and

carbon dioxide + neopentyl glycol dimethacrylate systems at high

pressure at temperatures from 313.2 K to 348.2 K and pressures up to

25.28 MPa using a static apparatus. 

The major point of this work was to obtain high-pressure experimental

data for (carbon dioxide + caprolactone acrylate) mixture by investigating

mixtures of carbon dioxide with a component. The experimental data

for the carbon dioxide + caprolactone acrylate system obtained in this

work was correlated with the Peng-Robinson equation of state [11]

using mixing rule including two adjustable parameters. The critical

pressure, critical temperature and acentric factor of caprolactone

acrylate were estimated by the Joback and Lydersen method with

group contributions [12]. 

2. Experimental Section

 Apparatus and Procedure Fig. 1 shows a schematic of the high

pressure experimental apparatus, variable-volume view cell used for

the phase equilibria measurement [13,14]. A high-pressure, variable-

volume view cell (6.2 cm outer diameter × 1.59 cm inner diameter),

a working volume of ~28 cm3, was used to obtain the phase behavior

curves; it is capable of operating up to a pressure of 70.0 MPa. The

front cap section of the cell is fitted with a (1.9 cm thick × 1.9 cm

diameter) a sapphire window (GT Advanced Technology, USA) which

enabled us to observe the phases inside the cell. The sapphire window is

sealed by an O-ring and backup ring placed around the diameter of

window. The mixture in the cell was compressed to the desired
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pressure by moving a piston located within the cell. The piston

(2.54 cm length) was moved using water pressurized by a high

pressure generator (HIP, model 37-5.75-60). The pressure of the

mixture was measured with a Heise gauge (Dresser Ind., model

CM-53920, 0 to 34.0 MPa) accurate to ±0.02 MPa. The temperature

of the cell, which is typically maintained to within ±0.2 K, was

measured using a platinum-resistance thermometer (Thermometrics

Corp., Class A) and a digital multimeter (Yokogawa, model 7563,

accurate to ±0.005%). The mixture inside the cell can be viewed on

a video monitor using a camera coupled to a borescope (Olympus

Corp., model F100-038-000-50) placed against the outside of the

sapphire window. Typically, supercritical carbon dioxide is added

to the cell to within (0.7~5.0) ±0.003 g using a high pressure

cylinder. The monomer is loaded into the cell to within (4.4~11.1)

±0.002 g using a syringe after the empty cell is purged several

times with carbon dioxide and nitrogen to remove traces of air and

organic matter.

At a fixed temperature, the solution in the cell is compressed to a

single phase. The inside of the solution is maintained in the single

phase region at the desired temperature for at least 30~40 min for the cell

to reach phase equilibrium. The pressure is then slowly decreased until a

second phase appears. A bubble point pressure is obtained when small

vapor bubbles appear first in the cell.

2-1. Materials

Caprolactone acrylate (> 0.90 mass fraction purity, CAS RN

110489-05-9, C9H14O4) used in this work was obtained from Scientific

Polymer Products, Inc. (Ontario, NY 14519, USA). A component

was used without further purification in the experiments. Carbon

dioxide (> 0.999 mass fraction purity) was obtained from Deokyang

Gases Co. and used as received. The specifications of all chemicals

used in the experiment are summarized in Table 1.

3. Results and Discussion

High pressure phase behavior data for the caprolactone acrylate in

supercritical carbon dioxide was measured, and the experimental

uncertainty was estimated to be ±0.02 MPa and ±0.24 K for a given

loading of the cell [15,16]. The standard uncertainties of caprolactone

acrylate mole fractions were estimated to be ±0.0025 [17]. 

Fig. 2 and Table 2 show the experimental pressure-composition

(P, x) isotherms at T = (313.2, 333.2, 353.2, 373.2 and 393.2) K, and

pressures from (4.21 to 55.93) MPa for the (carbon dioxide + caprolactone

acrylate) system. Three phases were not observed at five temperatures.

As shown in Fig. 2, the P-x isotherms are consistent with those

expected for a type-I behavior [18,19]. The solubility of carbon dioxide

decreases as temperatures shift higher under a constant pressure.

Then, the solubility pressure increases as the temperature increases

at the mole fraction of caprolactone acrylate ≥ 0.097.

In this research, the experimental result was correlated with the

Peng-Robinson equation of state. The Peng-Robinson equation of

state [11] is as follows:
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Fig. 1. Schematic of high-pressure apparatus.

Fig. 2. Plot of pressure against mole fraction that compares the

experimental data (symbols) of the (carbon dioxide + caprolac-

tone acrylate) system. , 313.2 K; , 333.2 K; , 353.2 K;

, 373.2 K; , 393.2 K.

   
  

Table 1. Specifications of the chemicals used

Chemical name Mass fraction purity Source CAS RN 

CO2 >0.999 Daesung Ind. Gases Co. 124-38-9

Caprolactone acrylate >0.900 Scientific Polymer Products, Inc. 110489-05-9
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where Tc, pc, Tr and ω are the critical temperature, critical pres-

sure, reduced temperature (T/Tc) and acentric factor of the pure

component, respectively. The Peng-Robinson equation of state

was used with the following mixing rules:

(6)

(7)

(8)

(9)

In the rule, kij and hij are binary interaction parameters and aii and

bii are pure component parameters [11]. Objective function (OBF)

and root mean squared relative deviation (RMSD) percent of this

calculation are defined by

 

(10)

(11)

Marquardt [20] was used to optimize the objective function. Table

3 lists the pure component critical temperatures (Tc), critical pres-

sures (Pc), and the acentric factors (ω) for carbon dioxide [12],

caprolactone acrylate [12] used with the Peng-Robinson equation

of state. The boiling points were obtained by the Scientific Polymer

Products Co., Ltd. [21]. The property of caprolactone acrylate was

calculated by the Joback group-contribution method [12]. 

Fig. 3 shows the comparison between the experimental results of

the (carbon dioxide + caprolactone acrylate) system and calculated

values obtained using the Peng-Robinson equation at 353.2 K. The

binary interaction parameters of the Peng-Robinson equation of state
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Table 2. Experimental Data for the Carbon Dioxide + Caprolactone

Acrylate System. BP is a bubble-point

Caprolactone Acrylate 

Mole Fraction
pa/ MPa Transitionb

Ta / K = 313.2 K

0.097 53.21 BP

0.118 40.59 BP

0.148 30.10 BP

0.184 20.69 BP

0.231 15.38 BP

0.273 12.10 BP

0.308 10.76 BP

0.324 10.32 BP

0.370 9.17 BP

0.437 7.70 BP

0.491 6.72 BP

0.574 5.07 BP

0.653 4.21 BP

T / K = 333.2 K

0.097 53.41 BP

0.118 44.69 BP

0.148 34.52 BP

0.184 26.24 BP

0.231 20.72 BP

0.273 16.17 BP

0.308 14.45 BP

0.324 13.45 BP

0.370 11.79 BP

0.437 10.00 BP

0.491 8.48 BP

0.574 6.72 BP

0.653 6.14 BP

T / K = 353.2 K

0.097 54.90 BP

0.118 47.52 BP

0.148 38.24 BP

0.184 30.90 BP

0.231 24.90 BP

0.273 20.38 BP

0.308 17.83 BP

0.324 16.31 BP

0.370 13.97 BP

0.437 12.31 BP

0.491 10.52 BP

0.574 8.21 BP

0.653 6.66 BP

T / K = 373.2 K

0.097 55.35 BP

0.118 49.66 BP

0.148 41.69 BP

0.184 34.66 BP

0.231 28.52 BP

0.273 23.83 BP

0.308 20.66 BP

0.324 19.21 BP

0.370 16.10 BP

0.437 13.52 BP

0.491 11.86 BP

0.574 9.28 BP

0.653 7.41 BP

Table 2. Continued

Caprolactone Acrylate 

Mole Fraction
pa/ MPa Transitionb

T / K = 393.2 K

0.097 55.93 BP

0.118 51.35 BP

0.148 44.31 BP

0.184 37.24 BP

0.231 31.41 BP

0.273 27.07 BP

0.308 22.93 BP

0.324 22.17 BP

0.370 17.93 BP

0.437 14.83 BP

0.491 13.03 BP

0.574 10.38 BP

0.653 7.90 BP
aStandard uncertainties are u(T) = 0.2 K, u(p) = 0.04 MPa and u(x) = 0.0025
bBP: Bubble-point
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parameter value of the Peng-Robinson equation of state for the (carbon

dioxide + caprolactone acrylate) system was kij = 0.116 and hij = 0.066

(experimental data points: 13; RMSD: 23.9%).

Fig. 4 compares the experimental results with calculated (P-x)

isotherms at temperatures of (313.2, 333.2, 373.2 and 393.2) K for

the (carbon dioxide + caprolactone acrylate) system using the optimized

kij and hij values determined at each temperatures. As shown in Fig.

4, obtained were well-fitted data with the Peng-Robinson equation

using adjustable mixture parameters for the (carbon dioxide + caprolactone

acrylate) system. The five temperatures using two parameters determined

at 353.2 K, RMSD for the (carbon dioxide + caprolactone acrylate)

system became too high when the parameters were applied to this

system. So it is necessary to obtain the optimized parameters for each

temperature to decrease RMSD (see Table 4). The curves calculated

by the Peng-Robinson equation of state did not demonstrate three

phases at five temperatures. As shown in Fig. 4, it is plotted the pressures

against mole fraction in order to compare the experimental data (symbols)

of the (carbon dioxide + caprolactone acrylate) system with calculations

(solid lines) obtained with the Peng-Robinson equation of state using

optimum parameters (kij and ηij) at each temperature. Here, the number

for experimental data is 13 at each temperature. In comparison, the

experimental data and calculated curve show poor agreement at four

Fig. 4. Plot of the pressure against the mole fraction, comparing the experimental data (symbols) of the (carbon dioxide + caprolactone acry-

late) system with calculations (solid lines) obtained with the Peng-Robinson equation of state using optimized kij and ηij at each tem-

perature: , 313.2 K; , 333.2 K; , 373.2 K; , 393.2 K.    

Fig. 3. Plot of pressure against mole fraction that compares the experi-

mental data (symbols) of the (carbon dioxide + caprolactone

acrylate) system with calculation obtained from the Peng-Rob-

inson equation of state with kij and ηij set equal to zero (blue

solid lines), kij = 0.065, ηij = 0.045 (carbon dioxide + caprolac-

tone acrylate) (red solid lines) at 353.2 K.

Table 3. The properties of pure component in carbon dioxide and caprolactone acrylate

Compounds Mw Chemical Structure Tb / K Tc / K pc / MPa ω

Carbon Dioxide 44.01 O=C=O 304.2 7.38 0.225

Caprolactone Acrylate 345.41 C17H28O7 539.2a 663.4 1.45 1.149
aScientific Polymer Products Co., Ltd.
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temperatures. This poor agreement is due to error of boiling point

and critical properties. According to the calculated result, the critical

mixture curve showed type-I.

4. Conclusions

The P-x isotherm data of (carbon dioxide + caprolactone acrylate)

system was studied using a variable-volume view cell with static-

type apparatus. Phase equilibrium data was measured in synthetic

method in a temperatures of (313.2 ≤ T ≤ 393.2) K and pressures of

(4 < P < 56) MPa. The (carbon dioxide + caprolactone acrylate)

mixtures did not exhibit three phases at five temperatures. The Peng-

Robinson equation of state is capable of properly predicting the phase

behavior for the system using two temperature-independent mixture

interaction parameters. The agreement between calculated and

experimental curves was poor for using two optimized parameters

obtained with the Peng-Robinson equation of state at each temperature.

The linear curves for two binary interaction parameters (kij and ηij)

against the temperatures show reasonable tendency.
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Nomenclatures

a, b : parameter in the Peng-Robinson equation of state

k : binary interaction parameter in the Peng-Robinson equation

of state

P : pressure [MPa]

T : temperature [K]

R : universal gas constant

x : mole fraction of liquid

V : molar volume [cm3/mol]

Greek letters

α : parameter in the Peng-Robinson equation of state

κ : parameter in the Peng-Robinson equation of state

η : binary interaction parameter in the Peng-Robinson equation

of state

ω : acentric factor

Subscripts

i, j : component identifiers

c : critical property

r : reduced property

mix : mixture

exp : experiment

cal : calculation 
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