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Abstract − The effect of a reactant ratio on the growth of a buoyancy-driven instability in an irreversible A+B→C

reaction system is analyzed theoretically and numerically. Taking a non-stoichiometric reactant ratio into account, new

linear stability equations are derived without the quasi-steady state assumption (QSSA) and solved analytically. It is

found that the main parameters to explain the present system are the Damköhler number, the dimensionless density

difference of chemical species and the ratio of reactants. The present initial grow rate analysis without QSSA shows that

the system is initially unconditionally stable regardless of the parameter values; however, the previous initial growth rate

analysis based on the QSSA predicted the system is unstable if the system is physically unstable. For time evolving

cases, the present growth rates obtained from the spectral analysis and pseudo-spectral method support each other, but

quite differently from that obtained under the conventional QSSA. Adopting the result of the linear stability analysis as

an initial condition, fully nonlinear direct numerical simulations are conducted. Both the linear analysis and the nonlinear

simulation show that the reactant ratio plays an important role in the onset and the growth of the instability motion.

Key words: Density driven fingering, Irreversible reaction, Reactant ratio effect, Linear stability analysis, Direct numer-

ical simulation

1. Introduction

Buoyancy-driven instability coupled with chemical reaction plays

important roles in mixing in micro-fluidic devices [1], geological

CO2 sequestration [2] and CO2 capture process [3]. Under this background,

Almarcha et al. [4, 5] and Kuster et al. [6] experimentally analyzed

the effect of gravity on the stability of reactive interface in a Hele-

Shaw cell. In their experiments, they employed acid-base reactions

which can be treated as infinitely fast reaction. Later, Lemaigre et al.

[7] conducted experimental and numerical studies on the onset of

Rayleigh-Taylor and double diffusive instability in reactive systems

confined within Hele-Shaw cells. Lemaigre et al. [7] experimentally

showed that the reactant ratio plays an important role in the type of

instability. Very recently, Cherezov and Cardoso [8] experimentally

showed that in a partially miscible system, the reactant ratio is important

in the prediction of the onset and the growth of gravitational instabilities.

In their experiments, they employed a non-stoichiometric acid-base

reaction system [7,8]. 

Theoretically, Hejazi and Azaiez [9,10] considered the viscosity

variation and transverse flow effects on the gravitational instability

of a reactive front. However, their linear stability analysis strongly

depends on the conventional quasi-steady state approximation (QSSA)

in the global (τ, z) domain. Even though the conventional QSSA has

been widely used to analyze the stability of the fluid systems [9-15],

its validity should be carefully checked. As discussed by Tan and

Homsy [11] and Trevelyan et al. [12], the validity of their QSSA is

questionable, especially at the early stage of diffusion. Therefore,

systematic stability analysis without the QSSA is strongly needed to

understand the chemical effect on the buoyancy-driven instability.

Under this background, Kim [16] conducted systematic linear stability

analysis on the onset and growth of gravitational fingering driven by

the stoichiometric irreversible chemical reaction using the QSSA in

the (τ, ζ) similarity domain. Also, fully non-linear numerical simulations

were conducted. Recently, for a partially miscible system, Loodts et

al. [17] analyzed the effect of reactant ratio on the onset and the

growth of the gravitational fingering theoretically and numerically.

Later, Kim and Wylock [18] reconsidered the same system without

the QSSA. 

In the present study, for a fully miscible system, we focused on the

effect of reactant ratio on the onset and the growth of buoyancy-

driven instability. Under the linear stability theory, infinitely fast and

infinitely slow reactions were considered analytically without the aid

of QSSA. Because the temporal evolution of base field is taken into

account, the present analysis is the relaxed the previous QSSA where

the base fields are frozen at a certain time. Using the result of the linear

stability analysis as an initial condition, direct nonlinear simulations

were also conducted. Both the analytical and the numerical analyses

give nearly same results regardless of the solution method and the

calculation domain adopted in these analyses. Since we derived stability

equations without any unphysical assumption and solved them

analytically, the present study can be used as a base point to study the
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chemical reaction effects on buoyancy-driven convection. 

2. Theoretical Analysis

2-1. Governing equations

The system considered here is a Hele-Shaw cell or a two-dimensional

porous medium schematized in Fig. 1. Inside a system, a solution of

a reactant A at concentration CA0 is placed on top of a solution

containing a reactant B at concentration CB0(= rCA0). A chemical

reaction occurs between the two chemical species A and B, and a

product C is produced the following irreversible bimolecular elementary

reaction: 

(1)

If the density of product C is different from that of either reactant,

the flow system can be hydrodynamically unstable and induce

density-driven convective motion. 

The governing equations are those for the conservation of mass,

the conservation of momentum in the form of Darcy’s law and the

convection-diffusion-reaction mass balance equation,

, (2)

, (3)

, (4)

, (5)

, (6)

where U is the velocity vector, μ the viscosity, K the permeability, P

the pressure, Ci the concentration of chemical species i(= A,B or C),

Di the diffusion coefficient chemical species i, and kr the reaction

constant of reaction (1). The solution density is assumed to depend

linearly on the concentrations as

(7)

where ρr is the density of the solvent and  the solutal

expansion coefficient of species i. It is assumed that the diffusivities

of chemical species in the aqueous solution are nearly equal so that

 is assumed. This assumption enables us to avoid

double-diffusive effects and to attack this system analytically. The

above governing equation can be written in dimensionless form:

, (8)

, (9)

, (10)

, (11)

, (12)

using , K /D, ,  used as the length, time, velocity

and pressure scale. Here, , ,

, ,  and ν is the kinematic

viscosity. The Damköhler number, Da, is defined as

, (13)

represents the ratio of hydrodynamic time scale (K /D) to chemical

ones (1 / krCA0).

2-2. Base concentration field

From Eqs. (10)-(12), the base-state concentrations , 

and  can be obtained by solving the following reaction-

diffusion equations:

, (14)

, (15)

. (16)

The exact analytic solution for the above set of base-state equa-

tions is not known. However, the above equations can be reduced as

 and , (17a & b)

where  and . The proper initial and

boundary conditions are

,  and . (18a)

,  and .  (18b)

The above equations can be easily solved as 
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Fig. 1. Schematic diagram of system considered here.
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 and , (19a & b)

where  is a self-similar variable. From the above solution

(19), the following relation can be derived:

, (20)

Based on this solution, for the infinitely fast reaction or large time

asymptote, i.e.,  or , where  and

, the base concentration fields can be obtained as 

. (21)

We can obtain the reaction front position, ξ f, by solving

. And, for the infinitely slow reaction case,

, where , the base concentration fields can be

obtained as 

(22)

Base concentration profiles for the limiting cases of  and

 are summarized in Fig. 2. As shown, for the limiting case

of , the base concentrations of the reactants and the product

have singular point at . This singularity can be avoided by

using θ0 and ω0 rather than a0, b0 and c0, because (CA +CC), (CB + CC)

and their fluxes should be continuous. 

Based on the density function defined in Eq. (7), the following

relations can be derived: 

,

(23)

where the Rayleigh numbers, Ri’s, are defined as 

. (24) 

To discuss the stability characteristics of the system, it is more

convenient to express the density gradient as

, 

(25)

Because at a certain time τ,  and  are always

positive regardless of Da, the system is globally potentially unsta-

ble when  and . In the opposite

case, i.e.  is always negative since  and

, the system is unconditionally stable. Further-

more, as pointed out by Rongy et al. [19], for a nonzero Da, non-

monotonic density profile is possible (see their Fig. 4) and there-

fore, locally unstable and stable regions can coexist. Therefore, a

careful stability analysis is needed to study the present system. Even
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Fig. 2. Base concentration profiles for the infinitely fast and infinitely

slow reactions.

Fig. 3. The growth rates obtained from the various approximations

for the specific case of RA =1, RB=0, RC=0.5, r=0.5 and k=0.1.

Fig. 4. The effect of the reactant ratio on the neutral stability curves

obtained from 9-term approximation for the specific case of

RA = RB = 1 and RC = 0.
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though Trevelyan et al. [20] discussed the effects of the ratio of

the reactant concentration, the ratio of the diffusion coefficients,

and Rayleigh numbers on density profiles, a linear stability anal-

ysis without the QSSA has never been tried. 

2-3. Linear stability theory

Under the linear stability theory, the following dimensionless stability

equations are obtained by perturbing Eqs. (8)-(12):

, (26)

, (27)

, (28)

, (29) 

where the density is decomposed as . And, based on Eq.

(7),

, (30)

is assumed [20]. Then, Eq. (26) can be reduced as

. (31)

The proper boundary conditions for Eqs. (26)-(29) are

(32)

By rearranging Eqs. (27)-(29), we can obtain the following

equations:

 and , (33a & b)

where , ,  and 

. From Eqs. (33a) and (33b), ω1 = −rθ1 can 

be deduced and therefore, the following relation is hold:

.  (34)

Based on this relation, for the infinitely fast reaction or large time

asymptote, i.e.,  or , where a1 = 0 and

b1 = 0, the concentration disturbance fields can be obtained

as 

, (35)

And, for the infinitely slow reaction case, , where c1 = 0,

the concentration disturbance fields can be obtained as 

.  (36)

Since the coefficients of the above equations are independent of x

and y, under the normal mode analysis, the Laplacian operator can be

expressed as

, (37)

where  and k is the horizontal wavenumber in

(x, y) - plane. Finally, with Eqs. (31) and (33) the following stability

equations are obtained:

, (38)

. (39)

Ben et al. [21], Riaz et al. [22] and Pritchard [23] mentioned that

the disturbances which are localized near the reaction front cannot be

accurately captured in  - domain, since the dominant operator,

 does not have localized eigenfunctions that vanish at the

infinite boundaries. Following their suggestion, we can reformulate

Eqs. (38) and (39) in the similar in  - domain as 
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2-4. Spectral analysis

Using the generalized Fourier series, the concentration disturbance

fields can be expressed as 

, (45)

where the orthogonal functions  satisfy the following Sturm-

Liouville equation:

, (46)

under the following boundary conditions: 

. (47)

where L = (D2 + ζ / 2D) and D = d / dζ. The solutions of Eqs. (46)
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of initial value ordinary differential equations as

,

for n = 0, 1, 2, . (57)

For the limiting case of , the above equation can be reduced as

, for n = 0, 1, 2, . (58)

Therefore, the growth rate of n-th mode disturbance can be represented as 

, (59)

where . The above relation means that for the limiting

case of , the most unstable mode disturbance is the zeroth one

and its growth rate is . This growth rate, also, can be

obtained for the long-wave limit  and finite time, i.e. .

From these, the proper initial condition is assumed to be 

 at τ = τi, (60)

where τi is chosen as a small value but not 0, to avoid a singularity at

τ= 0. 

To trace the growth history of the disturbances, from Eqs. (53) and

(54) the growth rate is defined as

. (61)

For a specific case, the effects of the initiation time τi on the

growth rate and maximum θ1 are given in Fig. 5. As shown, the

growth rate defined in Eq. (61) is insensitive to the initiation time τi.

Here, this initial value problem approach in the (τ,ζ) - domain is

called IVPA2. 

2-7. Quasi-steady state approximations 

Conventionally, this kind of problem has been analyzed under the

quasi-steady state approximation (QSSA) in the (τ, z) - domain

(here, we call it QSSA1) [9-15]. Under the QSSA1, the disturbance

quantities are expressed as

. (62)

For the initial state of τ = 0, by applying the above QSSA into Eqs.

(26)-(29), the following stability equations can be obtained:

, (63a)

, (64a)

, (65a)

for z < 0, and 

, (63b)

, (64b)

(65c),

for z > 0, under the following matching conditions:

, 

and . (66)

Following the standard procedure explained in Hejazi and Azaiez

[9,10], the above equations have the following solutions:

, (67a)
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Fig. 5. Comparison of the growth rates obtained from the eigen

analysis and IVPA for the specific case of RA = 1 RB = 0 and

RC = 0.5, r = 0.5 and k = 0.1. The initiation time is not import-

ant if τi ≤ 10.
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. By applying the matching condition (66) on the

above solutions, the initial growth rate based on the QSSA1 can be

obtained as

. (70)

For the instantaneous reaction, , the above relation becomes 

. (71)

For the stoichiometry ratio, r = 1, the above relation is reduced as

, (72a)

or equivalently as

, (72b)

regardless of Da. For the non-reactive case which corresponds to

, the relation can be degenerated as

, (73a)

or equivalently

. (73b)

The above relations (73) and (74) imply that the system can be

initially unstable for . The maximum growth rate σmax

=  occurs at the most unstable wavenumber kmax

= . These stability characteristics are identical to Tan

and Homsy’s [11]. Even though the above QSSA1 has been widely

used to analyze the stability of the fluid systems, its validity should

be carefully checked. As discussed by Tan and Homsy [11] and

Trevelyan et al. [12], the validity of their QSSA1 is questionable

especially at the early times. The present analysis without the QSSA

suggests that the present system is initially stable. This is the one of

the critical differences between the previous studies and the present

one. 

Using the QSSA in the (τ, ζ) - domain (here we call it QSSA2)

[24, 25], the disturbance quantities can be expressed as 

. (74)

Substituting the above relation into Eq. (40), the following relation

can be derived:

(75)

For the limiting case of , Eq. (42) can be reduced as 

 for , (76a)

 for . (76b)

And, for another limiting case of , Eq. (43) becomes 

,  (77)

where . The proper boundary conditions for Eqs. (79)-

(81) are

. (78)

Using the similar procedure to obtain Eq. (60), the growth rate can

be obtained as

.  (79)

Note that the present QSSA2 is identical with the exact solution

for the limiting case of E = ET. Also, the above equations can be

solved with the well-known shooting method [24]. For the specific

case of RA = RB = 1, RC = 0 and r = 0.75, the neutral stability curves

based on the Eq. (80) and the numerical shooting solution are

compared in Fig. 6. As shown, the critical conditions determined by

the minimum points of each curves are relatively insensitive to the

number of terms used in Eq. (80). 

3. Numerical Simulation

3-1. Stream function-vorticity formulation and Fourier spectral

method

Even though the above analyses give useful information on the

onset and the growth of the instabilities, more exact solution can be

obtained by solving the initial value problem of Eqs. (7)-(11). By
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Fig. 6. Neutral stability curves under the QSSA2 for the specific

case of RA =RB = 1, RC = 0 and r = 0.75. Neutral stability curves

obtained from the various approximations and the numeri-

cal shooting method are compared.
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following Tan and Homsy’s [26] stream function-vorticity formulation,

the following equations can be derived: 

, (80)

, (81)

. (82)

, (83)

where  is assumed, and  is

given in Eq. (19). For infinite Da case, the vorticity given in Eq. (86)

can be rewritten as 

 for , (84a)

 for . (84b)

Also, for nonreactive system whose Da = 0, Eq. (86) can be reduced

as

. (85)

As discussed in section 2.3, for the limiting case of RChem = 0, it

should be noted that ω1 = ω1 = ω1 and therefore the chemical

reaction does no effect on the onset and the growth of the instability

motion. 

To solve Eqs. (84)-(89), we have employed the Fourier pseudo-

spectral numerical scheme described in Tan and Homsy [26]. Based

on the above relations, Eqs. (81)-(83) can be expressed in the Fourier

space as

,  (86)

. (87)

The solution of Eq. (93) can be obtained analytically as

. (88)

The time integration of the above solution is done by using a second

order Adam-Bashforth predictor-Adam-Moulton corrector scheme,

and the physical counterparts of the Fourier components are obtained

by the inverse discrete Fourier transform (IDFT) based on fast

Fourier transform (FFT) algorithm.

3-2. Linear analysis

Prior to applying the pseudo-spectral method to the nonlinear

simulation, its validity should be checked for the linear case. In the

linear region, the convective flux given in Eq. (84) can be simplified as

. (89)

To start the calculation, proper initial and boundary conditions

should be provided. At a excitation time, τi, we imposed a small

disturbance given in Eq. (64) with a single wavenumber k as

, (90a)

,  (90b)

here , τi should be small values. In this linear regime

calculation, we set the calculation domain as (lx, ly) = (500, λ),

here and λ(= 2π / k) is the wave length corresponding the wav-

enumber k.

For a specific case of RA = 1, RB = 0, RC = 0.5, r = 0.5 and k = 0.1,

the growth rates calculated from the pseudo-spectral and the spectral

methods are compared in Fig. 7. As shown, the conventional QSSA1

predicts that the system has positive growth rate, i.e., the system is

unstable, during the initial stage. However, the present study predicts

the system has large negative growth rate and, therefore, it is stable

during the initial stage. In the QSSA1, the growth rate of the base

state is assumed to be very small with respect to that of disturbances.

However, this assumption is unphysical because the growth of the

base state is very large during the initial stage. This brave assumption

caused a difference between the present growth rate and that from

the QSSA1 for the small time region, as shown in Fig. 7. This figure

also shows that the present growth rate is independent of the solution

method and the calculation domain. For the purpose of comparison,

the growth rate σ* in the (τ, ξ) - domain is converted into σ in the (τ,

z) - one according to the following relation [27]:

. (91)

Recently, Tilton et al. [28] reproduced the above relation. 
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Fig. 7. Comparison of the growth rate obtained from the spectral

method and pseudo-spectral one for the case of RA = 1, RB = 0,

RC = 0.5, r = 0.5 and k = 0.1.
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3-3. Direct numerical simulation (DNS)

In the previous analyses, the wavelength of the disturbances was

fixed throughout the simulation. However, the nonlinear phenomena

such as wavelength selection mechanism cannot be observed in the

single-mode analysis. In this section, the calculation domain is set to

[0,2000] × [−1000,1000], and 2048 × 2048 collocation points are

used. Unlike the linear theory, the initiation condition is important in

the nonlinear analysis. Since the initial growth rate analysis cannot

suggest the dominant wavenumber, in the present simulation the

following initial condition is employed:

 at , (92)

where ε means the initial disturbance level and rand (x) is the

pseudo-random number uniformly distributed between −1 and 1.

This condition prevents unphysical conditions of θ > 1 or θ < 0, if ε

is less than 0.01, as shown in Fig. 8. In the present study, we set

ε = 0.01. Recently, Tilton et al. [28] used this kind of initial

condition in their DNS study on the onset of convective instability in

the carbon dioxide sequestration process. For region of τ ~ 0, the

base concentration gradient  shows non-analytic feature

and leads to bad convergence properties. For this reason, at all the

non-linear numerical simulations, the disturbance given in Eq. (93)

is introduced at .

Here, we are interested in the enhancement of mixing or mass

transfer driven by the instability motion, let us consider the mass

transfer rate of (A + C). The dimensionless total mass flux at z = 0, J,

which can be written as the sum of contributions from the base

diffusion state, J0, and the convective motion, J1:

. (93)

The diffusional flux can be computed explicitly from the base

concentration profile as

. (94)

The flux from convective motion is obtained as

. (95)

For the specific case of RA = 1, RB = 0, RC = 0.5 and r = 0.5, the

effect of the random number sequence on the convective flux is

summarized in Fig. 9. As shown, the random number sequence

has little effect on the convective flux. Regardless of the random

number sequence, the nonlinear effects become sensible after

τ = 1500. However, for a real physical system it is difficult to

characterize the amplitude and shape of initial disturbances. The

effect of the amplitude of the initial disturbance on the convective

flux f1 in Fig. 10, the convective fluxes for three different simu-

lations were given. Regardless of the magnitude of the initial dis-

turbance, during the initial period, diffusion dominates over convection

and the disturbances remain in the linear region. It is seen that the
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Fig. 8. Effect of the initial disturbance magnitude on the concentra-

tion distribution. Insect figure shows that an unphysical

negative concentration is possible for ε ≥ 0.2. 

Fig. 9. The effect of random sequence on the total flux for the case

of RA = 1, RB = 0, RC = 0.5 and r = 0.5. Here the distur-

bances whose ε = 10-2 are introduced at τi = 0.1.

Fig. 10. The effect of initial disturbance level, ε on the total flux for

the case of RA = 1, RB = 0, RC = 0.5 and r = 0.5. Here the dis-

turbances having various ε are introduced at τi = 0.1.
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weaker the initial disturbance is, the longer is the time at which

the nonlinear terms begin to dominate. Recently, Tilton et al. [28]

reported a similar result in their DNS study on the onset of con-

vective instability in the carbon dioxide sequestration process (see

their Fig. 10).

4. Results and Discussion

One of the most important stability characteristics is the critical

condition for onset of instability. In the present study, the neutral

stability curves are obtained by setting σ* = 0, and the critical

conditions are determined by the minimum point of each curve.

However, the conventional QSSA1 cannot be used to obtain the

neutral stability curve because it yields that the system is unstable

even at τ = 0. For the extreme case of RA = RB = RC = 1, the effect of

the reactant ratio, r on the neutral stability curve is summarized in

Fig. 11. In this case, the system is physically stable, neutral stable and

unstable for r > 1, r = 1 and r < 1, respectively. It is interesting that

for the case of r > 1 the system is physically stable; however, the

chemical reaction induces the onset of the fingering instability even

in the physically stable system. Usually, chemical species and their

physicochemical properties are fixed in real situations, even then we

have another parameter r which can control the onset of instability. 

For the stoichiometric case (r = 1), the neutral stability curves for

the cases of (RA, RB, RC) and (RA, RB, 2RA + 2RB − RC) are identical.

Rongy et al. [19] and Kim [16] discussed that the flow pattern

corresponding(RA, RB, RC) is identical to the flow pattern (RA, RB,

2RA+2RB −RC) except for the reversal of the flow direction. However, in

the nonstoichiometric case ( ), the stability characteristics for

both cases are different due to the non-symmetric density profiles.

Therefore, we should carefully check the effect of the chemical reaction

on the onset of instability. 

From Eq. (23), it can be expected that to induce the instability

motion, RPhys > 0 or |RChem |> 0 should be satisfied. For physically

stable systems, i.e., RPhys < 0, the chemical effect should overcome the physically stabilizing effects to insure the onset of convection.

The neutral stability curves are summarized for the cases of RA = 0.5

and RB = 1 in Fig. 12. In this case, higher r makes the system physically

more stable; however, this stabilizing effect is outbalanced by the

destabilizing effect of the chemical reaction. Also, negative RC promotes

the onset of fingering instability. From Eq. (42), it can be expected

that for the case of RA<(r / (1+ r))RC<rRB, the system is unconditionally

stable; i.e., σ* is always negative and therefore for the case of

0 < RC <(1 + r), the neutral stability curves cannot be found in Fig. 12.

In the physically-neutrally-stable case, i.e., RPhys = 0, the instability

can be induced if |RChem| > 0. The neutral stability curves for the

various cases are given in Fig. 13. In the physically stable and neutrally

stable systems, i.e., , no instability motion can be expected

in case of RC = (RA + RB), which corresponds to the non-reactive one

and RChem = 0. 

In the physically-unstable systems, i.e. RPhys > 0, we considered

two typical cases RC + (RA + RB) / 2 and RC + (RA + RB). The density

r 1≠

RPhys 0≤

Fig. 11. The effect of the reactant ratio on the neutral stability condi-

tions for the specific case of RA = RB = RC = 1. 

Fig. 12. The effect of the reactant ratio, r on the neutral stability con-

ditions for the physically-stable system of RA = 0.5, RB = 1

and RC = 0.75.

Fig. 13. The effect of the RC on the neutral stability conditions for the

physically-neutral-stable system of RA = 0.5 and RB = 1. 
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of the product C is the average of the reactants A and B in the former

case, and the sum of the reactants A and B in the latter one. The neutral

stability curves for the physically-unstable system are summarized in

Fig. 14. It is well-known that the non-reactive system (Da = 0) is

unstable, and the case of RChem = 0 corresponds to the non-reactive

one. As shown in Figs. 14(a) and (b), higher RPhys, i.e., lower r, makes

the system more unstable. The RC-effect on the stability conditions is

given in Fig. 15. As shown, the non-reactive case corresponds to the

upper-bound of the neutral stability curves, that is the chemical reaction

makes the system unstable regardless of RC.

Now, we will consider the growth of disturbance through the

nonlinear DNS calculation. For a certain initial disturbance, the effect

of the various parameters on the total fluxes is summarized in Figs.

16-20. As shown, the characteristic time τm at which the flux starts to

deviate from the diffusional one is strongly dependent on RA, RB, RC

and r. The effect of the reactant ratio, r on the temporal evolution of

the total flux for the physically-stable case of RA = 0, RB = 1 and

RC = −2 is summarized in Fig. 16. This figure shows that in the

physically-stable system, convective instability can occur for a certain

Fig. 14. The effect of the reactant ratio, r on the neutral stability con-

ditions for the physically-unstable systems. (a) RA = 1, RB = 0.5

and RC = 0.75 and (b) RA = 1, RB = 0.5 and RC = 1.5.

Fig. 15. The effect of the RC on the neutral stability conditions for the

physically-unstable system of RA = 1 and RB = 0.5. 

Fig. 16. The effect of the reactant ratio, r on the temporal evolution

of the total flux for the physically-stable system of RA = 0,

RB = 1 and RC = -2.

Fig. 17. The effect of RC on the temporal evolution of the total flux

for the physically-stable system of RA = 0, RB = 1 and r = 1.
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condition and the reactant ratio, r, is an important parameter to analyze

the onset of instability. The effect of RC for the physically-stable case

is summarized in Fig. 17. This figure shows that negative RC accelerates

the onset of convection for the physically-stable system. As shown in

Fig. 18, for the physically-neutrally-stable system of RA = 0.5, RB = 1

and r = 0.5, a similar trend can be found. 

For the physically-unstable system stable system of RA = 1, RB = 0.5

and RC = 0.75, the effect of the reactant ratio, r on the onset of

nonlinear convection is featured in Fig. 19. This figure shows that

the effect of r is not simple and, therefore, we cannot find a general

trend. RC
− effect on the nonlinear convection is also given in Fig. 20.

From this figure, like the physically-stable system, the smaller RC

enhanced the convective motion for the physically-unstable system. 

5. Conclusions

The effect of reactant ratio on the onset and growth of the buoyancy-

driven chemo-convection in a porous medium or a Hele-Shaw cell

was studied using linear stability theory and nonlinear direct numerical

simulation. By considering the non-stoichiometric reactant ratio,

new stability equations were derived without the QSSA and solved

analytically and numerically. Through the initial growth rate analysis,

it was found that for the limiting case of , the system was

unconditionally stable regardless of the density profile. However, the

previous analysis based on the QSSA predicted that initially the system

is unstable for the physically unstable system, .

This is the most critical difference between the previous analysis and

the present one. For the time evolving case, the growth rate of the

disturbance was calculated using the generalized stability theory

(GST) and the initial value problem approach (IVPA). Interestingly,

the present GST and IVPA show nearly the same result. 

It is shown that the chemical reaction can induce the convective

motion even in the physically stable or neutrally stable systems, i.e.,

. Since the important parameters for the present system are

RPhys and RChem (= RC − RA − RB), and RPhys can be controlled by the

initial reactant ratio, r, it plays important roles in the stability

characteristics. From the present direct numerical simulation (DNS)

study, it is found that the convective instability driven by the chemical

reaction does deform the reaction front and accelerate the propagation

of the reaction front, and the reactant ratio plays a critical role in the

onset and the growth of the instability motion. 
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Appendix

For the limiting case of , ψn given Eq. (51) is the solution

of the following equations:

 for , (A1a)

 for . (A1b)

By solving the above equation, the following recurrence relations

can be obtained:

,

(A2a)

with

,

(A2b)

(A2c)

for , and 

,

(A2d)

with

, (A2e)

,

(A2f)

for .

For another limiting case of , ψn can be obtained as 

, n = 2, 3, 4..., (A3a)

with

, (A3b)

. (A3c)

For the extreme case of , it should be

noted that  and therefore the chemical reaction does

no effect on the onset of convection, as discussed below Eq. (24). 
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