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Abstract −Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in

hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an

attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and

Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore,

impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most

affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found

that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models

precisely predict MSR performance and have great agreement with experimental results. However, on the basis of

statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.
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1. Introduction 

The hydrogen fuel cell is a promising power supply system in

mobile applications instead of traditional energy sources due to its

minimal environmental impact, high energy efficiency without Carnot

limitation, and no moving parts and noise [1-5]. Hydrogen is the cleanest

as well as the most efficient energy source and its combustion in fuel

cells produces water as only product [6-10]. However, it is inflammable,

explosive in gaseous form, directly unavailable in natural resources

with low volume energy density that lead to challenges in safe and

economic transport, storage and distribution of hydrogen [1,2,11-13].

Among the different ways to hydrogen supply, online hydrogen

production through methanol steam reforming is one of the most

promising options [1,4,7,9,11,12,14,15]. 

Methanol is widely available and produced in large scales using

different sources, such natural gas and coal [8,14]. It can be also

produced from various renewable sources that lead to sustainable

closed circuit [8,12,13,15]. The hydrogen-to-carbon ratio is high in

methanol and there is no C-C bond in its formula. It can be

straightforwardly reformed at lower temperatures with higher hydrogen

yield than many other hydrocarbon fuels, minimal coke formation on

the catalysts as well as no NOx and SOx emissions [6-8,12,14-16,19,

20].

Overall methanol steam reforming reaction as shown in Eq. 1

excluding CO production. However, reverse water-gas shift (RWGS)

and methanol decomposition (MD) reactions take place during

methanol reforming, which leads to CO formation in the reformer

[8,16]. Lowering the reforming temperature reduces the CO formation

through MD or RWGS, but it is not kinetically desirable because it

reduces the hydrogen yield and increases the reformer volume

[7,8,16]. Also, catalyst deactivation as a result of sintering or coke

deposition will be suppressed at lower temperatures [7]. Therefore,

to enhance the reformer compactness and performance, which is an

imperative requisite in mobile applications [21], some solutions have

been proposed such as micro-reactors, membrane reactors as well as

attempts to prepare more active catalysts. However, high cost and

complex fabrication methods of membrane reactors and micro-

reactors limit their entrance to the market. Fixed bed reactors thus

have simple and mature technology and are still the main option for

MSR [20]. Accordingly, catalyst activity, selectivity and stability are

the key issues for the MSR technology success for hydrogen supplying

in mobile applications [8-10,19]. 

MSR: CH3OH + H2O → 3H2 + CO2 (1)

MD: CH3OH → 2H2 + CO (2)

RWGS: CO2 + H2 → H2O + CO (3)

In general, Cu and Pd are the main catalyst components for the

MSR process. Cu-based catalysts have the highest activity and

selectivity in MSR reaction, and Cu/ZnO/Al2O3 has been widely

used for this reaction [1,6-8]. However, traditional copper catalysts

have poor Cu dispersion and high susceptibility to sintering at high
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temperatures and thermal instability [1,8,19]. Despite the higher

thermal stability of Pd catalysts, their higher cost and selectivity to

CO formation limit their application [8,20,24]. Therefore, many

researchers have attempted to develop alternative catalyst systems

for improving the catalyst characteristics and performance by

addition of different promoters, dopants or by changing the supports

or synthesis methods [1,19]. Among the different studied catalyst

systems, the high performance of Cu-SiO2 catalyst in MSR has been

proven [10,25-27]. Nature of support, its porosity and surface area,

and synthesis method could significantly affect the dispersion and

particle sizes of the active metals, interaction between catalytic metals

and support and consequently the catalyst activity [6,12,28]. Silica

aerogel has been utilized as efficient catalyst support due to its high

surface area, excellent pore volume, desired pore size distribution

and interconnected pores. Good characteristics and performance of

copper-silica aerogel catalyst in MSR process have been demonstrated

in our previous work [29-32].

Alternatively, it will be possible optimizing the reactor condition

by understanding the operating parameters effects on the MSR

performance in order to provide an efficient reformer. Several

researchers have attempted experimentally or theoretically to find

how the operating parameters influence the methanol conversion,

hydrogen yield and CO selectivity [18,22,33]. Although the conventional

'one-variable-at-a-time' (OVAT) strategy may be easy to operate and

analyze, this approach frequently disregards the interactions among

influential factors. Furthermore, the performance evaluation by using

OVAT is both time consuming and expensive [34]. 

Conversely, the statistical approaches, such as response surface

methodology (RSM), include not only carefully picking out a small

number of experiments that are to be performed under controlled

situations, but also organizing the conducting of the experiment

under statistically optimal conditions [35]. The RSM, which was

first introduced by Box and Wilson (1951), has been an effective tool

to improve the performance of processes in the chemical industry.

As a practical kind of this methodology, Box-Behnken design (BBD)

can statistically model the influence of the operating parameters,

both separately and as their cumulative interactions, on the system

output. The estimation of the quadratic model parameters, constructing

sequential designs and detection of lack of fit of the model makes

BBD a suitable option among the techniques of response surface

methodology for many chemical processes [4,8,36]. However, BBD

similar to other response surface designs is exact for only a narrow

range of input process parameters, and consequently their applications

are practically restricted to typically non-linear processes.

As an encouraging alternative modeling technique, artificial neural

network (ANN) has recently been applied in multivariate non-linear

processes for constructing rigorous models. The fundamental

computational structures of an ANN are analogous to the nervous

systems function of the human brain. It can be applied for assessing a

non-linearity between the influential factors and responses through

iterative training of data attained from a design of experiments.

Superior features of ANNs over conventional methods in modeling

and forecasting, such as tolerance patterns, universal approximation

capability and no need for system model, have made them popular

tools in modeling of many complicated (bio)chemical processes [35,

37-39]. Accordingly, ANNs have been applied so far to deal with a

variety of problems, for instance modeling intricate process [40],

describing the nonlinear relationship between input and output

variables [41]. 

To the best of our knowledge, there are limited studies on the

application of BBD and ANN for modelling hydrogen production

through methanol steam reforming. Hence, our prime research

objective set out to investigate the effects and interaction effects of

influential variables on performance of Cu-SiO2 aerogel catalyst in

methanol steam reforming via modeling and experimental evaluation.

In this respect, particular focus is on the application of RSM based

BBD approach to acquire a quadratic polynomial model and predict

the amount of methanol conversion. Then, the BBD results are in

comparison to ANN predictions with the aim of attaining the best

modeling and optimization method for producing the hydrogen

through MSR using Cu-SiO2 aerogel catalyst.

2. Materials and Methods 

2-1. Experimental setup

Cu-SiO2 aerogel catalyst synthesis method was described in detail

elsewhere [29,30]. In summary, water solutions of sodium silicate

and Cu(NO3)2·3H2O, respectively, as silica and copper precursors

were mixed vigorously together. Obtained solution was aged to co-

gelation of copper and silica precursors. The formed gel was immersed,

respectively, in isopropyl alcohol and hexane to pore solvent exchange

solvent and then in 20% HMDZ (Merck) solution in hexane to gel

surface modification. Finally, the obtained wet gel is dried in ambient

pressure under a programmed temperature up to 120 ℃ copper-

silica aerogel, then, calcined to 700 ℃. 

Copper content of the used catalyst was 13.3 wt%, which was

determined by atomic absorption spectrometry (AAS, Analytic Jena

nova 300). Catalytic tests of the Cu-SiO2 aerogel catalysts were

carried out in a U-tube Pyrex reactor (i.d =4 mm). 1.0 gr of Cu-SiO2

catalyst with 1-2 mm particles sizes was filled inside reactor. Both

sides of the catalyst bed were filled with glass beads. The reactor was

placed inside an electrical furnace equipped with K-type thermocouple.

Furnace (reactor) temperature was controlled using NP100 HANYOUNG

controller. The liquid reactants including methanol and water were

mixed together in the desired molar ratio and poured into the liquid

feed container. During the experiments, the liquid feed was injected

into the reactor entrance with the desired flow rate by a syringe pump

(702 SM Titrino, Metrohm, with an accuracy of 0.01 ml/min). Argon

was used as carrier gas which carries the liquid feed into the reactor.

To disturb the feed stream, glass particles were filled before the

catalytic bed inside the reactor. The feed stream was heated and

evaporated during passing the glass beads before reaching the catalyst
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bed. Reactor effluent was passed the condenser and the unreacted

water and methanol were separated from the product gas. Then, the

product gas was analyzed by online gas chromatography (Agilent

Technologies7890AGC). HP-Plot/Q capillary column (30 m, 0.53 mm,

40 µm) and TCD detector have been used in GC. Product gas included

hydrogen, carbon dioxide and carbon monoxide. A schematic view

of the experimental setup is presented in Fig. 1. Methanol conversion

was calculated as: 

Methanol Conversion (%) = (4)

in which ni is the molar rate of the i component and superscripts

of F and P are feed and product streams. H2 stream at 300 ℃ for

2 h was used for loaded catalyst reduction prior to MSR reaction. 

2-2. Experimental design

The experimental design was employed an RSM based BBD

(Table 1). The four-factor, three-level BBD was proceeded to optimize

the synergistic effect of variables and to find the response pattern.

The operating parameters range was found based on preliminary

analysis, liquid feed flow rate (1.2~4.8 mL/h), reaction temperature

(250~350℃), steam/methanol molar ratio (1.2~5) and carrier gas flow

(30~80 mL/min) were investigated on the methanol conversion (%). 

Experimental output was calculated to find the optimal level of the

factors. The variables were normalized at three levels from −1, 0 and

+1 as defined by Eq. (5).

(5)

where xi is input coded variable. The real value of independent

variables and its value at the centre point are labelled with Xi and

X0, respectively. ΔXi is also increment. The results of experiments

were statistically analyzed by using Minitab 14 statistical package

(MINITAB Inc., PA, USA).

2-3. ANN modelling

A neural network mimics the learning process of the brain through

mathematical descriptive model of interconnected nerve cells [35].

The basic forms of neural networks are typically feed forward neural
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Fig. 1. Schematic view of the experimental setup used for reaction tests.

1. Hydrogen generator 7. Pressure indicator 12. Temperature controller 17: Condenser

2. Argon cylinder 8. Check valve 13. Furnace 18: Gas – liquid separator

3. Valve 9. Three way valve 14. Glass beads 19: Collected liquid

4. Pressure regulator 10: Feed mixture 15. catalyst bed 20: Dry product gas

5. Needle valve 11. Syringe pump 16: Reactor 21: Gas chromatograph

6. Flow meter

Table 1. Experimental ranges and levels of the independent test variables

     Independent variables
 Factor

 Xi

Ranges and levels

Low Centre High

Liquid feed flow rate (mL/h) (X1) 1.2 3 4.8

Reaction temperature (℃) (X2) 250 300 350

Steam/Methanol molar ratio (-) (X3) 1.2 3.1 5

Carrier gas flow (mL/min) (X4) 30 55 80
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networks (FFNNs) that include an input layer, an output layer, and

one or more hidden layers. According to the required specified

architecture, many simple processing elements are interconnected in

this type of network, by the weighted connections [42]. The hidden

layer, which is linked to the input and output layers by adjustable

weights, enables the network to estimate intricate relationships between

the input and output variables. Of course, finding the hidden layer

neurons is a crucial step which plays a noticeable part in the efficiency

of the neural network [43,44]. So as to acquire the optimal neural

network, various types of transfer functions in each layer, as well as

varied numbers of neurons in hidden layer, were designated. Where

two different networks have had the identical performance, the network

having fewer neurons was preferred [45]. 

ANN were developed by optimizing network architecture parameters

based on BBD. For this purpose, independent variables were used as

inputs to the network, while methanol conversion was used as output

of the network. 

For prevention of the saturation problems associated with the

sigmoid transfer function in the network, all the data (Xi) were

transformed to a normalized values (xi) in a uniform range (0.1 to

0.9) by using the following expression [46]:

(6)

Different criteria, e.g. mean absolute error (MAE) and the mean

square error (MSE), were adopted to appraise the performance of

constructed models for estimation of the methanol conversion. These

criteria were calculated using the following equations:

MSE = (7)

MAE = (1/n) (8)

where i, n,  and  are the index of data, the numbers

of the experimental runs, the observed and the ANN methanol

conversion prediction, respectively. All the data were randomly

divided into three subsets: training (70% of the data), testing

(20% of the data) and validation (10% of the data). All the anal-

yses of issues in connection with the data analysis skills were

done through the use of MATLAB v. 8.5.0.197613. 

Finally, to analyze the performance of the RSM and ANN models,

the ANN and BBD outputs for designing the experiments were

plotted against the corresponding experimental data. The much

closer to the perfect forecast line, in which the predicted values are

equal to the corresponding observed data, the superior the modeling

ability of a specified model.

3. Results and Discussion

3-1. BBD modelling

The BBD matrix for 4-factors with 3-levels for methanol conversion

are presented in Table 2. So as to match the relationship between the

dependent and the independent variables, the following 2nd-order

polynomial was fitted to the experimental data designed by BBD. 

(9)

where ϒ and χ stand for the response variable and input variables

in coded units, respectively. In this equation, intercept term, lin-

ear, quadratic and interaction effects are also labelled with β0, βi,

βii, βij, respectively [47,48]. Furthermore, random error (ɛ) denotes

differences between actual and predicted results. An empirical

relationship (Eq. 10) can be established between the response

(Methanol conversion (%)) and the input variables (Liquid feed

flow rate (mL/h), reaction temperature (℃), steam/Methanol

molar ratio (-) and carrier gas flow (mL/min)) from experimental

results using coded units.

ϒ = 88.333 − 8.5250χ1 + 27.8750χ2 + 10.4833χ3 − 3.2333χ4

− 1.2167χ1
2 − 16.8917χ2

2 − 0.6458χ3
2 −2.1292χ4

2 + 4.7000χ1χ2

+ 6.3150χ1χ3 − 2.1000χ1χ4 − 7.5000χ2 χ3 + 1.2250χ2 χ4

+ 0.9750χ3χ4 (10)

3-2. Analysis of variance (ANOVA)

Table 3 lists the ANOVA results for the methanol reforming

experiments. The results display that the square and interaction

effects of independent variables as well as linear parameters have the

significant effects (P-value < 0.05) on methanol reforming yield. 

In general, if the achieved F-value is bigger than F-distribution

value, which is tabulated at an alpha level of 0.05 for a specified

value of degree of freedom, this indicates that the BBD is estimating

the experimental data well. On the basis of ANOVA table, the

attained F-value, specifically 65.94, is apparently greater than the

obtained F-distribution (2.637 at 95% significance) demonstrating

the effectiveness of the model’s fit on the experimental results

prediction [49]. 

According to the P-value for the lack-of-fit tests, i.e., 0.217, the

data variation around the fitted model is not significant with regard to

the pure error and consequently suggests that the model adequately

fits the data [50]. For linear, quadratic and interaction effects of the

variables, the estimated regression coefficients, t-value, and P-value

are summarized in Table 4, at 95% significance level. The P-value,

as well as F-value, was utilized for verification of the statistical

significance of each model term.

All four independent variables, second-order effect of reaction

temperature, are statistically significant model terms on methanol

conversion (P-value < 0.05). Furthermore, interaction effects of liquid

feed flow rate and steam/methanol molar ratio with reaction temperature

and steam/methanol molar ratio are also extremely significant. 

Taken as a whole, our results highlight that the overall influence of

the operating variables on methanol conversion is statistically significant

(P-value < 0.05). 

For further interpreting the experimental results, the percentage

xi 0.1
0.8 Xi min Xi( )+( )
max Xi( ) min Xi( )–
-------------------------------------------+=

ϒANN ϒObs–( )n 2

i 1=∑
n

----------------------------------------------

ϒANN ϒObs–
i 1=

n

∑

ϒObs ϒANN

ϒ β
0

βiχi
i 1=

k

∑ βiiχii

2

i 1=

k

∑ βijχi
i 1=

k

∑
i 1=

k 1–

∑ χj ε+ + + += i j≠
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influence of factors on the methanol conversion was individually

computed as stated by Pareto analysis (Eq. (11)):

(11)

This analysis indicates that the whole factors are effective on the

methanol conversion (Fig. 2). It is found that the temperature (X2,

56.00%) and its quadratic term (X2
2, 20.56%) are the dominant

parameters in this process. Among the variables, S/M molar ratio

(X3, 7.92%) and flow rate (X1, 5.24%) create the main effects on the

methanol conversion. The most significant mutual interactions are

flow rate * S/M molar ratio and Temperature * S/M molar ratio,

which influence the dependent variables up to 7%.

For attaining the best model’s fit for methanol conversion, the final

quadratic RSM model is shown as follows (Eq. 12) by eliminating

insignificant values from the applied BBD model (P-value > 0.05).

Pi

βi

2

βi

2

∑
-----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

100×= i 0≠

Table 2. The 4-factors three layered Box-Behnken matrix in addition to the observed and the predicted responses

Run

Uncoded Values Methanol conversion (%)

Type of data
Liquid feed flow 

rate (mL/h)

Reaction 

temperature (℃)

Steam/Methanol 

molar ratio (-)

Carrier gas flow 

(mL/min)

Experimental

data

Predicted

RSM ANN

1 Training 3 300 5 30 99.7 99.59 98.45

2 Training 4.8 300 3.1 80 66 71.13 67.69

3 Training 1.2 350 3.1 55 100 101.93 100.01

4 Training 3 300 1.2 30 77 80.58 79.98

5 Training 3 350 3.1 80 99.3 95.18 98.44

6 Training 1.2 250 3.1 55 53 55.58 57.14

7 Training 3 300 1.2 80 72 72.16 72.72

8 validation 3 300 3.1 55 89 88.33 88.62

9 Training 1.2 300 3.1 80 90 92.38 91.98

10 validation 4.8 300 1.2 55 63 62.38 61.48

11 validation 3 300 3.1 55 90 88.33 88.62

12 Training 1.2 300 3.1 30 99.6 94.65 97.28

13 Training 3 250 1.2 55 29 26.23 29.56

14 Test 4.8 250 3.1 55 31 29.13 29.48

15 Training 3 250 5 55 64 62.20 67.11

16 Training 4.8 300 3.1 30 84 81.80 85.09

17 Validation 3 350 3.1 30 99.4 99.20 99.84

18 Test 1.2 300 5 55 100 100.40 98.90

19 Test 3 250 3.1 80 37 36.98 37.96

20 Training 3 300 3.1 55 86 88.33 88.62

21 Training 3 300 5 80 98.6 95.08 94.53

22 validation 3 350 5 55 100 102.95 100.25

23 Test 4.8 350 3.1 55 96.8 94.28 97.83

24 Training 3 350 1.2 55 95 96.98 97.01

25 Training 3 250 3.1 30 42 45.90 46.82

26 Training 4.8 300 5 55 94 96.10 92.87

27 Training 1.2 300 1.2 55 94.5 92.18 91.59

Table 3. ANOVA results for the methanol reforming experiments

Source of 

variations

Methanol conversion (%) 

DF Mean Square F-value P-value

Regression 14 997.59 65.94 0.000

 Linear 4 2910.14 192.34 0.000

 Square 4 455.57 30.11 0.000

 Interaction 6 83.89 5.54 0.006

Residuals Error 12 15.13

 Lack-of-Fit 10 17.29 3.99 0.217

 Pure Error 2 4.33

R2 = 0.9872, R2(Adj) = 0.9722

Table 4. Estimated regression coefficients, t-values and P-values

Terms
Methanol conversion (%) 

Coefficient t-value P-value

β0 88.3333 39.334 0.000

β1 -8.5250 -7.592 0.000

β2 27.8750 24.825 0.000

β3 10.4833 9.336 0.000

β4 -3.2333 -2.880 0.014

β12 4.7000 2.417 0.033

β13 6.3750 3.278 0.007

β14 -2.1000 -1.080 0.301

β23 -7.5000 -3.856 0.002

β24 1.2250 0.630 0.541

β34 0.9750 0.501 0.625

β11 -1.2167 -0.722 0.484

β22 -16.8917 -10.029 0.000

β33 0.6458 0.383 0.708

β44 -2.1292 -1.264 0.230
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ϒ = 88.333 − 8.5250χ1 + 27.8750χ2 + 10.4833χ3 − 3.2333χ4

 − 16.8917χ2
2 + 4.7000χ1χ2 + 6.3150χ1χ3 − 7.5000χ2χ3 (12)

3-3. Effect of independent variables

To investigate the mutual interaction between the factors on

methanol conversion, 2D contour plots were employed on the basis

of the quadratic mathematical statement, whereas 3D response surface

plots were utilized to estimate methanol conversion under the applied

conditions. Figs. 3-5 illustrate the influence of the independent

variables being on the methanol conversion, in the experimental

ranges, with the other two variables for each plot held at a constant

level. 

3-3-1. Effect of liquid feed flow rate and reaction temperature on

methanol conversion

As seen in Fig. 3, liquid feed flow has higher effect at lower

temperatures. Increasing the temperature supresses the effect of the

liquid feed flow rate on the methanol reforming yield. Also,

temperature effect at high flow rates is more than its effect at low

flow rates. For example, the conversion reduced from 64 to 45% at

250 ℃ as the liquid feed flow rate increased from 1.5 to 4.5 ml/h,

while this change at 300 ℃ led to reduction of conversion from 96 to

90%. On the other hand, when temperature was increased from 255

to 290 ℃, the methanol conversion was increased from 68 to 93 in

liquid flow rate of 1.5 ml/h, while increased from 55 to 85 in liquid

flow rate of 4.5 ml/h. 

Methanol conversion continuously increases when temperature

increases. As discussed in previous work [27,30], Cu-SiO2 catalyst

has excellent selectivity to methanol reforming reaction and no CO

forms in the proposed reaction mechanism for this catalyst or as by-

product of reactants. However, when approaching the approximately

complete conversion of methanol at high temperatures or at low

feed flow rates, CO can be formed as a consecutive product through

the reverse water-gas shift reaction as a secondary reaction. Even

if the reverse water-gas shift reaction occurs, the conversion of

the methanol will be increased by temperature rising, because it

consumes H2 and CO2 which are the products of methanol

reforming. 

Fig. 2. Pareto graphic analysis.

Fig. 3. (a) Response surface and (b) contour plots of the Methanol

conversion (%) as a function of Liquid feed flow rate (mL/

h) and Reaction temperature (℃) (Steam/Methanol molar

ratio: 5 and Carrier gas flow (mL/min): 80).
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3-3-2. Effect of liquid feed flow rate and Steam/Methanol ratio on

methanol conversion

As seen from Fig. 4, higher S/M ratio leads to higher methanol

conversion. This result shows that the steam existence in the reaction

surroundings improves the catalyst activity and leads to higher

methanol conversion.

In a constant liquid flow rate, higher S/M ratio leads to higher

methanol conversion. This result confirms the favorable effect of

steam on the catalyst activity. Higher excess value of steam ensures

higher conversion of limiting component. 

The effect of the S/M ratio on the methanol conversion at higher

feed flow rates is more significant. So, by increasing the S/M ratio

from 1.5 to 4 in the feed flow rate of the 4.5ml/h the conversion is

increased from about 67% to 88%, while in the feed flow rate of the

2 ml/h the conversion increased from about 89% to 96%. 

Inversely, the feed flow rate effect is more significant at lower S/M

ratios. So, increasing the feed flow rate from 1.5 ml/h to 4.5 ml/h at

S/M=1.5 leads to methanol conversion decreasing from 91% to

67%, while at S/M=4 leads to methanol conversion decreasing from

97% to 88%. This result again can be related to the positive effect of

water presence in the methanol reforming process. At higher S/M

ratios, decreasing the retention time has less effect on the methanol

conversion and the water presence prevents from the sharply reduction

of MeOH conversion. 

3-3-3. Effect of flow rates of liquid feed and carrier gas on

Methanol conversion

Higher carrier gas flow lowers the residence time as well as the

concentration of reactors within the reactor, thus, leads to lower

conversion of methanol. Also, in the studied ranges of the liquid flow

rate and carrier gas flow, the higher the liquid flow rate leads to the

more influence of the carried gas flow rate on the conversion. By

increasing the flow rate of carrier gas from 30 to 80 ml/min in the

liquid flow rate of the 1.5 ml/h, the methanol conversion only decreased

3% (from 94% to 91%), while in the liquid flow rate of 4.5 ml/h the

methanol conversion reduction was about 10% (83.5% to 74%). Lower

feed flow rate in comparison with higher feed flow rate results in

higher methanol conversion; therefore, increasing the methanol

conversion through the same decreasing of the carrier gas flow rate

will be harder in lower feed flow rates. 

3-4. ANN Modelling results

ANN modeling was conducted using the experimental results

(total 27 runs) reported in Table 2. So as to design the topology of the

ANN, the number of neurons in the output and input layers is fixed

Fig. 4. (a) Response surface and (b) contour plots of the Methanol

conversion (%) as a function of Liquid feed flow rate (mL/h)

and Steam/Methanol molar ratio (Reaction temperature (℃):

300 and Carrier gas flow (mL/min): 55).

Fig. 5. (a) Response surface and (b) contour plots of the Methanol

conversion (%) as a function of Liquid feed flow rate (mL/h)

and Carrier gas flow (mL/min) (Reaction temperature (℃):

300, Steam/Methanol molar ratio: 3.1).
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by the number of response and independent variables, respectively.

As the main aspect to accomplish optimal network topology is the

selection of the number of neurons in the hidden layer, the size of this

layer is iteratively decided by altering the number of neurons to

minimize the deviation of predictions from actual results [51]. For

the optimum trained ANN, the biases and weight values between

ANN layers are summarized in Table 5.

In the current study, the optimal ANN architecture comprises the

reaction temperature (℃), liquid feed flow rate (mL/h), Carrier gas

flow (mL/min) and S/M ratio (-) as the four inputs, two neurons in

the hidden layer and methanol conversion (%) as an output, feed-

forward back-propagation. Three layered neural network (BPNN)

having the topology (4: 2: 1) was adopted in this work. Furthermore,

the training algorithm involved was trainlm algorithm (Levenberg-

Marquardt). During the training of network, the sigmoid transfer

function predicted better results compared to other functions such as

purelin and tansig transfer functions. Accordingly, the sigmoid

transfer function was chosen to be the intention of the hidden and

output layers. A representation of the optimized ANN architecture is

apparent from Fig. 6. The back-propagation (BP) training algorithm,

which was developed to provide a correlation between the output

and the four inputs, can be undertaken using the experimental results

made known in Table 2. 

Fig. 7 illustrates regression plots (experiment vs. ANN predicted)

using optimal 4 neurons in the hidden layer. As the regression

coefficients (R2) for the constructed ANN model and experimental

responses are closely equal to 1, this has signified the importance of

hidden layer neurons on the model efficiency (Fig. 7). Accordingly,

higher values of R2 of the ANN predicted for the training, validation

and testing datasets put forward that the constructed ANN is

accurately capable to predict the methanol conversions. 

Due to proper utilization of the sigmoid transfer function for the

output and hidden layers, Eq. (1) was used to normalize all the data

of the experiments (Xi) to normalized values (xi) in a uniform range

(0.1 to 0.9) [49]. 

Relative importance of each input variable can be calculated using

the weight matrix [49]. The results are shown in Fig. 8. All chosen

operation parameters strongly influence methanol conversion. Therefore,

none of the studied variables can be ignored in analysis of the process.

According to the findings, in methanol steam reforming in the presence

of Cu-SiO2 aerogel catalyst, the most effective parameter is reaction

temperature with 44.55% relative importance. The relative importance

of input parameters on the amount methanol steam reforming is as

follows, which is in agreement with results of the BBD model:

reaction temperature > steam/methanol molar ratio > liquid feed

flow rate > carrier gas flow.

3-5. Comparison between the BBD and ANN models

Even though the RSM based BBD model offers several advantages,

for instance, the capability to figure out the quadratic (second-order)

effect of each response, to determine the interrelationships among

factors and specify the optimal response with a rather small number

of experiments [52], however, its proper utilization is restricted to

correct determination of all factor ranges [49]. Unlike a BBD model,

which is just suitable for quadratic approximations, ANNs, as alternative

powerful tools for modelling non-linear multivariate systems, can be

Table 5. Matrices of weights: W1: weights between the input and the hidden layers; W2: weights between the hidden and the output layers

Neuron

W1

Bias

W2

Variables
Neuron weight

Liquid feed flow rate Reaction temperature Steam/Methanol molar ratio Carrier gas flow 

1 1.631 -4.778 -2.579 1.122 0.527 1 -7.521

2 2.595 -9.592 -13.878 6.819 2.379 2 1.323

Bias  2.296

Fig. 6. The optimized structure of constructed ANN.



336 Taher Yousefi Amiri, Mahdi Maleki-Kakelar and Abbas Aghaeinejad-Meybodi

Korean Chem. Eng. Res., Vol. 61, No. 2, May, 2023

used not only to approximate quadratic functions but also to estimate

nearly all kinds of complex, non-linear functions. 

The goodness of fit for the given models can be verified by comparing

the experimental results of the methanol conversion in Table 2 and

those predicted by the proposed RSM and ANN models. Fig. 9

represents a comparative parity plot of the predicted and actual

results. The coefficient of determination (R2 = 0.9872) for BBD and

(R2 = 0.9924) for ANN illustrates that the RSM and ANN based

predictions are in excellent agreement with the experimentally

observed consequences. This implies that 1.28% of the entire variation

is not interpreted by the RSM model, whereas that of 0.76% is not

described by the ANN model. Accordingly, the proposed models can

be considered to perform well in data fitting and provide stable

responses. However, compared to RSM, ANN model has a higher

Fig. 7. Regression plots (experiment vs. ANN predicted) using 2 neurons in hidden layer.

Fig. 8. Relative importance (%) of the input variables on the value

of methanol conversion.

Fig. 9. Comparison between the predicted (BBD and ANN) values

and the experimental results for methanol conversion (%).
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predictive ability and accuracy on the basis of the R2 value, being

nearer to 1.0.

Apart from regression coefficient (R2), the MAE, MSE and

RMSE values observed for both models were determined to

provide statistical indications of how accurate the model predictions

can be. The MAE, MSE and RMSE for the RSM and ANN models

were computed and summarized in Table 6. As indicated in Table

5, the MAE (2.177), MSE (6.724) and RSME (2.593) for the RSM

model are greater than those (1.734, 4.540 and 2.131, respectively)

for the ANN model, demonstrating that the ANN model has a

greater modeling ability than the RSM model. It is noteworthy that

the criteria given in Table 6 are calculated based on the real (non-

normalized) data.

4. Conclusions

The current study was undertaken to model hydrogen production

through methanol steam reforming. Our prime research objective set

out to examine the effects and interaction effects of influential

variables on performance of Cu-SiO2 aerogel catalyst in methanol

steam reforming. In this respect, particular focus was on the

application of RSM based BBD approach to acquire a quadratic

polynomial model and predict the amount of methanol conversion.

Then, the BBD results were in comparison to ANN predictions with

the aim of attaining the best modeling as well as powerful predictive

tool for producing hydrogen. It can be also concluded that among the

operating variables, the temperature is the most Influential parameter

(56% importance) in methanol conversion. The proposed models

were assessed based on the statistical criteria and both models seemed

perfectly satisfactory. However, the results of the statistical indices

indicated relative superiority of ANN compared to RSM in describing

nonlinear behavior of the hydrogen production process.
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