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ABSTRACT

The separation of a binary system by Molecular Sieve as conceived consists of the following steps.

1. Separation of the mixture by adsorption at high pressure.

2. Desorption of adsorbed gas mixture rich in component a by lowering the system pressure
(blowdown).

3. Further desorption by purging the residual adsorbed gas mixture with product mixture which is
lean in component a.

4. Repressurization of the bed either with the product mixture or the air after which the cycle repeats.

This work discusses a method of predicting the performance of the third step when pure component

isotherms and the knowledge of relative adsorptivity are available,

A numerical example is given to

illustrate the method and compared with the experimental findings.

INTRODUCTION

The use of adsorption technique for industrial sepa-
rations has primarily been concerned with fixed bed
operation although moving bed systems too have been
studied. Some examples of these processes are simult-
aneous removal of CO, and moisture from air, solvent
recovery, and separation of hydrocarbons. One of the
steps often encountered in the above processes is
purging of the bed which is predominantly loaded
with strongly adsorbed components. Either a gas mix-
ture or a pure component which is weaker in adsorp-
tivity is introduced into the bed to accomplish the
object. For example, the bed at the end of blowdown
(depressurization) will be loaded with a mixture which
is rich in component a. The product gas (say 65% b,
35% a), then,

bed to prepare for the subsequent pressurization and

is introduced to partially strip the

* Present address: Korea Institute of Science and Technol-
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adsorption steps. This memorandum discusses a method:
of analyzing the purge step mentioned above.

The assumptions which must be made to enable the
analysis are shown below.

1. Equilibrium conditions between the gas and the
adsorbed phase prevail at all points in the column.
No rate factor, therefore, is involved.

2. The bed remains isothermal.

3. Longitudinal molecular diffusion is negligible.

The advantages of making these assumptions are as
follows:

1. An analytical solution can be obtained from which
one can study the influence of independent variables
involved.

2. Any boundary condition can be included, i.e.,
the rigid restriction of having a uniformly loaded bed
need not be made.

3. Only, pure component isotherms and the knowl-
edge of relative adsorptivity are necessary to analyze

the system.
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Many experiments have been performed to test the
analytical solution and good agreement was found. A
numerical example of obtaining the elution curve is
included and the result is compared with the experi-
ment,

)
THE MATERIAL BALANCE

Consider the volume element in the packed bed as

shown below.
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By equating (Input-Output) equal to (Accumulation)

or (OQutput-Input) equal to (Depletion), one obtains
the following material balances; one for overall, the

other for component a.
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Where

G=Total flow rate of gas which is a function of
L and ¢ (or % and #) (ft* NTP/ft* hr.)

L=Length measured from the entrance of the bed
{t.)

y=Mol fraction of a in gas phase

e=Void fraction (0.52 for CaA Molecular Sieves)

ve=Density of a gas mixture (ft* NTP/ft* of bed)

v=DBulk density of the bed (Ib. of adsorbent/ft?
of bed)

t=Elapsed time (hr.)

W,=Coadsorption loading of a (ft* NTP/1b. of
adsorbent)

W,=Total loading of the mixture (ft* NTP/1b. of
adsorbent)

Now, it is often advantageous to express the inde-
pendent variables, L and 4, in terms of dimensionless
quantities. We will therefore define,

= Ii €))
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where L,=Total length of the bed (it.)
#,=Total purge time (hr.)
Equations (1) and (2) then can be rewritten as
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Thus, the solution which satisfied (5) and (6) and
the given boundary cordition will enable one to predict
the concentration profile of the effluent as well as the
effluent flow rate. Now, in equations (5) and (6),
there are four dependent variables and only two partial
differential equations. The first objective therefore is
to represent W, and W, in terms of y thereby reducing
the dependent variables to two. This can be done by

studying the coadsorpticn isotherms.

THE COADSORPTION ISOTHERMS

For a binary sorption system, the relative adsorpt-

ivity (or separation factor) can be defined as

_ Y Ta ¥ W, (l—y )( x )
Ty, Txy oy Wi \y 1—=z

D

where z, y==Solid and gas phase mol fractions.
W,=Coadsorption loading of & (ft* NTP/1b.
of adsorbent)

As it can Le seen in the last term of eq. (7), when
mol fractions are used without subscripts, they will
all refer to component a.

Now, an empirical equation relating coadsorbed
adsorbates as proposed by Lewis and Gilliland (Ref.
1) can be written as

Where the bar, —, denotes pure component loadings

.
T

for a given system pressure and temperature.
When equation (7) is rearranged one gets the foll-

owing relationships between mol fractions.

x
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And when equations (7) and (8) are solved simu-
ltaneously and simplified by (9) and (10), one obtains

the desired relationships as shown below.
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Now that we have expressed Wy and W1 as a fun-

ction of N, mol fraction y, we can say

oW, of, 0oy , 0y
oy ot =7 e (3
oW,  ofs | oy
% oy 7t as

also, substituticn of (6) into (5) gives

oy . Ly oW, L, oW, )
—G Ty T = R ("‘ ot TP o

(15)
Thus, substituting (13) and (14) into (15) and (6),

we get

0

G5+ ﬁ S (epetofi —yofs) 2= (16)
oG L,
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We will now solve (16) and (17) simultaneously.
First of all it can be seen that equation (16) is a
quasi-linear equation of first order. By comparing with
the definition of total differential for y, (16) can be
rewritten as

L ’
dt ———0: (epz+pfi' —yof 2) .
= G ; y==const. (18)

Equation (18) describes characteristic lines on which
y is constant in a three dimensicnal space of y, = and
t coordinates. In other words, equation (18) describes
a trajectory of a volume element of constant concen-
tration y as it travels down the t-z plane (Fig. 1).
Now, if the term dy/ot is eliminated from (16) and
17), we get
o of’ ay
*%—Q—G[m—] ui ={}; {=const.
a9
Equation (19) applies on characteristic lines on
which , is constant. And since ¢ is no longer a vari-
able along these lines, the partial sign 9z in (19) can
be replaced by ordinary differential sign “dz”. Then

one can eliminate 9z from (19) and get
aG _ Gof’,
dy — epetp(fi =)

Thus, we have reduced two partial differential equ-

t=const. 20)

ations to a pair of ordinary differential equations in
specified directions. At this point, the usual precedure
is to rewrite the equations into finite diffetence ccua-
tions and solve them numerically. Equation (20) in
this case, however, does not contain the indepencent
variable #, and presents a unique situation in which

equation (20) can be solved analytically for G in terms

of y.

¢ dG . G y ofs
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or G=Gpexp > ”f L gy—rGy (22)

Ffz d (23)
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Gp=Purge flow at the entrance of the bed

where 7'=exp j‘

p=E€pg+

yp=Gas phase mol fraction of @ in the purge gas
The “multiplication factor I'”, then, enables one to
calculate the flow rates as a function of the gas phase
concentration at any point in the bed. And since G is
now a function of y alone, one can substitute (22) in
(18) to get

de L u -
- = ’/’o;' G, ¢ y=const. (25)

Note that the term on the right hand side of (25)
is still a function of y only and since we are consid-
ering paths where y is constant, we can integrate (25)
without any problem, i.e.

t=7’7—°"- T ERR)) (26)

where () is an integration constant expressed as a
function of y. Equation (26) therefore is the general
solution of (1) and (2).

solution for a specific problem, one must evalvate y

In order to get a partictlar

from the boundary ccnditions.

NUMERICAL EXAMPLES

. loaded bed with 33.5% N,-66.5% O,

mixture has been performed and the concentration

Purging of N

changes at two locations within the bed had bheen
obtained by Beckman F-3M3 O, analyzer. We will try

to predict this concentration changes and the maximum
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flow rate of the effluent from the following inform-
ation.

The bed: 6’/ diameter, 29’ tall
A=0.1964 ft2, V=0. 4746 {t°
Coatains approximately 16 1b. of LiX type
Molecular Sieves
Bulk density=33.71 1b. /ft?

Initial Condition; The bed is initially loaded with
pure N, at 1 atm. and 24°C.

Purging: The gas mixutre of 33.5% N,-66.5% O,
was introduced at the rate of 25.51 ft*/hr
ft?

Equilibrium data at 1 atm and 24°C.

Wy=0.179 ft* NTP/1b. of LiX

Wo=0.065 ft* NTP/1b. of LiX

a=5.4 when y=0.8

«=6.6 when y=0.2

It can be seen that the relative adsorptivity, «, is a

function of the mixture composition as well as temp-
erature and pressure. And in order to calculate the
values of f,” and f,’ at different values of y, we have
to estimate the change of & when y varies from 0. 335
to 1.0. This can be done by plotting log « vs. log ¥
as suggested by the Design Manual of Octane Impro-
vement. (Ref.2). Next step is to calculate (:/7'Gp)
of equation (25) at several values of y depending
upon the accuracy desired.

For example,

at y=0.5, a=5.75
Therefore,

from (11) and (12), we get

f1'=0.157
J2"=0.0998

Substituting these values into (24), we obtain,

1=3.610

Similarily, we can find other values of f,’, f," and

at other concentration levels as shown in Table 1.

Then the value of 7" to be used in (27) for y=0.5

is evaluated from

ofd , . (o8 I
dy= o.ass (S =121 dy @D

o= {""

0.335 H
The last expression of (27) is obtained by neglec-

ting the epg which is small. The numerical value of
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(27) can be readily found by graphical integration.

The value of I' at y=0.5 therefore is 1.155. In
other words, when the gas phase mol fraction of N,
is 0.5, the flow rate at any point in the bed including
the exit is 1. 155 times of the purge flow. Other values
of ofy/1 and the multiplication factor are also tabu-
lated in Table 1.

Table 1

y by [ 2 of/n TI*cale.

0. 335 0. 200 0.128 5.292 0.915 1.0

0.4 0. 180 0.115 4.517 0. 858 1. 057
0.6 0.139 0. 088 2.906 1021 1. 274
0.8 0. 112 0.071 1. 861 1. 286 1.721
1.0 0. 095 0. 060 1.180 1.714 2.320

* Maximum value of I” observed in the experiment was
2.03
Similarily one can compute the time required for a
given concentration to reach a distance of 10 inches
from the entrance from (26). The results are shown
in Table 2 and Figure 2.

Table 2
y n/l ti(cale. ) tio(Exp. )
0.335 5.292 0. 346 0. 397
0.4 4.273 0. 279 0. 240
0.5 3. 126 0. 204 0.173
0.6 2. 281 0. 149 0.132
0.8 1.081 0. 071 0. 075
1.0 0. 509 0. 033 0. 038

As it can be seen the agreement between the expe-

riment and calculation is good.
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N
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Fig. 1
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