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Adsorption Dynamics of Binary System

(Varying Pressure Steps)

Youngok Ahn and L. D. Potts
Union Carbide Corporation, Tonawanda, N.Y., U.S. A.

Abstrat

The separation of a binary system by a cyclic pressure swing technique using Molecular Sieves

usually consists of four general steps. They are pressurization, adsorption, depressurzation and purge

steps. This work discusses a method of predicting the varying pressure steps theoretically when pure

component isotherms and the knowledge of relative adsorptivity are available. The comparison of

computer results using method of characteristics with the experimental data is presented.

The separation of a gas or liquid mixtures by
adsorption technique has traditionally been carried
out under constant pressure. In other words, the re-
generation of the saturated bed was normally achie-
ved by thermal means by simply raising the tempe-
rature of the fixed bed. When the bed is relatively
large, however, this step takes considerable amount
of time which in turn causes an increase in the re-
quired adsorbent. To alleviate this difficulty, a me-
thod of regenerating the saturated bed by lowering
the system pressure has been recently developed. Si-
nce this technique does not involve the slow heat tr-
ansfer step, it is rapid and efficient. In actuality, a
typical cyclic operation using 2 or 8 fixed beds in
parallel would involve:

1. Pressurization of the fixed bed with a feed mi-
Xture.

2. Perform adsorption operation at this high pre-
ssure until the bed is saturated.

3. Depressurize (below down) the bed to a low
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pressure, usually atmospheric, to get rid of some
adsorbed adsorbate.

4. Perform a purge operatiom at this low pressure
to expel the system.

The purge operation describid in step 4 has been
discussed earlier. ) Present work discusses the ope-
rations involved in steps 1 and 3. As before, (¥ the
assumptions of isothermal operation and an equilibr-
ium between the gas and solid phases were assumed

in making the analyses.

Governing Equations

The material balance equation applying for a small
increment “dl” of the fixed bed was shown to be as
follows, ®

; component balance
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In the case of varying pressure,
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however, need
somehow to introduce “p” as an independent vari-
able. To accomplish this, we have decided to neglect
existence of a small pressure gradient in the longit-

udinal direction of the bed. The bed pressure at any
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given instant and at any point in the bed can simply

be related to time, i.e.

t=¢(p) 3

We can also define a new quantity of flow rate Q

as follows.
— (It of gas N.T.P. \ dt ( hr
Q=G ( Jt¢ of area. hr ) dp ( atm. )
—gds(_ f
_G_p}—<7t2at7n. ) &

As a next step, with slight algebraic manipulation,

the governing equation then can be rearranged as

follows.
_0(Qy) __ 5(oey) oWy
ol ¢ op to 2p &)
_09Q _  9pe oWr ¢
TR T 3 )

These equations have to be solved with proper in-
itial and boundary conditions. More specifically, for

depressurization we can state:

L At p=p;, y=Ffi({) or y=y; (7)
2. At I=0, Q=0 ®
While, for pressurization, we can say

1. At p=p;, y=1 (D) or y=y; €))
2. At [=0, Q=0 [€10)]
3. At =L, y=fi(p) or y=yp an

Coadsorption Isotherm

The governing equations (5) and (6) are difficult
to solve as they stand but can be made amenable to
mathematical analyses by introducing the coadsorpt-
ion isotherm expression,

These were shown to be ) @,

W= 1+ LX(IE,) a2
ay \ W,
Wr= WN(1+ 1;;’ ) 13)

Furthermore, for a fairly large range of pressures,
the pure component isotherma, Wy and Wo as well

asthe relative adsorptivity can be expressed as

Wy=C,pC* s
Wo=C;p¢* (15)
a=C;pC® (16)

Substitution of the last three equations into (12) and
(13) now gives
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k
W=l =f(5,5) an
e
ap"+(—~——1;y )cp‘
WTZI;—(T_W =f:(2,5) asy
where a=C,
-G
yereny 9
c= ¢,
Cs
h=C,
i=C,—C,—C; (20>
k&=C,—C,

Equations (17) and (18) in essence express coads-
orption isotherms as functions of a pressure and a
gas phase concentration. We therefore can proceed

to differentiate the expression as shown below.

oWy _ 8fy of, oy _ ) 0y
ap ip oy Tap Aat b ap @1y

oWy — af, + of, oy _2T+¢T_iy__ 22

2p op dy ap op
The #’s and ¢’s can be shownto be:
_ofi _ alh+G—DGR—)
A= ap prbs? (23)
. Ofs _ 5 o cYk+(s—1D(k—1))
A= ap At Pl_ksz (24)
,— 0fi _ abptti(1+Y)?
9="5y e (25)
y e Ofy ., cpts*(1+Y)?
Yr= 3y Oa 52 (26)
where Y= 1;3' @7
s=1+bYp (28)

The gas density in the void volume is easily rel-
ated to pressure by assuming it to behave ideally.

pe=bp=-Zrs iy (29

Substitution of equations (23), (24), (25), (26)and
(29) into (5) and (6) then gives

Q) _ g p 0y
57 A+B ) (30>

09 _ By
2 C+D op (€3))

where
A=efy+pl,
B=efp+p¢a
C=€B+‘O/-{T (32)
D==pjr
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It must be noted that all the coefficients A, B, C
and D are functions of p and v only. In this ma-
nner, therefore, we have reduced the original equa-

tions (5) and (6) to a tractable form.

Numerical Solution of Equations by
Method of Characteristics

The set of partial differential equations to be sol-
ved are totally hyperbolic. The method of character-
istics therefore is suitable in carrying out the nume-
rical solution along the line of adsorption wave
propagation. &

To find these characteristic directions it is necessary
first of all to slightly transform equations (30) and
{31). It can be seen that as these equations stand,
each involves different directional derivatives of each
of the two dependent variables. Thus, (31) contains
a derivative of Q in the direction, but a derivative
of y in the p direction; and (32) slso contains a de-
rivative of Q in the / direction, but a derivative of
y in still another direction.

If, however, (30) is multiplied by theﬁ coefficient
D, and (31) by the coefficient B,

subtracted, the net result is

and the results

B%%—Da—(%izAD—BC (33)

Expansion of the derivative of the product, Qy,
and division by (B—Dy) yields

Q0 QD 3y _ AD—BC (39
ol B—Dy ol B=Dy

Thus, a new differential equation is obtained, in
which both Q and y are differentiated in the I dire-

ction, or along a curve in the 7, p plane with a sl-
ope

=0 S
Similarly. if the right-hand side of (21) is subst-
ituted for 29

in (30) the result is:

ol
Q oy oy _ A-Cy
BDy 3 T p = B=Dy
According to calculus, this can also be written
dy A—Cy
"dp 5Dy @

along a path in the /, p plane whose derivative is

dl Q

p ~ B-Dy GD
In carrying out the numerical computation, there-
fore, equation (34) is solved along (35) while (36)

is used in the direction specified by (37).

Depressurization

The p-I plane for depressurization is shown in
Figure 1. The first characteristic line is simply the
integration of (35) which is

p=constant (38)

Equations (34), (36) and (37) are then solved
simulataneously to get the other family of characte-
ristics. In Figure 1, the closed end of the bed is at
l=0, and the open end is at /=0. Upon depressuriz-

ation, gas flows outward, from left to right.
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Fig. 1. Depressurization

Suppose, now, we wish to compute the values of
[,Q and y at 1 from the knowledges at 2 and 4.
First, a finite difference versicn of equaticn (34) is
applied to the segment 2-1. The computation is done
iteratively, starting with coefficients in (34), (36),
and (37) evaluated at points 4 and 2. As tentative
values are obtained for I, v, Q at point 1, new coeffi
cients are computed for the finite-difference equations,
based on average values of p,y, and Q along the
segments 4-1 and 2-1. Usually only a few iterative
cycles are needed for effective convergence,

To start along each new constant pressure line,
however, it is necessary to compute the ﬁrst'pivotal
point on that line, at the intersection of the g axis,
by a slightly different technique than has heretofore
been described. Thus, to start computations along

the pressure characteristic passing through points 1
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-and 1’ of the figure it would be necessary initially
to use known values of p,7,»5, and Q at point 2’ to
compute similar values at point 1’. Actually, since
point 1’ lies on a boundary (the closed end of the
bed), some values for point 1’ are known in advance;
specifically, values of p, I, and Q. The value of y
for point 1’ is obtained by applying the finite-differ-
ence version of equation (36) to the boundary segm-
ent 1’-2’. Again, the computation on segment 1'-2’
is iterative,

A slight variation of this procedure is of course
required for the zeroth pressure step, i.e., for eval-
uating pivotal points along the horizontal characteri-
stic associated with the initial pressure, p;. Some,
but not all, of the values are given as initial cond-
itions for the probem: values of p, /, and y are
given at all pivots, but values of Q@ must be com-
puted. Because no inertial terms have been provided
in the mathematical, it is not possible to specify Q
independently at initial time. Rather, Q is, initi-
ally, whatever is required by the mcdel to be
consistent with initial values of y. Thus, initially,
equation (34) must be applied all along the charistic

_Pi» to get the consistent relation of Q vs. !

Pressurization

Much of pressurization proceed in an exactly
analogous fashion, except for using a pressure iner-
-ement, characterized by a positive value of J4p,
rather than a decrement as was employed for depr-
essurization. With this change in sign of 4p, all
the formulas involved automatically adapt themselves
‘to the pressurization process. The initial concentration

profile of y ws I must now, however, be specified at

MNMNNNNNN
HNNMRNN\NN.

\ \ N ,D\SEFIOW
S

+C

D

M

! Al N,

i\ N\

Fig. 2. Pressurization
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the lowest pressure level, which is the initial bed
pressure. And now the stepwise computation develops
the characteristic curves of the second category in a
direction proceeding upwardly and to the left.

Again, the closed end of the bed is at /=0, and
the open end at [==L. But now the flow direction is
reversed, with gas flowing from right to left.

Note that insofar as propagation of the solution of
the pressurization case is upward and to the left, the
fifth characteristic curve, AC, of the sketch forms
a natural demaracation. The region to the left of
AC in the [, p plane represents states attained by
gas that was in the bed initially, and the region to
the right represents states attained by gas thich has
entered the bed during pressurization.

The region to the right of AC consists of two
subregions separated by characteristic BC, and note
also that the poipt C is distinguished by having a
multiplicity of characteristics pass through it. (Again
it should be pointed out that only a few of the infi-
nitely many curves belonging to the respective fam-
ilies of characteristics have been shown on the ske-
tch; actually, infinitely many characteristics through
C and occupy the region ABC). The reason for such
abnormal behavior lies in the condition assumed for
the entering gas mixtures. Only would the concentr-
ation of the entering gas be in equilibrium with the
bed entrance in its initial state. In most cases of
practical importance, the entering gas will have a
lower gas concentration than that in equilibrium
with the bed entrance. Accordingly, a discontinuity
arises, and the fan of characteristics occupying area
ABC represents the propagation of this initial disc-
ontinuity.

To originate this fan of curves, one can apply a
degenerate form of equation (34) at the singular
point C:

%%:73%%7 (38)

Using the finite-difference equivalent of (38) one
generates as many pairs of v,Q values as desired
over the interval v./<3<(y, where y, is the initial
concentration of gas in equilibrium 'with the bed at
the point of entrance, and y./, is the initial conce-

ntratien of the feed.
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This peculiar treatment of the fan of characterist-
ics through point C is required only at the initial
pressure level. At the next higher pressure level
(passing through D and E), the lattice points defined
by the intersection of the pressure characteristic with
the fan of characteristics emanating from point C
succumb nicely to the iterative routine for general
One slight abnormality is encounte-
This is a
pivotal point on the boundary representing the open
end. That particular boundary is not a characteristic
curve. Generally, entering values of y will be spec-
ified at pivotal points along it, but despite the fact

intericr points.

red, however, with respect to point E.

that it is non-characteristic, arbitrary values of Q
cannot be specified along it without producing shocks.
To find the appropriate value of Q at point E, the
finite difference equivalent of equation(34) is applied
to the segment DE, utilizing known functional val-
ues at point D, (which have been obtained by starting
at the p axis and stepping from left to right along
the characteristic through D and E), and using the
prescribed value of y at point E. The solution thus
obtained for point E originates a new characteristic

of the second class, rising upward from E. Each
remaining pivotal point on the entrance boundary is
Thus,

level originates one more characteristic for the comp-

treated similarly. each increase in pressure.

uting lattice,
g

Results

The computer calculation was carried out with
Burrough Corporation’s Datatron 205. The experime-
ntal data were obtained from the 6 inches diameter,
13 feet high adsorber at the Linde laboratory using
rapid sampling system, The system studied were
those of N,-O,-Molecular Sieves 5A. The required
isotherms and relative adsorptivities were measured
by R. J. Neddenriep,

The results of computer calculations are shown in

One

can also compute the effluent volume and concentra-

Figure 3 along with the experimental points.

tion. In this particular instance, between 2.7 and 2.3

atm. was considered to be O, rich product while
those between 1.49 and 1.0 atm. was thought of as
blow down gas to be discarded. The comparison are

shown below.
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Figure 3. Depressurization of nonniformly loaded bed Molecular Sieves 5A-N,-0O; system
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X Baseload at 1atm

70

% N, in Gas I’hase

Experimental points

Flow
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Air(78%N.)

X 1.0atm ;
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Figurg 4. Pressurization of nouniformly loaded bed Molecular Sieves 5A-N;-0, system
Pressure: Computer Pilot
From  To results plant
Product vol. 2.7atm 2. 3atm 294f¢® 3. 03ft?
Product conc. 2.7atm 2. 3atm 42.05% 0, 41%
Blowdown vol 1.49 1.0 4.916 4.65
The results in the case of pressurization is shown I=Lengh of the fixed bed (ft)
in Figure 4. The shock wave bump pattern predicted t=Elapsed time (hr)
by computer particularly should benoted. The expe- y=Mol fraction of N, in gas phase
rimental vertication of this pattern was difficult due (dimensionless)
to the large distances between the sample probes. e=Void fraction (0.52 for CaA, CaX Molecular
The comparison of air volume required to do the Sieves)
pressurization is shown below. og=Density of a gas mixture (ft* N.T.P./ft® of
Computer Pilot bed)
results plant szgxléc)density of the bed (Ib of adsorbent/ft® of
e
ft? of air required to W y=Coadsorption loading of N, (ft* N. T. P. /lb of
pressulize the 110 pound
bed from 1.0 atm. to 16.2 14.3 adsorbent)
9.7 atm. Wr=Total loading of O,-N, mixture (ft* N.T.P.
/1b of adsorbent)
Nomenclature p=System pressure (atm. abs.)

-G==Total flow rate gas at constant pressure
(ft* N.T.P/it*hr)
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¢=Defined by (3)

a=Relative adsorptivity (dimensionless)

C,,C., C,, C,=Constants associated with Freundlich
isotherms, defined by (14) and (15)

(s, C;=Constants needed to relate « and p as de-
fined by (16)

a,b,c,h,i, k=Constants relating coadsorption load-
ings as defined in equations (19) and (20).

Ay ir=Coefficients defined by (23) and (24)

¢, 'r=Coeflicients defined by (25) and (26)

Y=Defned by (27)

s=Defined by (28)

£=294. 4/ T(°K) as defined by (29)

T=System temperature (°K)

A=Dzfined by (32); or cross sectional arca of flow

(i)

stat@et M8 H1Z 19701 3 H

B, C, D=Defined by (32)

N=Subscript indicating N,

O=Subscript indicatingO,

7=Subscript indicating final condition

—=S8ymbol used to indicate pure component quan-
tity. Wy for example is the loadin of pureN,

L-=Total length of the fixed bed (ft)
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