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Abstract

Flow of polymer melts in a screw extruder is analyzed using a viscoelastic model of a modified

second-order fluid. The equations of motion are solved numerically by modifying the computational

procedure advanced by Fredrickson, and the calculated extruder throughputs at various operating

conditions are found to be in reasonable agreement with the experimentally observed values,

Furthermore, the computational algorithm developed in the present study provides the profiles of shear

rates and melt viscosity in the screw chapnel.

1. Introduction

In various plastic extrusion processes, molten poly-
mer is made to flow through a wide variety of geo-
metrical configurations. The design of flow geometry,
of extrusion dies for example, is complicated by (i)
the complex rheological behavior of polymeric mate-
rials and (ii) geometrical complexities. At present,
the exact solution of the equations of motion with
sophisticated constitutive equations is not feasible for
complicated die geometries.

In the past, a considerable amount of effort has
been devoted to understanding the basic nature of
extrusion operations, Analyses of the flow behavior
of Newtonian fluids in screw extruders were made by
Carley et al (1), Carley and Srub (2) and Squires
(3). Later Eccher and Valentinotti (4) reported an
experimental verification of the velocity profiles
predicted by the previous authors (1, 2).

In recent years, some efforts have been spent on

the analysis of the flow behavior of non-Newtonian

fluids in a screw extruder. These studies have used
simple geometrical configurations to make the analysis
more attractive. One such simplified geometry is a
coaxial cylinder in which the inner cylinder is
stationary. This simplification may be justified,
provided that the screw channel depth is small compared
to the diameter and pitch of the screw, the condition
In this
simplified geometry the fluid follows the combination

teing common in plastics extruders (5).

of axial and transverse motion called “helical flow”.
De Haven (6) presented a procedure for designing
singlescrew extruders processing pseudoplastic fluids.
Colwell and Nickolls (7) and Griffith (8) analyzed
the non-isothermal flow of power-law fluids in a screw
extruder and compared their analytical results with
experimental data. Fredrickson and Bird(9) considered
the combined axial and transverse flow of the power-

Savins (10) extended the
work of Fredrickson and Bird. Tanner(11, 12) carried

law fluid in an annulus.

out experiments in helical flow using various solutions

of polymethyl methacrylate and polyisobutylene.
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Dierckes and Schowalter(18) also studied helical flow
experimentally using polyisobutylene solution.
However, Rivlin (14) seems to have been the first
who made a theoretical study of helical flow of vis-
coelastic fluids, using the model advanced by Rivlin
and Ericksen (15). Later Fredrickson (16) extended
the work of Rivlin(14). On the other hand, Coleman
and Noll (17) also treated the helical flow of visco-
elastic fluids, using their theory of simple fluids (18,
19) which is believed to be a more general fluid
theory than that of Rivlin and Ericksen (15). In
their analysis, Coleman and Noll (17) indicated that
only three material functions were necessary to deter-
mine the stress and velocity profiles of helical flow.
In the present paper, a viscoelastic model of =2
modified second-order fluid is used to analyze the flow
behavior of polymer melts in a screw extruder.
Numerical solutions of the equations of motion,
combined with the fluid model, generate such infor-
mation as the volumetric flow rate,and the profiles of
shear rates and melt viscosity in the screw channel,
The calculated values of the volumetric flow rate show
a reasonable agreement with the experimentally

observed values.
2. Analysis

An extruder screw may be considered to consist
of two sections: the melting section and the metering
section (see Figure 1). In the melting section, solid
polymer (in the form either of pellets or powder) is
undergoing the melting process during which two
phases of solid and liquid polymer coexist. In the
metering section, the screw channel is filled with the
completely molten polymer (one phase), which is
transported by the combined action of the pressure
drop across the metering section and of the rotatiomal
motion of the screw. Therefore, it may be expected
that one can calculate the extruder output rates
from the measurement of seme pertinent variables
in the melting section, the variables being the pressure
drop, the screw speed, and the flow properties of
the polymer melt.

Referring to Figure 1, the screw channel depth 2
is very small compared to the screw diameter D (see
Table 1 for a specific example of a screw design).

Therefore, the metering section geometry can be
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Table 1. Metering Section Data (24)

Extruder Screw Diameter, 1)=2.50 inches
Screw Channel Depth, A =0. 093 inches
Mean Screw Diameter, DD-A =2 407 inches
Fleight Width, e
Channel Width, D-e
Helix Angle, ¢

=0. 375 inches
=2, 125 inches
=18, 3 degrees
Length of Metering Section, L=10 inches

simply approximated by two concentric cylinders,
and we confine ourselves to analyzing the steady
helical flow of polymer melts between the cylinders,

with the following assumptions:

?
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Fig. 1. Schematic Representation of Extruder
Screw Metering Section .

1) A uniform temperature in the screw channel
(i.e., the annular space)
2) No slippage at the wall, and

3) Constant screw speed.
2.1. Equations of Motion

Consider now a polymer melt comtained in the
annular spaoce between two concentric cylinders. The
inner cylinder may rotate with angular welocity £;
while the cmter cylinder may rotate with 3,. We will
use eylindrical coordinates, with the z-axis collinear
with the axis of the annular space and oriented
horizontally. In addition,a pressure gradient is applied
along the axis,

For this helical flow, the welocity compenents may

be written
V=0 1
Vo=re(r) )]
Vemeu(r) J

in which (7)), the angular velocity of a rotating
cylinder and #(7), the velocity compenent of forward
movement, are a function of radial-coordinate r.

The equations of motion of a steady flow are given by
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28 1
ar" +T (Su_sn)="Prw’i
38, 2
or T Su=0 J ®
6815 1 A
ar T Sut Ty =0

S;; are the components of the stress tensor with
the subscript 1 denoting r-coordinate, 2 denoting 6-
coordinate, and 3 denoting z-coordinate, respectively.

These equations may be solved subject to the
boundary conditions

o(xR)=0;, «(R)=Q,
u(sR)=u(R)=0; 0<s<1 3
for a given fluid model.

Here R is the radius of the outer stationary cylinder
for which w(R)=0 and xR is the radius of the inner
cylinder rotating with the angular velocity 2.

If we assume the pressure gradient to be constant,

i e,

aS;g —
— oz = O
integration of Eq. (2) yields

S:z=r—B;y Su”‘%‘Pf‘*“‘{:- 5)

where A and B are integration constants.

2.2. The Modified Second-Order Fluid Model

In the flow of viscoelastic fluids the stress is a
complicated function of the deformation rate,
depending not only on the rate of deformation but
also on its time derivatives (acceleration). Further-
more, the local stresses depend not only on the locol
rate of strain, but also on the previous history of
the liquid. The dependence of stresses on acceleration
and on the past history is also typical of elastic
solids. A general treatment of viscoelastic ' fluids is
due to Coleman and Noll, who introduced the concept
of a simple fluid (18, 19).

There are a large number of published papers which
have discussed and suggested various forms of fluid
models. However, further detailed discussion on this
‘subject is beyond the scope of the present paper and
interested readers are referred to a few recent review
papers by Bogue and Doughty (20), and Spriggs et
‘al (21). In the present ‘study the modified second-
order fluid model is chosen.

The concept of the second-order fluid was derived

by Coleman and Noll (17) from the theory of simple
fluids using their Retardation Theorem.
The originally suggested model has the form
Sii=1tAD i+ LAV AW 47 AP, )
in which g, is a viscosity coefficient, B and 7 are
and A®,; and A®;; are the
Rivlin-Ericksen tensor components (15) defined by
i i
o

.
A(z)i.f:-%._j + VMA(U”-, mt V’-» i A(l)ni

+Vm i Amy, (7-2)

Interestingly enough, the form of the second-order
fluid introduced by Coleman and Noll(17) is identical
with the three constant model of Rivlin and Ericksen

material constants,

A

7-1D

(15), which may be obtained, as a special case of
the more general eight-constant model, in a simple
shearing flow field. Here Eq.(6) predicts normal
stress effects in simple laminar shearing flow but
maintains a constant viscosity, which indicates the
limited applicability of such a model. This seems to
have motivated white and Metzner (22) to derive the
modified form of Eq. (6), which is given by

Sii=pAD A+ BAD A+ A® )}
it is assumed to follow the power-law:

=1

p=K[}1]" ©
where K is the consistency index, 7 is the power-law
constant, and 77 is the second invariant of the A®;;,
The material constants, & and 7, can be determined
by either steady or dynamic measurement as discussed
by Coleman and Markovitz (23).

It may be worth noting, however, that the choice

of Eq.(9) does not have
justification, but it is hoped that the introduction of

a complete theoretical

such a semi-empirical expression will describe both
shear dependent viscosity and normal stress effects.
Given the flow field in Eq. (1), one obtains

o 0 ro o
|aVil=] ro 0 0 (10)
v 0 0
rie’?+u’* 0 0
) )
I AL Ay I = 0 r’e’? ro'u’ | (11)
0 ro's’  w'?
o 2% +u') 0 0
|A.»,- | - o 00 a2
0 00
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. . ,  do
+in which o'= ar

-of the stress tensor may be obtained, substituting
from Egs. (10)—(12) into Eq. (8).
Su=(+21)Y
Su=8Su=a(Y) ro’
Si=S8Sa=a(¥) v as)
Su=prial*
Sp=8s=pro’y’
Ss=pu"?
*in which
Y=r%w'*+u" 14)
"Here 7 is the non-Newtonian viscosity given
by 2(¥Y)=K[Y] a5

‘which is a function only of r.

'2.3. Equations of Velocity Profile and Extruder
Output

"Use of S;, and S;; of Eq. (13) in Eq. (5) gives
d
Su=a/t*=¢gzn (V) (16)
-and

R ER (22

g—z

J=GEayy  an
~where

¢=r/R
a and 1 in Egs. (16)—(17) may be expressed in
“terms of the integration constants A and B in Eq. (5).
" The velocity distribution is then obtained by

‘integrating Eqs. (16) and (17), respectively:

w(6)=go f; 73 d(CY) (18)

wo=—TR[ (52 )5y o

‘where Q, is the angular velocity of the outer cylinder.

"When we consider the boundary conditions at the

inner cylinder:

w=0;
-0 at r=xR 20
Egs. (18) and (19) reduce to
2o—0i= f cag(){) (21)
222 dr
—f ( ) Yy (22

These two equations, (21) and (22), are to be used
for determining two constants, a and 2, and then the
velocity profile #(¢) of Eq. (19) will be completely

-determined.
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The volumetric flow rate, Q, is then obtained from
the expression:
Ix R 1
Q=( o f _u(ryrdr do=on R u()eds (23)
Use of Eq.(19) in Eq. (23) gives

o (P

in which P is the pressure gradient across the meter-

ing section.

It is very interesting to note that the volumetric
flow rate, Eq. (24), depends on K and 2 only of the
power law model, but not on the material constats,
£ and 7 of the flow model (8). This will make the
use of Eq. (24)very convenient for practical purposes,
because, in many industrially important polymer
processings, shear rates are such that the flow viscosity
falls in the region where the power-law model holds
Therefore,
obtaining the values of K and 7 at the practical range

reasonably well. one hasno problem of

of shear rates, for instance by use of a capillary

rheometer.

2.4. Computational Procedure

Having derived the expressions for stress distribu-
(16) and (17)), the velocity profiles
(Eqs. (18) and (19) and the extruder output (Eq.
(24)), we have performed the computation with the

tions (Eqs.

following procedure, which is a modification of that
advanced by Fredrickson (16) :
1. Assume @ and A
2. Compute S,; and Sy, from Egs. (16) and an
for a given value of ¢=r/R, where x<(£<1.0
3. Assume Y for the same value of &.
4. Compute z(Y) from Egq. (15).
5. Compute Z=(S,,/a)*+(S,s/E)? with the already
calculated values of S;, and S,; from step 2 and
2 from step 4. Note Z is the newly calculated Y,
as may be seen from Eqgs. (16) and (17).
6. Compare the assumed value Y(¢) in step 3 with
‘the calculated value Z in step 5.
7. If the comparison in step 6 is not satisfactory,
repeat the steps 3 through 6, with a newly
assumed value of Y, until Z and Y converge
within the predetermined margin.
8. If step 7 is completed, repeat steps 2 through
7 for all values'of &,
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9. Compute the right-hand side of Eqs. (21) and
(22), respectively. Compare the computed values
with the values of the left-hand sides of Eqgs. (21)
and (22), respectively.

10. If the comparison in step 9 is not satisfactory,
assume new values of « and 1 and repeat steps 2
through 9 until Eqgs. (21) and (22) are satisfied.

11. If step 10 is completed, compute Q from Eq. (24).

A simplified flow diagram of the computer program

Assume

! a and 2

Y
Six=a/¢(I) (Eq. 15)

is given in Figure 2.

3. Experimental Extrusion
Data of Schramm(24)

For the purpose of checking the theoretical deve-
lopment of the present study, the author has chosen
certain experimental data of Schramm (24), who ran.

a 2-1/2" nominal diameter vented type extruder,

i Assume Y L

KY

®i
i
3V

(Eq. 15)

| (Eq. 1)

Z=(S1/@)*+ (S1a/i)?

Apare

. LOOY, sunnciqng

Subroutine “GFPA™

20 Continue |

Yes, (Z—Y)<¢

Y and Z

No, (Z-Y
Subroutine “GAUSS” 0. (Z=Y)>e
e - j"_(ci:‘?_’?_@ﬁ
TR RO, 27 )k Lu(@)
(Eq. 21) (Eq. 22)
Sila, )>e Evaluate
No, fola, 1) Se
file, 2) =a]y— 2.=20 (E,. 21)
f2la, D=5I=0 (Eq. 22)
Yes, fila, D)<
fola, <e
Subroutine “GAUSS”
' =) @-D) o= —PrR
R M 2
‘ ] 47(4 (E. 20)
Fig. 2. Flow Diagram of th, ‘omputational Scheme
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having a screw length to diameter ratio of 24 to
1. The dimensions of the metering section used for
‘the experiment are given in Table 1.

In his experimental work, Schramm(24) used poly-
propylenes of a wide range of melt index(MI: 0.1~
32 at 250°C), and obtained flow curves using a
-capillary extrusion viscometer. Figure 3 shows the
shear-dependent viscosity of several samples at a
temperature of 239°C, and Figure 4 shows the shear-
-depentdent viscosity at three different temperatures.

In the extrusion experiment, Schramm(24) measured
‘the temperature (T) of the screw channel, the
pressure drop across the metering section, (-4P), the

-screw specd (N), and the volumetric extruder output

Table 2. Experimental Extrusion Data of
Schramm (24)

Run # Temp.,°F —4P,Psi N,RPM Q, cc/sec

10 480 300 111.0 22.6
11 480 300 126. 0 24.0
23 510 550 103. 2 19.7

0.5
0.4

0.3+

0.t
0.09
0.08
0.07
600
0.05
0.04

sity, L.B-sec/in?

Visco

‘.

0.03"

8.01] —
0 15 23 30

e ' 1 b l 1
40 50 6070 100

Shear rate, sec™*

Fig. 3. Melt Viscosity vs. Shear Rate for
Polypropylene at 238°C (24)

J.KICNE, Vel 8 No.2, Jun 1970

63

Mi=1.01
Mi=2.91

Viscosity, LC-sec/in?

- % Viscosity Data at 239°C
Resin Melt Indexes at 860°C

001 s
10 15 70

Shear rate, sect
Fig. 4 Dependence of Melt Viscosity on
Temperature (24)

(Q). In Table 2 are given three sets of his data.

The viscosity data in Figure 8 indicate that the
polypropylene melt which was under investigation
follows the power-law fluid model, in the range of
shear rates indicated, thus supporting the use of Eq.
(15) in conjunction with Eq. (8). The viscosity data
in Figure 3 are given at 239°C, while the extrusion
experiments were carried out at 480°F (249°C) for
Runs no. 10 and 11 and 510°F(266°C) for Run no. 23,
respectively. Consequently, an appropriate temperature
correction had to be made in order to calculate K
and n of Eq. (15), after calculating the flow activi-
ation energy from Figure 4. The calculated values
of K and » for the power-law model are given in
Table 3.
temperature, as may be seen from the slope of the

straight lines in Figure 4, and the value of K (the

The flow index 2 is independent of the

Table 3. The Values of K and n for
Polypropylene Melts

Run# I\g:ltzslgééx n o o K
10 9.1 0.315 4.14X10* dyne sec®35/cm? at 480°F
11 9.1 0.315 4.14X10* dyne sec®35/cm? at 480°F
23 32,0 0.595 6.11X10° dyne sec®5%/cm, as 510°F
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flow consistency) is dependent upon the temperature.

4. Results and Discussion

A numerical computation for the extruder output
Q of Eq. (24) was performed using the data given
in Tables 1 and 2,
described earlier. In actual computation, three subr-
outines were used: ROOT, GAUSS, and GFPA, as
denoted in Figure 2. Subroutine ROOT was used to

by following the procedure

pick successive values of Y involved in the ccm-
putational steps 3 through 6. sudroutine GAUSS was
used to perform the necessary integrations, and
subroutine GFPA was used to pick successive values
of @ and 2 involved in the computational steps 1
through 9. The screw channel depth was divided
into twelve segments (0. 96 <{;<1.0; ¢=1, 2¢eveee 12).
(21), for

requires values of viscosity at 12 points

This was because integration of Eq.
instance,
for use in the 12 points Gauss integration method.
Table 4. Comparison of Theoretical and
Experimental Values of Extruder

Output

Caflculate}:i Q

. rom the

Run % Exper(lg(l)gmal Present
Study, Egq.

Calculated Q from a
Newtonian Fluid
Model, Eg. (25).

(21
10 22.6 cc/sec 17. 32 cc/sec 31. 34 cc/sec
1 24.0 20. 89 35.2
23 19.7 35. 46 51.5

The computed values of the extruder output Q at
three different operating conditions are given in Table
4, together with the experimental values of Schramm
(24). The comparison between the theoretical and
experimental results for Run no. 10 and 11 are
found to be in reasonable agreement. However, there
are some doubts about the experimental result of Run
no. 23. From the flow properties (K and 7n) of the
polypropylene used for the experiment (see Figure 2
and Table 3),

much less viscous than that used for Run no. 10 and

the material used for Run no. 23 is
11 at each operating condition. Furthermore, the
pressure drop across the metering section for Run
10 and 11

at approximately the same screw speed. Therefore,

no. 23 is greater than that for Run no.

much greater extruder outputs are expected from Run

no. 23 than from Run no. 10 and 11. However, the-
experimental results reported by Schramm (24) are-
contrary to what is expected. However, the computed.
values confirm the expectation.

At this point it would be interesting to review a
theory, proposed earlier by a few authors (1), which
treats the polymer melts as a Newtonian fluid. In

this theory, the extruder output is given by

BapP

Q=aN-T (25)

where @ and § are constants determined by the screw
geometry, N the screw speed, - 4P the pressure drop
across the metering section, and » the melt viscosity
at the shear rate 7 to be calculated from the expre-
ssion )

IDN
=5 (26)

in which D is the screw diameter, A is the screw

7'.

channel depth, and N is the screw speed.

The values of extruder output calculated from Eq.
{25) are also given in Table 4, and they are con-
siderably greater than those calculated from the

present theory, Eq. (24). This may be due to the

—~ 4P =300psi 14 x10°
{.=10inches
D=2.5inches
h=0.003 .
K=0.414x10"
n=0.315

vs. §
N—-—ﬁ vs. &
2004 \

3.5x10"

3x10%

= N Z
" . & <
g 150} \ . Aps<or &
- N / Sy
< fexw00 2
® é
@ 100 %_:
« . 1.5x108 &
\-{ 1%x10°
50,
- +4.5%10°
0 1 Il L N | 1 | 0
096 097 0.98 0.99 1.00
Lo=rR
Fig. 5. Profiles of Shear Rate and Melt

Viscosity in the Screw Channel with
Screw Speed as a Parameter

value of the viscosity, which, in turn, is due to the

value of shear rate.calculated frem Eq. (26). Note,
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however, that shear rates in the screw channel vary
sligniﬁcantly from the surface of the screw to the
surface of the barrel.

Because of the helical nature of the flow pattern in
the screw channel, the shear rate near the moving
surface is expected to be greater than that near the
stationary surface. The profiles of the shear rate,
together with the profiles of melt viscosity in the
screw channel, are given in Figure 5, with the screw
speed as a parameter. Note that the shear rates are
calculated here from the combination of the forward
(14), while

Eq. (26) depends only on the angular motion.

and angular motion, as seen from Eq.

Since the polymer melt viscostiy is clearly shear-
dependent, as seen.from Figures 3and 4, the viscosity
near the moving surface would be less than that near
the stationary surface. In Figure 6 are shown the
profiles of the shear rate and the melt viscosity in
the screw channel computed from Egs. (14) through
(22), with the pressure drop across the metering
section as a parameter.

To summarize, the analysis presented in this paper
gives a deeper insight into the flow behavior of

polymer melts in the metering section of a screw

300 510
- =110RPY
e S e 1510
D=2.5inches
00 h=0.093inches !
K=0.414 x 10° daxo?
——r v n=0.315
3.5% 10°

200 @
Tu 3% 103 3‘
@
n g
~ >
& 150 252100 2
g 3
= 2
< 2% 5>
<
[753

100

1%10°
50

-5 % 10*

0
% 57 T XE To

¢=r/R
Fig. 6. Profiles of Shear Rate and Melt Viscosity
in the Screw Channel with Pressure Drop
as a Parameter
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extruder. A computational procedure is advanced ard
demonstrated for obtaining the extruder output, and
the profiles of the shear rate and melt viscosity in
the screw channel. The theoretically predicted extr-
uder output is found to be in reasonable agreem.ent

with the experimental data.

Nomenclature

A:  Integration constant defined by Eq. 3

AWM, ;:Rivlin-Erickson tensor components defined by

Eq. 7-1

A®, ;. Rivlin-Erickson tensor components defined by
Eq. 7-2.

B: [ntegration constant defined by Eg. 3

D: Screw diameter

h: Serew channe! depth

K: Consistency Index

N: Screw speed

n: Power-law constant

P: Pressure gradient

Q: Volumetric flow rate

R: Radius of the outer cylinder

Sii+ Components of the stress tensor

w: Velocity component of forward mevement

Vi: Components of velocity

Y: Quantity defined by Eq. 14.

@&: Constant

@: Constant determined by the screw gecmetry

R Constant defined by Eq. 6

B: Constant determined by the screw veometry

r: Constant defined by Eq. 6.

I Shear rate

M: Melt Viscosity

'y Ratio of the radius of the inner cylinder to
that of the outer cylinder

A Constant

Ho! Viscosity coefficient

IR Non-Newtonian viscosity

& Dimensionless radial variable, r/R

1 Second invariant of A,

Q;: Angular velocity of the inner cylinder

Q. Angular velocity of the outer cylinder

w: Angular velocity.
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