AREEEREZRNAML BRRBARIH

S <

E*-N. M. Howe*"

Breakage Phenomena in a Interfacial

Polymerization Reactor

Young-ok Ahn* - N. M. Howe**

*Korea Institute of Science and Technology
**E.I. Du Pont de Nemours & Company

Abstract

Breakage phenomena observed in a novel interfacial polymerization reactor was characterized by a

breakage parameter (#3/¢,) which can be interpreted to be the ratio of the breakage time divided by

the mean residence time. This parameter was calculated from the equation relating the mean fibrid

sizes in the product and the initial streams. The usefulness and validity of the analysis were checked

bycomparing the calculated variance of the product distribution against experimental data. The breakage

parameters obtained from the 25 gallon unit data were also related to the reactor volume and r. p. m.

by nonlinear regression analysis.

When an interfacial polymerization is carried out
in an agitated vessel, a suspension of unusual fibrous
material results. This pulplike synthetic material is
called fibrids (Ref. 1,2). More precisely, fibrids are
defined as nonrigid wholly synthetic polymeric part-
icles which are capable of forming paperlike struct-
ures on a paper-making machine (Ref. 2),

These fibrids are normally not uniform in size and
this nonuniformity often is undesirable in terms of
practical application of the product. This work is
concerned with the mathematical simulation of the
breakage that takes place within the reactor to mini-
mize the variance of the fibrid size distribution. The
work was also intended to obtain a sound scale-up te-

chnique for this unsual polymerization system.

Experimental

A schematic diagram of the condensation polyme-

THBIRHBHIEHRTT &0 TE
**E. 1. Du Poxt de Nemours & Company,

rization system is shown in Figure 1. As indicated,
an aqueous solution of reactant whose main constitu-
ent is an amine compound is pumped into the syst-
em before the start-up. After the reactor content is
at a desired level, the high speed agitator is turned
on to provide a turbulent vortex. Then the second
reactant B which is a polymeric solution with active
isocyanate group is introduced streamwise onto the
vortex. The fibrids are normally formed instantane-
ously upon contact and swept into the center of the
vortex. The fibrids then undergo some internal recir-
culation before leaving the reactor. A periodic sam-
that the fibridator

reaches a steady state in 3-4 mean residence times, as

pling of the product showed

expected from well-stirred reactor theory.

Figure 1 also shows a U loop in the reachant B
stream which was charged with reactant B with red
pigment. The content of the U tube was injected
into the system by manipulating the valves after the

system came to steady state. The normal flow of re-
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actant B which gives white fibrids resumes after the
almost instantaneous injection of the pigmented re-
actant B. The resulting red fibrids among the normal
white fibrids were collected at regular time intervals

to trace the history of fibrid break-up. The first gr-
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Fig. 1. Interfacial Polymerization Reactor

oup of red fibrids which appeared at the outlet were
collected and classified into five fractions according
to size by means of Clark classifier used in the paper
industry. The distribution thus obtained was used as
a good estimate of the initial distribution of fibrids
which were formed at the first conact of two reac-
tants A and B. The justification of the above method
was based on the fact that a small portion of an in-
coming fluid into a well-stirred reactor always shows
up immediately at the outlet without any internal
circulation.

Of course, the other pigmented fibrids were also
found among the regular white fibrids continuously
for the next 3 to 4 mean residence times and these
were sampled at regular intervals for a transient stu-
dy. The main concern, however, is to predict the
steady state distribution of the fibrids from the kno-
wledge of an initial distribution. This is the subject
of this work.

Mathematical Analysis
The strategy of the analysis, however, was to re-
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present the system with a single characteristic vari-
able. This approach was motivated by the belief that
a simulation with a single parameter is usually cl-
ear cut and easier to manupulate than the multivar-
iable model.

Consider now an agitated tank with a
continuous feed and a continuous product
removal. We assume the tank to be well
mixed so that the size distribution in the
product slurry is identical to that of the
reactor tank. As mentioned earlier, the
fibrids are formed instantaneously on the
surface of the vortex as the two reacta-
nts A and B, come into contact. These
fibrids then undergo a size reduction ei-
ther due to the turbulent shear field or
by coming into an actual conact with
the high speed blade. To represent the
system mathematically, we let
I(m)==Fraction of fibrids in the size ra-

nge (m, m+dm) as they form in-
stantly upon contact of reactants
A and B.
R(m)="Fraction of fibrids in the the size range (m,
m-+dm) in the reactor and the product slurry.
n;, n,=Input and output rates of fibrids, respectively.
N=Total number of fibrids in the reactor
g(m)=Net rate of fibrid generation with respect to
the particular size range under consideration,

i.e., (m,m+-dm).

With the above quantities defined, we can write
the following number blance for a steady state ope-
ration. It should be noted that the balance is written
for fibrids of a particular size range (m, m-+dm)
only. The size balance equation is:

n;I(m) — n,R(m) + g(m) =0 (¢D)]
(Input) (Output) (Generation)

In order to define g(m) more precisely, we will
assume the following.

1. All fibrids, regardless of the size, are broken
up at the same break-up frequency of (1/t;). The
quantity, ¢, is therefore the time required for the
fibrids to break up.

2. Each fibrid breaks into two smaller fbrids of
equal size.
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Needless to say, the above simplification is highly
idealized. Under the stipulation, the generation term

becomes:
g(m)==-2¥2R(zm) -- 2L R(m) @
173 )

(Appearance of (Disappesrance of
2 fibrids of 1 fibrid of size

size m) m)
The equation balances the breakage of a large fi-
brid of size 2m and the disappearance of a fibrid m
which occurs simultaneously. Combination of (1) and

(2) then gives the desired number balance below:
nl(m) - mR(m) -+ 2 (2R(2m)-R(m))=0 (3)
b

The above equation is applicable for any size m
either large or small. A similar balance on the en-

tire fibrids, on the other hand, simply is:

nmg N @
ty

Next, the elimination of n, from equations (3) and
(4) gives:

nl(m)-~ (n; 'T,ﬁ\l_) R(m) + N
2 Ly
(2R(2m)—R(m)}=0 (5)

The rearrangement of (5) then gives:

(1- a) I(m)—R(m)-aR(2m)=0 (6)
Where:
N
) 2(—71’—) “ 2 »
s I C DR ‘

In the above equation, ¢, is defined to be (N/#n;)
which is the average residence time of the fibrids in
the reactor. Note that « is a function of the single
ratio (73/¢,) and that the breakage phenomena is ch-
aracterized entirely by this ratio. We will now atte-
mpt to obtain a solution to the governing equation
(6).

Recall that the breakage process, under the hypo-
thesis, is such that the resulting particle size is ha
If of the original one before breakage. This suggests

the following transformation of variable.

mzm,——zl—yA 8
or
(2
=P 9
Y in2 ®

It should be noted the value of fibrid size m is nor-
malized with respect to the longest fibrid size ex-
pected so that its numerical value is always less than
1.0. The value of ¥, in turn, therefore is always
larger than zero. Application of this transformation
to the governing equation (6) then yields the follo-
wing linear difference equation:

A~ (9)—R'(9)+aR (y—-1)=0 (10)

Where primes are added to emphasize the indepe-
ndent variable change of m to y.

The solution of this equation can be obtained by

applyving a z-transform which is definned by:
I=Z2T (), 550,1,2, 50 an
This is the discrete data counterpart of the more
common Laplace transform. First, multiply if" to
all the terms of (10):
A=0Fe I0)~5s R +E27RG-1D=0(12)

But recall that R(y)==0 for y<0 since none of the
The last term of (12)

therefore can be altered to give the following two

fibrids get bigger than m,.

equations:
(1~"cr')ﬁ§" I(yﬁ)‘«»yi'joz’fR(y)—afaz**ﬁ;]z'u—w
' RG-D=0 (19
(=) I(3)— 5 *R(9)+az" S *R(3)==0

(14)
In the transform notation, this becomes
(1=a)I(2)—R(2)+az*R(2)=0 (15)
R(z)=_§.1:__“2l§§’)_,.. (16)

1—az™
The above equation relates the input and output
distribution of fibrids in the transformed notation.
In our case, we found that all the fibrids were init-
ially of unit size. Therefore
I(m)== /1, if m==my
(O, otberwise,> Qan

or

I'(y)=:;1, when y==
(o everse ) (8
0, everywhere else,
Even with this limiting narrow distribution initia-
Ily, a broad product distribution is created.
The transform is simply
I(z)=1 a9
Substitution of (19) to (16) then gives
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Broye A—a) 1 N3y
R(z)—_l;(x—z:‘—— Qa a)’guay, ? (20)
But by definition
R(z)E’i‘,oz'J’ R'(») 1)
Therefore comparison of (20) and (21) gives
R'(y)=Q0—a) » (22)
., 1 .
where m=m, % ,y=0,1, 2.

The resultant product fibrid distribution R'(y) then
can be plotted either against y or m. More concise-
ly, however, one can compute the average size and

the variance of the distribution. The mean of the

fibrid distribution which is the flrst moment of distr

ibution can be stated as
p=ME=Em(9) R'(9) (23)
Inserting the result of (22)
;z=M,=m,(1—;§)Z2"a>
=m (-5 (§)

=m1~a) (—1) (24)
1-5

fiquation (24) can be used to calculate «. The br-

eakage parameter fy/¢,, which can be interpreted as
the ratio of the breakage time divided by the fibrid
mean residence time then can be computed from Eq-
uation (7).

The consistency of the analysis is then checked by
comparing the calculated variance of distribution ag-
ainst the experimental data. To derive the equation
for the variance of the distribution, however, we
will show how the moments of distributions are re-
lated to the z-transform. By definition, kth moment
of distribution is defined as

My =3 R'(5) (m(»)*

RIERG)

=mt5 R(y) (297 (26)
Recall that the z-transform of the product was defi-
ned as
RE=L Rz (26)

Comparison of equations (25) and (26) then gives

the following simple relation between the moments
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of distribution and the z-transform
My=m}R(2)| ;= @n
Thus, the mean of the product fibrid distribution
can be simply obtained by substituting 2* for z in
equation (20) multiplied by m, which yields identical
result shown in equation (24).

Similarly, the second moment of distribution is

M,=m,*? '"]':'(i“"” (28)
1— a(z)

Furthermore the variance of distribution is related
to the moments by
ot =M,—(M,)* (29)
In our case, the variance of the distribution can

be predicted by

P ol ( 1—a )”‘ my* 30)
E=a )

The experimental data, ¢,/¢, calculated by equat-
ion (24) and experimental values of variances are
shown in Table, 1. These values are plotted against
the theoretical curve of equation (30) in Figure 2.
It can be seen that the agreement is good, verifying

the usefulness of our model.

Table 1. Experimental Data and Mathematical Ana-

lysis of 25-Gallon Fibrid Reactor

|Average Size[Variance of |Breaka-
Run \R,g?ﬁtr?; Agitator| of Product | Product |ge Para-

Gal | Rpm Fibrids Fibrid |meter

. pm. (Inches) |Distribution|(ts/ts)

345 20 3500 0. 0365 0. 812 2.38
346 15 3500 0. 0336 0. 815 2.14
347 15 3500 0. 0280 0. 709 1. 80
348 16 3500 0. 0280 0. 734 1. 80
349 20.5 3500 0. 0396 0. 761 2.70
350 15 3500 0. 0311 0. 736 1.98
351 20 3500 0. 0338 0. 785 2.16
352 15 3500 0. 0305 0. 765 1.94
353 | 20.5 | 3500 0. 0320 0.750 | 2.03
356 16.5 2330 0. 0382 0. 762 2.54
357 21 2330 0. 0392 0. 878 2.65
358 14.3 2330 0. 0375 0. 829 2.47
359 15 2330 0. 0404 0. 849 2.78
360 20. 4 2330 0. 0381 0. 833 2. 54
361 20. 6 2330 0. 0426 0. 837 3.08
362 14.0 2330 0. 0430 0. 820 3.15
363 20.8 2330 0. 0353 0. 837 2.27

Notes: (1) Initial distribution of fibrids was found to be sh-
arp around the mean size of (.063 inches for all
runs.

(2) Product flow rate was 2.8 gallons/minute.

Along with the mathematical analysis, we have

also subjected the factorially designed experimental
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Fig. 2 Product Variance Related to the Breakage Parameter
Data for 25-Gallon Unit.
results to the nonlinear regression analysis. The ex- 20. 0F

amination of the curve fitting by comparing the st-
andard deviation against the residual standard devi-
ation indicated that the breakage parameter is a
function of reactor volume and the agitator speed.
The response contour curve of this dependence is sh-
own in Figure 3. This plot can be used to select 17.5H
process conditions. For example, Figure 2 indicates

that the breakage parameter should be close to 1.0

REACTOR VOL (GAL)

if fibrids of uniform size are desired. Figure 3 then

indicates how readily such condition can be realized.

15. 01

Conclusion 2330 2916
AGITATOR,RPM
The work thus far conducted suggests that the br- '
Fig.3 Breakage Parameter, (¢,/t,) as a Function
eakage parameter, (Z/t,), can be used successfully of Operating Variables
to represent the breakage phenomena occuring in an
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Nomenclature

I(m)=Fraction of fibrids in the size range
(m,m+dm) in the initial distribution.
R(m)==Fraction of fibrids in the size range
(m, m-+dm) the reactor and in the product
slurry.
I'(y) and R’'(y)=Function I(m) and R(m) with ch-
ange in independent variable acc-
ording to (9)
n;, n,~Input and output rates of fibrids.
N=Total number of fibrids in the reactor.
g(m)=Net rate of fibrid generation with respect to
the size range (m, m+dm).
tp=Time required for the flbrid to break up.
t,=Average fibrid residence time in the reactor, (N/
n;), approximated by (Q/V).
a =Defined by Equation (7).
y =Defined by Equation (9).
z =z-transform parameter.
8 =Parameter in the Pascal distribution.
D=Parameter in the Poisson distribution.
M,=kth moment of distribution.
k =A parameter in the mements of distribution.
# =Mean the product distribution.
0® =Variance of the product distribution.
V =Reactor volume.
Q =Product flow rate.
ty/t,,=Breakage parameter.
m,=Reference fibrid size which can be taken to be

the largest size expected.

Appendix

1) Initial distribution of Pascal type
In this case,
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I(y)=Q0—-5p
where (31
m=m,2"7, ¥=0,1,2, ......
For simplicity, also assume m,=1. The z-trans-
form of the above distribution is
— 1—
=125 (32)
The transform of the product distribution obtained
by substituting (32) into (16) which gives
Ry (=) (1—5)
= (=5
=(1-a) A-Drz {5y bv—H)

2o i.(i;‘?(_l,,:@_ iuz",v (*—a?) (33)

where we have expanded the transform and evalu-

ated the sums. By inspection, the desired product

distribution can be seen to be

R'(» ==_<1:égﬁ,<_1;a_>_ oy (3t
=1

2) Initial distribution of Poisson type

-pDys
()= "7
(o 31 (35)
m=277, y==0,1, 2......
The z-transform is
I(2)=¢"DeD/x (36)
Using equation (16),

Re= G2 @0

Expanding (37) and identifying the coeficients of
277, we get the desired inverse of

s -

R(»)=(1—a)e 2y o7 (38)
m=2"?, y=0,1,2,3...

Both cases are realistic examples of possible cases

in practice.



