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Abstract

A simple method of estimating liquid densities at moderately high temperature and pressure was
obtained from the existing theories for liquids. For pure liquids the smoothed potential cell model
was used in conjunction with the empirical equation for saturated liquid densities and the method
was extended to the binary mixtures by the use of the average potential model,

The results of sample calculation show that the deviation of estimated values from experiments is
about 1% up to 700 psia and about 5% at 4500 psia for pure liquids. It is about 4% for binary
mixture of C;Hs+CsH,. These are comparable with the deviations of other methods.

The main advantage of the present method is that it requires only two constants which can be
obtained from two saturated liquid densities which are easy to obtain experimentally. No knowledge
on the densities of high pressure is required beforehand as is the case with other methods based on

the principle of corresponding states. It is not a correlation method of data, but a prediction method

of unknown data.

Introduction

In the petroleum reservoir engineering calculations,
accurate values of the volume of liquid hydrocarbons
are essential. A successful prediction of the perfor-
mance of oil reservoirs will depend on the knowledge
of the volumetric behavior of liquid hydrocarbons
contained in it. It is always desirable to have a
good method of estimation for this property.

While the available correlations for predicting the
behavior of gases are quite successful, those for liquid
In fact,

behaviors are not satisfactory. the liquids

have neither the fluidity of gases nor the rigidity of
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solids. Consequently, the liquid state is not so

welldefined. At present, the methods of estimating
liquid densities are based mainly on the principle of
corresponding states. Extensive data for the whole
temperature and pressure range for some liquids are
required to construct these correlations. Morabver,
the critical temperature, pressure and volume which
are not easy to obtain experimentally are usually
required. In addition to these, occasionally one or
more of experimental density at certain temperature
and pressure are needed. Reid and Sherwood" review
the available methods and estimate the error to be 2
to 5%. In this report a straightforward method of

estimating the liquid densities at moderately high
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pressures and temperatures is presented. This is
obtained by extending the existing theory for liquids.
A detailed derivation is given to clarify the limi-

tations of the present method.

Smoothed Potential Cell Model

There is a wide variety of theories relating to the
liquid state. Early stage of the progress in the liquid
model was made by Lennard-Jones and Devonshire?
using the cell model. A simplified model, proposed
by Prigogine and Mathot®* is employed here. It is
called the smoothed potential cell model.

In the liquid state far below critical temperature a
certain regular spacing of molecules is postulated
with a mean intermolecular distance of the order of
the molecular diameter. The cell model of the liquid
state assumes that each molecule is confined to its
own cell formed by neighboring molecules. It is as-
sumed that the central atom can move inside a
polyhedron formed by the neighboring molecules at
their equilibrium positions. At high densities this
polyhedron may be approximated by a sphere. The
mean energy of interaction takes the value of 0 or
o in the smoothed potential cell model which makes

the following assumption regarding W(r):

W(r)—W(e)=0 0<r<(a—o)

W(ir)—W(o)=c (a—a)<r [¢))

where
W(r)=mean energy of interaction of the central
molecule with neighboring molecules;
W(o)=value of W(r) when all molecules are at
* centers of their cells;
r =distance between molecular centers;
a =distance from cell center to the center of
neighboring molecules;
a =diameter of the hard sphere molecules.
Then the cell partition function, ¢, corresponding
to a molecule in the cell referred to the energy of
the molecule at the center of the cell can be expressed

as:

¢=4r J‘cell exp [—ZlT (W(r—W())] ]r2 dr
@

where

k=the Boltzman constant;

T=absolute temperature.
The pressure, due to the potential energy of all
molecules placed at the centers of the cell and the
motions of the molecules in the cell, can be readily

obtained from the cell partition function as:

_—1ra W(o)
P={%7)

L) r(ih) o

T oV

For the general case we consider that a pair of
molecules interact according to the Lennard-Jones

(n, m) potential energy function.

U(’)=@i—in7["‘(€i)" —(Z)"] @

where
U(r)=mutual potential energy of interaction of

an isolated pair of molecules;

r =distance between centers of molecules;
r*  =value of r at minimum U(r);
¢* =value of —U(r) at minimum U(r), maxi.

mum energy of attraction;
m  =attraction exponent;
n =repulsion exponent, n>>m.

Then the average energy of interaction of one
neighboring molecule with the central one can be
obtained by averaging the interaction energy for all
orientations of the central molecule in the cell. Fach

position is equally weighted.

2r "z

_ J U(r*+a*—2ar cos §)¥sin 6 db do
U(r)==-+2

j:_[o sin 6 d6 do

®

where

B13tEE R 9A M 23 19711 63



l?(r)zaverage energy of interaction;

) =inclination of the central atom from the
axis of a neighboring molecule and the
cell center;

¢  =azimuthal angle of the central molecule;

a  =average distance between first neighbors.

The mean energy of interaction is that of average
interaction energy multiplied by the number of
neighboring molecules. This is done with the rela-

tionships:

a® =7V

r*i=y V¥

where 7 is a numerical factor which depends on
the geometrical arrangement of the molecule. We
now have the following expression, taking into

account the lattice energy of more distant molecules.

o2 e (3] 0

where
C and D-==lattice summation constants;

1% =volume per mole;

V# =value of V at r=r%*

A =number of nearest neighboring mole-
cules.

The partition function in Equation (2) can now be

written as:

99:%”’*3(%)[1——%( “//* )%]3 -

where s is 7*/o and is a function of # and m. It

can be found by the relationship of

1 tn-m)
n
=(%)

m
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Combining Equations (6), (7), and (3), the expre-
ssion for P is obtained.

P=gaselC (v -p () )+

@®

Thus, we obtained the equation of state for the

liquids from the smoothed potential cell model.

Empirical Relationship for Liquid Density

For nonpolar molecules Reed” has shown that the
following empirical equation holds well over the

whole saturated liquid range up to approximately
T/Tc=0. 8.

1_
yi=4-BT ©)

where

A and B=positive constants characteristic of
each substance,
V=molar volume.

This equation correlates the liquid density at low
pressures. The validity of this equation was checked
by calculating the molar volume at absolute zero of
temperature, which demonstrated quite satisfactory
agreement with values estimated by other methods®.

The theoretical significance of A and B was found
by Reed and McKinley®. At zero pressure Equation

(8) can be rearranged as

(%1) (m-n=8)/3 1 55’1*1 k[;-%(s“")/ﬁ]z,rz (10)

where




b= G(n—m)

nm

Comparison of Equation (10) with Equation (9)

gives:
a=(@)femmmree "
B= ZI:* k[x“"‘)/"/aCV*z] a2

Thus, A is related to 7* and A/B to ¢*.

Working Equation

For our present purpose of predicting the liquid
densities at high pressures, we take advantage of
Equations (11) and (12). When these equations are

combined with Equation (8), we have:

D1/ ¢
-‘l;zzll_BT+B£‘ (l—x%/s) a3

In order to obtain a numerical value of s, we
choose the usual value of 12 and 6 for » and m,
respectively. The exponent 6 for attractive force was
first proved quantum-mechanically by London”.
the value of 12 is chosen for a cubic
Then

the value of V* can be approximated in the following

However,
close-packed structure. In this case s=2'/"

way. It can be shown® that for a face-centered

cubic lattice:

14
V*

=(.916 for T—0 (¢TY)

Since V=A% at T=0, we have

*=(0.916A"! as)

Finally, we have the working equation from
Equations (13) and (15).

Te=A—BT+1(p) 16)
where
£()=0.083F BV an

When V is in cc/mole,
(mole/cc)?/°K,

atm/mole° K.

A in (mole/cc)?, B in
and P in atm, then R=82.06 cc

There is a difficulty in using Egquation (16) for
actual calculation of the liquid volume. To evaluate
the last term of Equation (16) one has to know the
This difficulty
As a first
approximation we calculate V from A and B at the

we set f(p)

=(. Then we use this value in the next calculation

volume which he wants to calculate.

can be solved in the following manner.
temperature of the calculation; that is,

with a small increment of pressure. The procedure
is iterated until the value at the desired pressure is
found. If one wants a better accuracy, one can feed
back the value of V in the next calculation until
there is no change in V at each pressure. This kind
of iteration should not be a problem on a high-speed

computer.

Binary Mixtures

In order to extend the present method of estimation
to mixtures we adopt the refined version of the
average potential model of Prigogine. In this model
two hypothetical liquids are introduced which are
centered on each component. For the liquid which
is centered on species 1, the effective interaction is
found by summing up the pair interactions of 1 with

its neighbors.

UEH =2, Uu(")“"szU(") as)
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where (U(r)) is the average interaction potential
and x is the mole fraction. The subscripts refer
to the molecular species in the mixture. For
the two-centered liquid we can express (U@,
similarly. Now if we assume that the isolated-pair
interactions are all of the form of the Lennard-Jones
6-12 potential, we obtain the expressions for the

parameters of the effective potential for one-centered

liquids as:
. 6 5)2
ey, = (¥ + 26057 15*%) (19)
Tie*r* b e M
12 12\ 1
<,.*>1=( Tienr ¥+ dae ¥t )‘s 20
1 *7 1%+ X1 1 *C

while similar expressions can be written for the
two-centered liquid. Then the mixture behaves as
the weighted average -of these two hypothetical
liquids.

To simplify these equations we define new

parameters as follows:

&= e1.¥ 71, *¢ 1 (21)
=rtulu
€12*71.*¢
¥, k12
i o— &1 '
(2 Doy (22)
€12 T2

Then Equations (19) and (20) become,

SEN (x:,+1)*

¢ >‘_5“*[ Tt 1 ] @
= g —1\%

(r¥d=rp* (m) ¢ (€23

Similarly, <z), and {r*), can be obtained. At this
point we want to express these equations in terms
of the constants A and B. From Equations (11) and
(12) we have:
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A =
‘E—_'*Cl @5

A=Cyr*-¢ (26)

Where C’s are constants characteristic to the
exponents n and 7 and others. We assume that C’s
are the same for fure components and throughout
the composition range of the mixture, though this
assumption may not necessarily be correct. We define

another parameter here.

1 1 / 6
w=((al+af) /2] @)
Then, after some algebraic manipulations, we
have:
1
a=[(aans ) L] (28)
1
BB, \+ AfA7 )_
d}‘_[<AiA2> AIBgf] 1 (29
O AA 2+
(A= e (“—‘x, - ) (30)
=g, 5+l
=85 ) @D
Z‘}le=<A>n'—BlT+f:(P> (32)
Fi(py=0. 03 FBLV @3

Similar expressions can also be written for two-
centered liquids. The molar volume of the liquid of
the mixture is given by:

Va=x V) + 2LV, (€2Y)

We are thus able to calculate the liquid volume
of binary mixtures through Equation (34) only from
the knowledge of the values of A and B for pure

components. The calculational procedures for (V),
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and {V), will be the same as that for pure compo-

nents,

TABLE II, (cont’'d):Liquid Volume of Pure

Component*
H-CBng
Discussions S
373.2°K 398.2°K
P, Atm. Cale. ~Expt Cale. “Expt
H . : alc. -Expt. ale. ~Expt.
The values of A and B in Equation (9) for light Expt. % Dev. Expt. % Dev.
hydrocarbons are listed in Table I. The saturated 5 179. 22 +0.11 186. 07 —0.03
liquid density data are taken from the API Project 10 178. 65 +0.15 185. 50 -~0.05
44, With these values Equation (9) should give 15 178.30 +0.07 185. 04 —0.12
Saud . b 20 178.07 -0.07 184. 7 ~—0.25
saturated liquid density for the temperature range 25 177. 85 —0.99 184. 47 —0.44
up to 0.8 Tc with accuracy of about 0.5%. An 30 177. 65 —0. 36 184. 13 —0.56
advantage of this empirical equation is that it ean 50 176.70 —0.84 182. 99 ~1.11
be used for all nonpolar molecules with above 100 174.76 —1.97 180. 47 225
dl £ th 1 1 . 150 172.93 -2.83 178.19 : ~3.14
accuracy, regardless of the molecular size. 200 171 45 a6 176. 36 ‘ 399
250 170. 08 —4.36 174. 65 —4.67
TABLE 1. Values of Constants A and B 400 168. 71 —4.91 173.16 | —5.99
_ " -
AX10% Bx 107 Volume in cc/gm-mole.
Molecule Mole?/cc? Mole?/cc? °K
0, 29. 903 112. 84 TABLE II, (cont’d):Liquid Volume of Pure
N, 15. 540 93. 777 Component*
CH, 12. 2598 47. 2516 R o =
C:He 6. 1554 15. 4521 P Atm 423.2°K 448.2°K
I ) 7. ' R Cale. -Expt. Calc. -Expt.
sHg 3.3907 7.1711 Expt. g Expt. e
n~—CHjo 2. 0983 3.7770
n—CsHy, 1. 4451 2. 3670 5 193. 84 —0.23 203. 32 —~0. 7?
n—CgHs 1. 0588 1. 6173 10 193. 04 —0.20 202. 29 -0.75
n—CyHyg 0. 8081 1.1648 15 192. 49 —0.28 201. 49 —0. 8?
1—CsHg 0. 6345 0.9726 20 192. 01 —0.42 200. 92 ~0.95
n—CsHyo 0.5121 0. 6774 25 191. 67 —0. 60 200. 35 ~1.10
— —1 9"
n—CioHze 0. 4221 0. 5400 30 191. 32 0.77 199. 78 1. .,:3
Cy—CeHia 14571 2. 0506 50 189.84 _i' % 197.83 TLes
CeHe 2. 1561 3. 0345 100 186. 64 —2.55 193. 84 ~—3. 11
150 183. 90 —3.50 190. 07 ~3.88
200 181. 50 —4.29 187.10 —4.63
TABLE II, Liquid Volume of Pure Component* 250 179. 44 —4.95 184. 58 ~5.29
n-CrHye 300 177.50 ~5.50 182. 30 ~5.82
300. 2°K | 373. 2°K * Volume in cc/gm-mole.
P, Atm. Expt I Cale. -Expt. | Expt Calc. ~Expt. o
XPt. | "o Dey. | pt. ¢ Dev. To demonstrate the present method, the liquid
7.12 148. 11 —0.55 162. 88 +0.04 volumes of n-C,H,;® and n-CgH ' were calculated.
19. 08 147.94 —0.87 162.10 —0.17 These data were arbitrarily chosen simply because
31. 0 147. 41 —0.94 - - . .
4 they were in hand. The results of the calculation
43.0 147. 18 —1.20 — - )
52. 31 146. 91 —1.32 _ _ are shown in Table 1I. These values were obtained
82.20 | 146.31 —1.86 159. 50 —1.73 by successive calculation from zero pressure to the
112.10 145. 69 —2.32 158. 44 —2 3: desired pressure with an interval of 10 psi.
171. 89 144. 58 —3.16 156. 47 —3.3
i i i h iation of the
osn.68 | 143 47 —3.83 154. 8 a2 As is shown in this table, the deviation
291.46 | 142.49 —4.42 153.27 —4.97 calculated values from experiments increases as the
351.25 141.57 —4.96 151.93 —5.63 pressure goes up. It is about 1% up to about 50

* Volume in cc/gm-mole.

atmospheres (735 psia), but is about 5% at 300
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atmospheres (4410 psia). The average deviation was
not calculated since it would have no meaning in
this kind of result. A small improvement can be
made by iterating the computation of each pressure
in the calculation. However, it was felt that the
main source of deviation is the shortcomings of the
theory itself.

In Table III the calculation of C;Hgz+CH; system
is shown. The data '» are for the mixture of 0.5
mole fraction of C,H;. This should be a severe
‘test for the method since the largest deviation usually
occurs in the middle of the composition range. The
deviation of the calculated values from experiments

is about 4%;.

TABLE IIL. Liquid Volume of Binary Mixture*

CsHg+CsHg

b ] 560°R ', 620°R

, psia, _ . < <

P i Expt. ) C;éc'ﬁgf.m' ’ Expt, | L,z;ic.[;?\fpt.

200 1.419 +3.38 — -

400 1.414 +3. 46 1.51 +3.84

600 1.409 +3.55 1. 504 ~3.86

800 1.405 +3.56 1. 498 3,94
1000 1. 401 +3.59 1.492 ~4.09
1250 1.395 +3.73 1.485 —411
1500 1.391 +3.67 1.478 ~4.19
1750 1.386 +3.75 1471 +4.28
2000 1.382 +3.69 1. 465 +4.37
2250 1.377 +3.77 1.459 +4.38
2500 1.373 +3.79 1.454 4. 40
2750 1. 369 +3.80 1. 449 —+4.34
3000 1. 366 +3.74 1. 443 +4.43
3500 1.359 +3.68 1. 434 +4.39
4000 1. 352 +3.62 1. 424 +4. 42
4500 1. 346 +3.49 1414 +4.45
15000 1. 340 +3.51 1. 406 +4.41

* Volume in cu ft/1b-mole.

In the cell model of liquid state the one-particle
description is used. This is clearly an oversimplifi-
cation of the many body problems in the condensed
‘phase. Apart from this general defect of the cell
model, the smoothed potential cell model has arbi-
trary assumptions in Equation (1). Moreover, the
use of the Lennard-Jones 6-12 potential for large,
nonspherical molecules is not adequate for the well-
Also,

working equations for numerical calculation, the

known reasons. in the derivation of the
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constants of the face-centered cubic lattice was used.
In the case of mixture the constants in Equations
(25) and (26) were assumed to be the same for
different compositions. In view of these, the deviation
is not at all surprising and is comparable with other
methods. The present method should give better
results when used for thc mixture system of similar
molecular species.

The advantage of the method is that it requires
only two easily measurable saturated liquid densities
at low temperatures to predict the densities of pure
component and mixtures at moderate high temperature
and pressure. It requires no knowledge on the density
at high pressures before hand as is the case with
other methods based on the principle of corresponding

states.

Conclusion

The present method of estimating the liquid volume
of nonpolar molecules, for both pure components
and binary mixtures, at moderately high pressure and
temperatures up to 0.8 Tc is a reliable one with the

accuracy comparable with other methods. ©
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