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Abstract

This paper presents a statistical mechanical description of the random motion of particles in suspension and
some results derived there-from for the viscosity of concentrated suspensions of solid spherical particles. In
statistical mechanics the information about the probability of dynamical states of the particles of a fluid
(i.e., their positions, translational velocities and rotational velocities) is embedded in a particle distribution
function, and all of the macroscopic properties of the fluid are specified as integral moments of the distribution
function. In particular, the local stress in a suspension is defined as the integral over all particle states of the
distribution weighted with the stress at a point for a given instantaneous total particle state. Thus, the calcu-
lation of the rheological properties of the suspension comes down to a determination of the distribution function
and this local stress function.

If the overall shear rate in the suspension is steady and not too large and the particles are neutrally buoyant
solid spheres, the net forces and torques on the particles are zero and the local fluid motion is governed by
the Stokes equations. It is shown that under these conditions 1) the particle distribution function is indepen-
dent of the linear and angular velocities of the particles and so is uniquely determined by the particle
positions, 2) the viscosity of the suspension must be independent of the shear rate for all concentrations, and
3) the viscosity can be written in a power series in the concentration of particles in which the term of the
nth power is the incremental contribution to the viscosity from interactions involving particles. In order to
calculate the coefficients of these terms the fluid velocity near the surface of a sphere moving with its neighbors
in a,shear field is required. Since an exact determination of the flow field is impractical to obtain for groups of
more than two particles, an approximate solution of the Stokes equations obtained by the method of weighted
residuals is used in the calculations of the suspension viscosity reported here. The particle configuration is
assumed to be simple cubic, and the distribution of interparticle distances is obtained from an approximate
statistical model. The viscosity-concentration relationship calculated under these assumptions is found to agree

closely with the compilations of experimental data reported by Rutgers and Thomas.

exhibit viscosities which are strongly dependent

L Introduction on the particle concentration. Since the pioneering

Suspensions Of solid particles in liquids typically study of Einstein there have been many invest-
‘MBI A {LRITBE igations of the theoretical basis for the viscosity-
**Dept. of Chem. Eng., Univ. of Washington concentration relationship, which can be determined,
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at least in principle, from an analysis of the coupled
motions of the liquid and the particles. Considerable
progress in this direction has been made for very
dilute suspensions, for which the particles are
sufficiently far apart on the average that they can
be presumed to move independently of one another.
In more concentrated suspensions interactions among
pairs, triples and larger groups of particles become
more frequent with increasing particle density until,
at concentrations near the maximum packing fraction,
multiple interactions completely dominate the particle
motion. The determination of the fluid and particle
motions in concentrated suspensions is thus complicat-
ed by two fundamentally different, though related,
problems: the calculation of the fluid velocity field
for given particle configurations and statistical analysis
of the probabilities of instantaneous particle positions
and velocities.

Of the numerous theoretical studies of suspension
rheology there have been four [1-4] which have
proposed specific models for treating the fluid-particle
dynamics of concentrated suspensions. In each of these
studies the suspension considered consists of a disper-
sion of neutrally buoyant, equal-sized, rigid spherical
particles in an incompressible newtonian liquid. In-
ertial forces are assumed negligible, and the macro-
scopic flow is taken to be a steady, simple shearing
motion. The first model used to represent particle
interactions in concentrated suspensions was the
cell model, in which the effect of the neighbors on
the motion of the liquid around each particle is
approximated by requiring that the motion of the
liquid satisfy some prescribed boundary conditions on
a spherical surface of radius b concentric with the
particle. The local fluid velocity in the spherical
annulus surrounding the particle is then the solution
of the Stokes equations which satisfies the prescribed
cell-surface boundary condition on r=b and the no-
Simha

argued

slip condition on the particle surface r=a.
{1], in his specification of the model,
that b should be proportional to R, the average
interparticle distance, for dilute suspensions, and
proportional to R-a for higher concentrations. The
velocity at each point on the surface of the cell

is assumed to equal the local value of the macroscopic

shear flow. In the calculation by Happel [2] the cell
volume is chosen such that the fraction of it occupied
by the particle equals ¢, the volume fraction of
particles in the suspension as a whole, ie. b=a/
¢'7°. He also used a different boundary condition on
the cell surface, requiring that the normal component
of the fluid velocity and the tangential stress be the
same at each point on r=b& as those of the macros-
copic flow.

The method of Kynch [3] is based on the similarity
of the flow field around freely-suspended particles to
the potential field owing to point charges at the
centers of grounded conducting spheres having the
same configuration as the particles. The contribution
of each source to the local potential is assumed to be
independent of the locations of the other spheres,
and the position distribution is assumed to be uniform
and random except for a small spherical shell about
each sphere from which neighboring spheres are
excluded. Both of these assumptions, as well as that
of point sources, are evidently most appropriate for
although the calculated

viscosities agree well with measured values for concen-

very dilute suspensions,

trations up to 25 volume per cent solids.

An approach which stresses the asymptotic aspects
of the viscosity-concentration relationship was advanc-
ed by Frankel and Acrivos [4]. They examined
the flow in the small gap between two closely
spaced spheres to obtain the limiting form for the
viscous energy dissipation in the fluid as the gap
between the spheres goes to zero. A specific sphere
configuration is used, namely simple cubic, with the
axes aligned parallel to the principal directions of
strain. The energy dissipation is calculated for a
spherical shell of the same size as that used by Hap-
The calcu-

lation leads to an asymptotic expression for the relative

pel, i.e., the outer radius b=a/¢!/%.

viscosity of the suspension of the form

'a/"«'o’\’cx 1— (g&/g',_nu)l/s] -1

as ¢—o, (whence b—a), where 1, is the viscosity
of the liquid and C, is a numerical constant equal
to 9/8. This is in contrast to the asymptotic forms

obtained from Simha’s and Happel’s results, wkich

BletBe X9 Hi4= 19714 120



give
.u/#(lf\'cz [1_(¢/¢max)l/3] -3

where C,=1/20 for the Simha model and C,=1/80
for Happel’s.

From these studies it has seemed evident to us that
significant advances in the analysis of suspension
rheology might be made if a statistical mechanical
description of the random motion of the particles
were available. Statistical mechanics has proven to
be of immense value in relating the macroscopic pro-
perties of ordinary fluids to the parameters of their
molecular structure. The purpose of the investigation
reported here is to extend our earlier work [5] on
the statistical mechanics of dilute suspensions (¢:=15
‘2%) to higher concentrations. In the next section the
principles of the statistical mechanics of particles in
suspension are summarized. There the definitions
are given for the macroscopic stress and shear rate
tensors for suspensions of rigid spherical particles.
These macroscopic quantities have the form of integral
moments of the instantaneous local stress and shear
rate for all possible particular configurations of par-
ticles weighted by the probability for finding the
particles in those configurations. Next the calculations
of the macroscopic stress and shear rate tensors for
an approximate statistical model of the distribution
of particle configurations in concentrated suspensions
are described, and the results for the dependence of
the viscosity on concentration are given. Finally, a
comparison is made of these results with experimental
viscosity-concentration data and with the results of

the four studies described above.

I1. Statistical mechanics of suspensions of
spheres

The suspension to be considered consisits of N
identical neutrally buoyant, rigid spherical particles
dispersed in an incompressible newtonian liquid, the
whole system occupying a total volume V. The
overall flow u,(x) is presumed to be a steady simple

shearing motion, u,=i x z, where r is the constant
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shear rate. There are no external forces or torques
that act on the particles, and the flow is assumed
sufficiently slow that local inertial forces in both the
particle and liquid phases are everywhere negligible
compared to the viscous and/or pressure forces.

During a shearing motion of the suspension the
particles move relative to one another in a random
manner along intricately coupled trajectories, which
can be described only in statistical terms. Let us denote
the instantaneous positions of the centers of the parti-
cles by x¥={x}, i=1to N, and their translational
and rotational velocities by ¢V={c;}and o={0}.
Because the macroscopic flow is steady and inertial
forces are negligible, conservation of linear and
angular momentum in the particles requires that
instantaneous forces and torques on the particles vanish.
Hence the velocities ¢; and w; of each particle are
uniquely determined functions of its position x;. Asa
consequence of this, the complete statistical description
of the dynamical states of the particles is contained
in the N-particle position distribution function f@
(x¥). This function is defined such that

FOMdx,dxs-dxy=f M dxVN

is the probability that the NV particles are to be found
in the N differential volumes(one in each) dx, at x;,,
dx; at x,, -+

, and dxy at xy. Since the particles

are indistinguishable, f® carries the normalization,
feee] FN N = NI

Since the entire velocity and pressure fields in the
liquid phase are uniquely determined for a given
instantaneous particle configuration by the Stokes and
continuity equations and the condition of the conti-
nuity of velocity across the solid-liquid interface, it
follows that all of the macroscopic fields can be found
once the configuration function f® is known. The
particular macroscopic fields of interest here are the

macroscopic velocity u(x), defined by

u(x)=(ND7 o fuy e fO(M)dxy (1)

and the macroscopic stress tensor
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P(x)=(ND 7 [Py (e x ™) f ™ (xN)dx @

Here uy(x;x") and P(x;xY) are the velocity and
the stress tensor at x in the fluid-particle system
when the particles are at the particular positions x¥.
Similarly, if Sy(x; xV) is the shear rate tensor at
x for the configuration x¥, the macroscopic shear

rate tensor is given by

S(x)z.é-(vwwr)
=(ND ISy (i) fO (=Y (3)

The configuration-specific fields #y, Py and Sy are
governed by the momentum and constitutive equations
that hold in the separate phases. In the particle

phase (denoted by double primes) these are
Vv o P”NIO (43)

Py"'=—py"U (4b)

The probability function f® cannot be determined
from the equations of motion of the particle and
fluid phases alone, but depends also on the require-
ment that it be conserved along the N-particle tra-
jectory in the 3N-dimensional space of x¥. This
requirement follows from the fact that, although the
positions of the particles at some instant are not
deterministic quantities, their trajectories subsequent
(or prior) to some specified configuration are. This
conservation property is expressed by the Liouville

equation

Lo,
i=1 ax,»

=0 (10)

Before discussing the determination of the distribu-
tion function from (10) we pause to describe an
important consequence of the neglect of inertial
forces in the fluid and particle phases, namely that
the suspension must be newtonian. Since the equation
of motion (6) contains no inertial terms it follows
from (6)-(8) that uy’, and therefore Py’, must be

linear functions of the shear rate « and the particle

velocities ¢;. The particle velocities, which are

obtained from
F, =L‘_PN - dS;=0

must therefore be linear homogeneous functions of &,
i.e. ¢;=a; x where a; is independent of . Eqn.
(10) becomes

oF@d
PR A

<
> o, - =
el 0X;

so that f®™ is independent of x#. This means that
both P and S are inear functions of x, hence the
suspension is newtonian. We note that if inertial
forces are not negligible in both phases, the particle
and liquid, this argument no longer holds and the
conclusion of a newtonian suspension may not be
valid. This conclusion also depends, of course, on
the assumption that the particles are rigid and
spherical for if they are deformable or orientable the
specification of the distribution of particle states must
involve internal coordinates (as well as the positions
x™), which in general introduces a dependence of
F¥ on £ even when inertial forces are negligible.
The form of f® obtained from (10) depends
greatly on the particle concentrations in the suspen-
sions. For example, for very dilute suspensions, in
which the particles are so far apart that they move
independently, the statistical information about the
particle configuration is contained entirely in f®{x,),
the singlet distribution. For this case (10) becomes

Lof
& 0%, 0

so f is a constant corresponding to a uniform par-
ticle density. At somewhat higher concentrations,
where interactions between pairs of particles are
significant, the relevant distribution function is the
pair density £ (x,, x,). For this situation (10)

gives

af(z) ‘e af(Z) -0

ox, 2
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which has as its solution

FO ey, %) =FP (%19, %30)

where x; and x;, are the positions of particle 7 at

time ¢ and 7,, respectively, and hence are related by
(3
xi=x,o-kj c;(s)ds
to

These trajectories can be calculated because the ve-
locities ¢; are known at each instant from the force-
free condition F;=0. Similarly, the higher-order
configuration functions, which are significant at
greater concentrations, can be determined from an-
alyses of the appropriate multi-particle trajectories.
When this sequential ordering of the interactions
according to the number of particles involved is appli

ed to the calculation of the viscosity, there results [5]
‘ll/‘-’—»’a:l*'l"l(y" +k2¢2+k3¢3+"'

where the coefficient %;; is an integral moment of
the Al-particle configuation function f™(x, ---xp).
Such an expansion, for y, while useful for small
concentrations, is completely impractical for calcula-
tions when a significant fraction of the interactions
involve more than two particles (i.e., for ¢= 15)
because of the difficulty of calculating both the
M-particle trajectories and P’y (x; xM) for M>3.
However, it may be possible to obtain accurate
values of viscosities of concentrated suspensions
from (2), (3) and (4) by using approximate models
to represent particle configurations at high densities.
The remainder of this paper is devoted to an

examination of one such model.

II1. Calculations for Model System of Simple
Cubic Configuration

The more concentrated a suspension is, the more
complex are the coupled motions of the interacting
particles. Hence it is necessary to make some ideali-
zations in order to do a hydrodynamic analysis of
the flow field around a group of closely spaced spheres

such as occurs in concentrated suspensions. As a
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convenient choice of the multiparticle configuratiom

we take a simple cubic lattice arrangement.

— EQ(l2q)

Fig. 1. Coordinate geometry.

Thus, a representative sphere has six nearest-neigh-
bor spheres aligned along the coordinate axes as depict-
ed in Fig. 1. The distance of separation between the:
spheres, which is assumed to be the same for each:
sphere, is a variable. This alignment implies that all
the possible orientations of the neighbor spheres, if
assumed equally probable, are averaged spatially. The:
number of nearest neighbors of this arrangement is.
reasonably close to the measured coordination number
for randomly packed spheres of about seven (6),
although the maximum attainable concentration of the-
simple cubic configuration, 52.4%, is much smaller
than the 622 measured for the randomly packed
configuration (7, 8).

The first problem to be considered is the determi-
nation of the instantaneous velocity field when the:
spheres are arranged in simple cubic configuration
and move with the free-motion translational and
rotational velocities in a simple shear field. The flow
field near the central sphere, which is used for the
viscosity calculations, is of particular interest in the
analysis. The local velocity and pressure fields are
denoted by uy and py, and the corresponding fields.
without spheres by u, and p,, where the undisturbed
fields are presumed known. The relative velocity and
pressure fields, v=uy—u, and g=p,—p,. are then

the solutions of

wViv="gq (11a)
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-and vV - v=o0 (11b)
which satisfy the boundary conditions on the central

sphere and its six neighbor spheres
v(r)=c;+o;xr;—u(r;) atr;=a, i=1to 7

where r;=x—x; and a is the radius of the spheres.
‘Under free-motion conditions the particle velocities
¢; and w; are equal to u,(x;)=irz; and %F X Ug=jr/2,
respectively. This can be seen as follows. Since
the instantaneous forces on the spheres are zero, the
average translational velocity of the spheres with
centers in the plane z=z; must equal the average
velocity of the suspension as a whole at that plane,
that is, u,(z;). By the symmetry of the presumed
«cubic arrangement of the spheres, all the spheres
located in that plane must have the same velocity;
hence each one has velocity u,(2;). Similarly, since
the torques on the particles vanish, the rotational
velocity of the particle phase (and, therefore, of each
particle) must equal the vorticity of the suspension.
Lamb’s general solution [(9,10) of (11) provides
‘the velocity field v(r) around the spheres, where
r=(r,4,¢) is the position vector in a spherical coor-
.dinate system having its origin at the center of the

.central sphere

) P (rt) 470+ — kD)

D= é — e —
= 2(k+1)(2k+3) 4

==Kt

k)
VP Dk a2

X
:and q = > P
=—(K+1

‘where x;, ¢ and p; are solid spherical harmonics
.and K—co. The solution of the boundary value
problem is effected when the unspecified coefficients
‘in these harmonic functions are determined. Although
:the solution that satisfies exactly the given boundary
.conditions on all of the spheres could, in principle,
be determined, no such solution is feasible because
-of the difficulty of expressing the complex geometry
-of the liquid region in terms of the coordinates, r,%

.and ¢. Hence an approximate solution must be ob-

tained. The procedure that we have used to obtain a
solution is a version of the boundary collocation
method [11, 12] in which the boundary conditions
are satisfied everywhere on the surface of the central
sphere, but only at a small number of selected points
on the surfaces of the six neighbor spheres. Since
only a finite number of coefficients in the spherical
harmonic expansion for v(r) can be obtained in this
way, we choose as a first trial solution v*, the trun-
cated form of the Lamb solution obtained by taking
K=2:

2
V¥=[ XTU +F XA+ PP+ D+ 5 7 Fp.
421,
2 1
211, reot 210 Tp-s

The spherical harmonics have the general form

©,=r"(A} cos m$-+ DB sin m¢)] Pr(cosd)
and

D_(pay=r"""D[Aicosme+ Brsinme] Pr(cosh)

for 0<<m<(n, where P:(cost) is the associated Le-
gendre polynomial of the first kind of order n and rank
m. However, the symmetry of the flow field, includ-
ing point symmetry with respect to the origin and
plane symmetries with respect to the z—z and the

y—=z planes, require that
X, =A% r sing Pi(cost), %_;=Al,77% sing P!(cost)
¢'z=Bir:cos¢ Pi(cost), ®_;=Blir™® cos¢ Pj(cost)

po=CluorcospP}i(cosf) and
P-s=CL uor%cosd P i(cost)

Thus the first trial solution contains six unknown
constants to be determined by satisfying the boundary
conditions at the collocation points. The location of
these points on the neighbor sphere surfaces is com-
pletely arbitrary, but it seems reasonable to use
points closest to the central sphere since the evaluation
of the stress tenosr Py requires a solution only on
the surface of the central sphere. The location of the

ten points used to evaluate the six constants are
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indicated in Table 1.

The next order of approximation can be obtained
by the same procedure. Here the trial solution is
chosen by taking the summation in the Lamb’s solu-
tion from k=—5 to k=4, i.e. K=4. (The results
for the trial function with K=3 are found to be
equivalent to those obtained with K=2). For K=4
the additional spherical harmonics that are needed

have the forms
1y=r° (A;sing P} (cost) + Alsin3g P (cosh))
7-y=r"4[A-sing P (cost) + A_{sin3¢P; (cost))
o,=rt [B:cos;SP 1(cost) +B; c0s3¢P; (cost))
@_s=r=3(B_scos¢ P (cost)+B_ ;cos3¢P: (cosh))

o= [C s 1ec0sp P ¢ (c0s6) +C z1oC0836 P i(cos?))

and

pos=r"3(C- o IuncoséPl(cos@)+C_§,u0c053¢P2(c050)]

The second approximate solution also satisfies exactly
the field equations (11), the boundary conditions on
the surface of the central sphere and the boundary
conditions at selected points on the neighbor spheres.
The location of the collocation points that are needed
to determine values for the 18 constants of the trial
solution are given in Table 1. We expect this solution
to be a better approximation since it contains more
terms and satisfies the boundary conditions at more
points. However, there is no assurance that the results
will be more accurate or that inclusion of more and
more terms will result in a solution that converges
to the exact solution. A comparison of the viscosities
obtained from the two solutions are compared with
measured values below.

The configurational description of particles in sus-
pension is given by the full set of distribution func-
tions f™, Their determination from the Liouville
equation is exceedingly difficult, in general, because
of the complexity of many-body interactions, and at
the present time only the radial distribution function
g®(r) has been calculated and that only for the

case when no more than two spheres at a time ever
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Table 1. Selected Collocation Points
First Solution (K=2):

Sphere 3 | Pz, P:, ‘ Sphere—3 | P-%, Po:

Sphere 1 | P¢

Q9

{ Sphere—1 | P-*

Sphere 2 | PY ” Sphere—2 [‘ pP-2

Second Solution (K=4):

Sphere 3 | P;, P2, P, H Sphere—3 ‘ pP-;, Pyz P13
Sphere 1 | Pi,Pi,, P, | Sphere—1 | P~3, P12, P23
Sphere 2 | P2, P}, | sohere—2 | =3, P:2

Here, for example, PZ refers to the nearest point at z-axis
on sphere 3, and P, refers to the points rotated by +45°

from Pf in zx-plane on sphere 3. The numbering of the-

spheres is as follows: spheres -1 are those on the --x-axes,
spheres +2 are those on the y-axes, and spheres =3 are-
those on the --z-axes. The conditions on the negatively
numbered spheres are eqnal to those on the corresponding
positively numbered spheres by symmetry.

interact as they move in the shear field (5). The
reduced distribution function appropriate to the sym-
metric six-neighbor model is the six-particle radial
distribution function g (r), which is defined by
the statement: g® (r)dr is the probability that there
is a neighbor sphere at a distance between r and
r+dr. A good approximate expression can be obt-
tained as follows. Let w"(r)dr denote the probability
that there is a sphere in (r, »+dr) with no sphere-
in (D,r) where D is the diameter of the spheres;
similarly let w™ (r)dr be the probability that there-
is a sphere in (r, r+dr) with (m—1) spheres in.
(D,r). Then {13)

W‘”=h[1—L; W(‘)dr]

mr=p[1—[" W T Wemgrl .
and W =p(1 fb W uzr/fb Wendr ]
7 weods
D
for m=1,2,:5. Here h dr is the unconditional pro--

bability that there is a sphere in (r, r+dr). Solv--

ing the above equations, we obtain

W® = heH



204 &0

WL Hmpe-t

-where H(r) er) h(r)dr is the probability that there
is a sphere in (D, r). In a field of randomly distrib-
uted particles the probability that there is a sphere
in (r, r+dr) will simply be 4z nr? where n denotes
the number density of the particles. In the shear
field, however, there exist strong repulsive forces
between nearly touching spheres so that we assume
zero probability of contact, that is, A(r) is assumed
to vanish at r=D and r=P, where P is the
average distance between a sphere and its shell
of second nearest neighbors. If H,, denotes the mean
interparticle distance, P=2H,~D. We note paren-
thetically that unless A(D)=0 the calculated shear
stress is infinite. A simple choice for A(») for particles
in a shear field is 4za(r—D)(P—r) for D<r<P.
The distribution function g is just the sum of the

functions w™ (r).

A
g0 =L w™

me=1

R CTUTIR T TN
—he ”[1fH+ﬁHZ+§H*~%-@}1‘TSTH5]

-where, for random distribution
h = d4znr?

.and H = %zn(r"—[)’) (12a)

.and for constrained distribution

h=4zn(r—DY(P—71)

4 3 3 P“—D G
and H:§:n(r—-l)) [f"(ir_:]_))i—" ] (12b)

The functions g¥(r) for these two situations are
‘plotted in Figure 2 together with a measured distribu-
tion [14] obtained in a stationary suspension having
a particle concentration of 35%. The reason that
‘the peak point for the stationary case (12a) is located

:somewhat to the right of the experimental peak is

. — EQ(|2q)
3L ~--- EQUIZD)
/"\ **+ DATA

r/d

Fig. 2. The distribution functions of the neighbor
particles in the random field, Eqn. (12a), and
in the shear field, Egn. (12b), both for 4=, 35.
The experimental data are taken from Figure
2-C of the paper by Morrell & Hildebrand
(14).

the effect of the second nearest-neighbor shell on the
location of the nearest neighbors is neglected when
a random particle distribution is used. Although ex-
perimental data for the shear field are not available
for comparison, we believe the distribution function
obtained from Eqn. (12b) is a good approximation

of the particle distribution in a shear suspension.

IV. Results and Discussion

With the approximate expressions for the velocity
field uy and the radial distribution function 29 des-
cribed above it is a simple matter to evaluate mac-

roscopic stress tensor from (2), which becomes

P=—pU-+24,S+P" and

Pr=—2 ([ goIrpy - dsdr=izinp.,
The macroscopic shear rate tensor S is equal to S,
(1—‘¢)=%(f7uo+ruz) (1—¢), because the contribution
of the disturbance field » can be shown to vanish by
symmetry during the integration of %(rv-rvf) over
the cube of volume %:as/‘(‘.’) surrounding each sphere

in the cubic configuration. The viscosity is then

calculated for different concentrations from

ﬂ/}!ozl + Tf‘)? (Pzz//‘ﬁ")
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Fig. 8. The viscosity of suspensions of rigid spheres.
The theoretical lines of A and B are obtained
using the distribution function(12b) and the
delta function, respectively.

giving the results shown in Fig. 3 as the two curves
labeled A. The solid curve was calculated from the
approximate solution for »(r) with K=4 and the
dashed curve from the solution with K=2. Also
shown (curves B) for comparison are the results ob-
tained with the same two solutions for v(r), but
assuming the interparticle separation is fixed at r=
H, i e, g®()=0(r—H,). For both particle
distributions the viscosities for the two solutions for
v(r) differ by less than 4.5%, which indicates good
The im-

-portance of the particle distribution is clear, particul-

<onvergence of the approximate solutions.

arly at intermediate concentrations, which have been
the most difficult to treat theoretically. For this reason
it would be desirable to find a more accurate way
of determining the particle distribution in shear sus-
pensions than the one used here.

The statistic1l mechanics developed in Section. [ is
not restricted to the simple cubic configuration, so
the results for several configurations could be com-
pared to determine how sensitive the viscosity is to

the choice of the model. Another test of the present
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model is a comparison with experimental data [15,

16). This is done in Fig.4 which shows fairly close

N ACRIVOS
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Fig. 4. Comparison of theoretical and experimental
viscosities of suspensions of rigid spherical
particles. The experimental data points are
taken from the averaged data lines drawn
by Rutgers {15) and Thomas (167, respective-
ly. Simha’s theoretical curve(-.---- ) caleul-
ated with b=a; ' ? is shown, as are Acrivos’
asymptotic curves (----) for ¢,=0.535 and
¢n=0. 625.

agreement over the entire range of concentrations,
especially when compared to the performance of the
previous theories of Simha, Happel, Kynch and
Acrivos. The increasing deviation of our viscosity
curve from Thomas’ collected data as the concentra-
tion increases can be attributed to the fact that the
maximum attainable concentration of 52.4% for the
simple cubic model is considerably smaller than both
the 62.5% implted by Thomas’ data and the 66%
packiing density measured in flowing suspensions by
Rutgers (8). In summary, the work described here,
although burdened with approximations of uncertain
consequence and limited to suspensions cof spherical
particles, appears to be a significant improvement
over previous studies of concentrated suspensions,

and is unique in the sense that the statistical aspect
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of the particle motion are treated explicitly in the

calculation of the macroscopict quantities.
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