ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 8, 2019
Accepted October 22, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance

1충남대학교 에너지과학기술대학원 에너지과학기술학과, 34134 대전광역시 유성구 대학로 99 2한국기계연구원 나노응용역학연구실, 34103 대전광역시 유성구 가정북로 156 3과학기술연합대학원대학교 나노메카트로닉스학과, 34113 대전광역시 유성구 가정로 217
1Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 2Department of Nanomechanics, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro Yuseong-gu, Daejeon 34103, Korea 3Department of Nanomechatronics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
Korean Chemical Engineering Research, February 2020, 58(1), 135-141(7), 10.9713/kcer.2020.58.1.135 Epub 4 February 2020
downloadDownload PDF

Abstract

그래핀은 슈퍼커패시터의 전극소재로서 이상적인 물리적/화학적 물성을 지니고 있지만, 실제 장치에 적용하기에는 그 전기화학적 성능이 충분하지 못하다. 본 연구에서는 높은 전기 전도성 및 고다공성을 지닌 다층구조의 그래핀을 생성하기 위해, 산화 그래핀을 가정용 레이저 조각기를 사용하여 환원하였다. 제작된 그래핀의 비정전용량을 향상시키기 위하여, 원자층 단위 증착법을 이용하여 의사커패시터 거동을 나타내는 VOx를 균일하게 증착하였다. 이는 XPS 분석을 통해 VOx/그래핀 복합체에서 다양한 상의 VOx를 관찰하였다. VOx/그래핀 복합체는 VOx가 없는 그래핀(~50 F/g)과 비교할 때 상당히 향상된 비정전용량(~189 F/g)을 보였다. 본 연구에서 소개한 에너지 저장 장치에 사용되는 그래핀 기반 전극의 제작 방법은 여러가지 제작 방법의 대안책 중 하나로 사용될 것으로 기대된다.
Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.

References

Lukatskaya MR, Dunn B, Gogotsi Y, Nat. Commun., 7, 12647 (2016)
Nunez CG, Manjakkal L, Dahiya R, Npj Flexible Electron., 3, 1 (2019)
Miller JR, Simon P, Science, 321(5889), 651 (2008)
Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
Yang P, Mai W, Nano Energy, 8, 274 (2014)
Ko JM, Kim KM, Korean Chem. Eng. Res., 47(1), 11 (2009)
Tagsin P, Klangtakai P, Harnchana V, Amornkitbamrung V, Pimanpang S, Kumnorkaew P, J. Korean Phys. Soc., 71(12), 997 (2017)
Wang NN, Zhang YF, Hu T, Zhao YF, Meng CG, Curr. Appl. Phys., 15(4), 493 (2015)
Perera SD, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris JP, Chabal YJ, Balkus KJ, Adv. Eng. Mater., 1(5), 936 (2011)
Zhang YM, Bao SX, Liu T, Chen TJ, Huang J, Hydrometallurgy, 109(1-2), 116 (2011)
Li M, Sun G, Yin P, Ruan C, Ai K, ACS Appl. Mater. Interfaces, 5(21), 11462 (2013)
Boukhalfa S, Evanoff K, Yushin G, Energy Environ. Sci., 5, 6872 (2012)
Lee HS, Park JW, Lee YM, Ryou MH, Kim KM, Ko JM, Korean Chem. Eng. Res., 54(3), 293 (2016)
El-Kady MF, Ihns M, Li M, Hwang JY, Mousavi MF, Chaney L, Lech AT, Kaner RB, Proc. Natl. Acad. Sci. U.S.A., 112(14), 4223 (2015)
Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
Huang XW, Xie ZW, He XQ, Sun HZ, Tong C, Xie DX, Synth. Met., 135-136, 235 (2003)
Tung VC, Allen MJ, Yang Y, Kaner RB, Nat. Nanotechnol., 4(1), 25 (2009)
Becerill HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano, 2(3), 463 (2008)
Wang X, Zhi L, Mullen K, Nano Lett., 8(1), 323 (2008)
Matuyama E, J. Phys. Chem., 58(3), 215 (1954)
Furst A, Berlo RC, Hooton S, Chem. Rev., 65(1), 51 (1965)
Si Y, Samulski ET, Nano Lett., 8, 1679 (2008)
Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J, J. Phys. Chem. C
Kang KY, Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 49(5), 541 (2011)
Kim DH, Song KC, Shim KH, Kim JH, Korean Chem. Eng. Res., 41(2), 238 (2003)
George SM, Chem. Rev., 110(1), 111 (2010)
Lee SM, Park YJ, Kim JH, ACS Appl. Nano Mater, 2(6), 3711 (2019)
Bhattacharjya D, Kim CH, Kim JH, You IK, In JB, Lee SM, Appl. Surf. Sci., 462, 353 (2018)
Tran TX, Choi H, Che CH, Sul JH, Kim IG, Lee SM, Kim JH, In JB, ACS Appl. Mater. Interfaces, 10(46), 3977 (2018)
Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20(5), 2883 (2014)
Wu N, She X, Yang D, Wu X, Su F, Chen Y, J. Mater. Chem., 22(33), 17254 (2012)
Lee HY, Goodenough JB, J. Solid State Chem., 148, 81 (1999)
Mattelaer F, Geryl K, Rampelberg G, Dendooven J, Detavernier C, ACS Appl. Mater. Interfaces, 9, 13121 (2017)
Uchaker E, Zheng YZ, Li S, Candelaria SL, Hu S, Cao GZ, J. Mater. Chem. A, 2(43), 18208 (2014)
Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
Wang W, Jiang B, Hu LW, Lin ZS, Hou JG, Jiao SQ, J. Power Sources, 250, 181 (2014)
Zhu K, Zhang C, Guo S, Yu H, Liao K, Chen G, Wei Y, Zhou H, ChemElectroChem, 2(11), 1660 (2015)
Sun W, Zheng RL, Chen XY, J. Power Sources, 195(20), 7120 (2010)
Cui L, Li J, Zhang XG, J. Appl. Electrochem., 39(10), 1871 (2009)
Conway BE, Kluwer Academic/Plenum Publisher, New York (1999).
Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York (2000).
Sun X, Xie M, Travis JJ, Wang G, Sun H, Lian J, George SM, J. Phys. Chem. C, 117, 22497 (2013)
Zang X, Shen C, Kao E, Warren R, Zhang R, Teh KS, et al., Adv. Mater., 30, 170475 (2017)
Lu T, Zhang YP, Li HB, Pan LK, Li YL, Sun Z, Electrochim. Acta, 55(13), 4170 (2010)
Vinoth V, Wu JJ, Asiri AM, Lana-Villarreal T, Bonete P, Anandan S, Ultrason. Sonochem., 29, 205 (2016)
Sassin MB, Mansour AN, Pettigrew KA, Rolison DR, Long JW, ACS Nano, 4, 4505 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로