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Abstract— Maxwellian fluid flow between asymmetric calenders was analyzed by the numerical solu-
tion to the simplified equations of motion and energy equation. The solution techniques combined the
power-law weighted upwind difference method for the energy equation with the analytical solution of the
momentum equations. The calculated results provided not only pressure and temperature distributions of
the flow field, but also the power consumption and the roll separating force of the calendering processes.
The decrease in the elastic shear modulus led to the reduction in the temperature profile as well as in the
power requirement. The asymmetry in the roll speeds generated higher temperature field throughout the
whole flow region due to the higher viscous heating, compared with the case of the symmetry in the roll

speeds.

INTRODUCTION

Calendering process is commonly used for shaping
films of thermoplastic materials and is particularly
suitable for polymers succeptible to thermal degrada-
tion. This is usually accomplished by a pair of heated
driven rolls with equal or unequal diameters in a ‘Z' or
‘inverse L" arrangement.

The early hydrodynamic theory of calendering was
developed by Gaskell [1]. The validity of his model was
confirmed by the experimental measurement of
pressure distribution perfornred by Bergen and Scott [2].

Following the Gaskell's model, a great deal of effort
was invested to the theoretical analysis on the calender-
ing processes by numerous workers. Most of these ef-
forts concentrated on dealing basically with more
realistic constitutive equations and attempted to account
for nonisothermal effects. Mckelvey [3], Brazinsky et al.
[4] and Torner [5] discussed the power-law fluid, while
Alston and Astill [6] treated a hyperbolic tangent model.
Paslay [7] obtained an approximate solution essentially
based on the Maxwell fluid for the Weissenberg number
smaller than unity. The results of his numerical solution
indicated that the pressure and the shear stress dropped
as the elastic shear modulus was lowered. Tokita and
White [8] related the experimental results on milling of
elastomers to rheological parameters of the second order
Rivlin-Ericksen fluid. Chong [9] found by experiment
that the Weissenberg number was an important
parameter in determining the onset of a nonuniform in-
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ternal strain pattern.

The problems of the asymmetric rolls and roll speeds
and nonisothermal systems attracted much attention
without much progress until recently despite their prac-
tical importance. Takserman-Krozer, et al.[10] treated
the asymmetrical problem of Newtonian fluid analytical-
ly by using the bipolar cylindrical coordinates.

Kiparissides and Vlachopoulous[11] studied the
viscous heating effect of the power-law fluid in the sym-
metric calenders by using the finite element method.

Following the earlier work[12], the study is extended
to the problems of viscoelastic fluid flow between asym-
metric calender rolls which rotate at different roll
speeds. The asymmetry and the nonisothermal effect
due to the viscous dissipation incorporated with the
Jaumann-Maxwell fluid[13] by the use of the finite dif-
ference method and the bipolar cylindrical coordinates.
Parameters are investigated through the calculations of
the pressure distribution and the power consumption for
the optimum operating conditions. The effect of relaxa-
tion time of the fluid on the power requirement is also
examined in terms of the Weissenberg number.

MATHEMATICAL MODEL AND GOVERNING
EQUATIONS

We considered an incompressible linear viscoelastic
fluid flow between the asymmetric calenders with une-
qual diameters and/or different rotating speeds as il-
lustrated in Fig 1. The fluid in calendering is highly
viscous so that the inertia force becomes negligibly
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Fig. 1. Asymmetric calender roll geometry.

small. It is also assumed that the roilers are completely
rigid and the nip distance is very small compared with
the length of other geometric parameters of calenders.
For sufficiently small nip distance, the metric tensor of
the bipolar coordinate can be approximated as

a

1--cos¢ )

and h becomes a function of £ only. Applying the above
assumptions and also lubrication approximation, the
governing equations are given as follows.
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When a linear viscoelastic fluid model is applied to a
large displacement problem, the corotating frame is
more appropriate than the material frame. The con-
stitutive equation for the Jaumann-Maxwell fluid is ap-
proximately given as

_A 9 u o y__,0 (u
e o, (h) (Tee— Ton) o7 (h) (6)
= AS G @

September, 1984

. Yu et al.

3 .u
5 (T> b Zen (8}

Substituting equations (7) and (8) into equation (6)
results in
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Boundary conditions on the roll surfaces and at the
inlet and outlet must be specified, in addition to the in-
itial distribution for the temperature. We assumed that
the calender gap is initially filled with an incompressible
fluid whose temperature is the same as that of the feed
stream. Thus

T=T, for ¢*< <&, —n:=5p<m (10)

With constant temperature and no slip condition on
each roll surface, the boundary conditions are

u=U,, T=T, at p=n (11)
U:‘:U2, T=T. at =T (12)
v=0 at p=g and 7= —7: (13)

To find the relationship between the entrance coor-
dinate & and the exit coordinate £*, it is assumed that
when the fluid enters and leaves the deformation zone,
the pressure is equal to zero and the pressure gradient at
the exit coordinate equals zero such that

P-0 at =& (14)
_opP_ s .
P EY: 0 at £=¢ (15)
ANALYTICAL SOLUTION FOR THE ISOTHER-
MAL SYSTEM

1. Velocity and pressure distribution

With lubrication approximation, the pressure gra-
dient becomes independent of the coordinate 7 as
shown in equations (3) and (4). Upon integrating equa-
tion (3) with respect to 7 after equation (9) is substituted
into equation (3), we find the nonlinear differential
equation of the form
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The above equation can be simplified when Ag—* ()
n

< 1 as follows. h
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Integrating the equation (17) with respect to 7 gives the
velocity profile such that
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Kor.J.Ch.E. (Vol. 1, Ne. 2)



Calendering Process of Non-Newtonian Polymeric Fluids 175

Integration of the equation of continuity with the boun-
dary condition (13) from- 7: to 7 gives

/A a N

——(hu) dp=0 (19)
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Hence the volumetric flow rate per unit width through

the rolls at the steady state is written as the integral form

o-f T ) dy (20)
At the exit coordinate £*, Q is expressed by

The nonlinear algebraic equations are obtained from the
equations (18), (20) and (21) together with the boundary
conditions (11) and (12). To deterrnine the three

unknowns % C, and C,, the Newton-Raphson method

is used.

The initial trial values for the three unknowns are
chosen as those for the Newtonian fluid, which is
analytically obtained under the isothermal condition.
The relative tolerance for convergence limit for each
unknown was taken as 105,

The shear stress and normal stress distributions are
calculated. The velocity cornponent in 7 direction is ob-
tained from the equation of continuity. The pressure
profile along the passage of the fluid is obtained by in-
tegrating the pressure gradient at each cross section by
means of trapezoidal rule.

_[§ oP
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The entrance coordinate ¢ is calculated from the equa-
tion (22) in which the pressure equals the ambient
pressure. It represents the minimum bank region to pro-
duce a certain film thickness for the given operation
conditions, depending on the geometric, kinematic and
rheological parameters.

2. Power consumption and roll separating
force

The dissipated power ir. the flow field between two
rotating rolls is generally expressed as [10,16]

_ o 7 : 2 e
w-ff*f_mi2§nm Fmi h'dndé (23)

The power requirement per unit volumetric flow rate is
obtained by E = W/Q which is an important characteris-
tic of the calendering process, since it stands for the
specific energy requirement of the process.

In practice, the film thickness produced is controlled
by the geometry of the calenders, especially by the nip
distance. The roll separation caused by the stress acting
on the roll surfaces in the normal direction must be ad-
justed by the loading force in order to balance the reac-
tive force of the calendered fluid. This roll separating
force per unit width is expressed for the Maxwell fluid
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FINITE DIFFERENCE METHOD FOR THE
NONISOTHERMAL SYSTEM

A finite difference approximation of the energy equa-
tion of elliptic type at the steady state with the viscous
dissipation term is involved in this study. A two dimen-
sional network in the deformation region is constructed
by 81 x 41 mesh system, which is uniform with respect
to each of the coordinate, £ and 7. In this problem, the
power-law weighted upwind difference scheme[14] is
utilized to overcome the numerical instability of the cen-
tral difference scheme when the grid Peclet number is
larger than 4. This numerical scheme is the modified
form of the upwind scheme in that the diffusion term is
multiplied by the correction factor A (| Pel),

A(|Pe|)=Max{0, (1—0.1| Pe )"} (25)
where Pe is the grid Peclet number.

From the known velocity profiles and the initial
temperature distribution, the temperature field at the
next iteration step is computed. This iteration is con-
tinued until a certain convergence criterion is satisfied.
The convergence criterion of the relative temperature
was taken as 10-%. Once the temperature convergence
was obtained, new field values of the viscosity and the
relaxation time were calculated. The calender gap is so
small that it is meaningless to calculate the viscosity
field at each grid point. For this reason, the viscosity
field is treated from the macroscopic point of view, e.g.,
mean effective viscosity corresponding to the average
temperature at each cross section. The definition of the
average temperature is given as follows.

- [m 7 ‘
Tao f_m(huT) dr]/f_”2 (hu) dp (26)

The relationship between the rheological properties and
temperature can be expressed as

©= o exp (— AE./RT av)

G - GopTav <27)
Thus, the change in these rheological properties due to
the variation in the temperature distribution results in
the improved pressure and velocity distributions. The
whole procedure is repeated until the desired accuracy
is achieved, which provides the temperature, velocity
and pressure distributions at the steady state.

RESULTS AND DISCUSSION
The asymmetric calendering with unequal diameters

and different rotating speeds showed quite different
results in the pressure distributions compared with the

Kor.J.Ch.E. (Vol. 1, No. 2)
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symmetric cases. It is interesting to note that for the
same rotating speeds, the pressure profile becomes max-
imum as presented in Fig 2 and when the rotaing speed
ratio is far from unity the pressure profile decreases. For
the Maxwell fluid which has the effect of the shear

o
dependent viscosity expressed as ./ (1+ A* 5, (%) R
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Fig. 2. Pressure profile for different roll speed
ratio; R./R.=0.3/0.3, H=0.0001m, £*=2.395,
©#=400Pa. s, A=10"" sec.

a speed difference between the rollers induces a
distorted velocity profile with larger shear rate. The
decreasing pressure is attributed to the corresponding
drop in the apparent viscosity. The pressure obviously
increases as the sum of the roll radii becomes large
simply because the resistance for the flow toward the ex-
it goes up as the sum of the roll radii increases. The ef-
fect of roll radius ratio on the pressure force has been
also examined, keeping the sum of the radii constant in
order to minimize the effect of the variable cross section.
The asymmetry in roll size causes slightly lower
pressure force than the case of symmetry because the
resistance in the nip is lowered with the increase in the
asymmetry as shown in Figure 3. However, the relative
reduction in maximurm pressure due to the asymmetry
in roll size is very small as compared to that due to the
asymmetry in roll speed. This is because the shear
deformation field is much more affected by the asym-
metry in the rotating speeds than in diameters. Figure 4
shows the roll separating force and the power consump-
tion per unit volumetric flow rate for various roll size
ratio, keeping the sum of radii constant. The symmetry
in roll size causes a little larger shear rate than the case
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Fig. 3. Pressure profile for various calender ge-
ometries; U:/U.=0,3/0.3, H=0.001m, £*=
2,395, £=400Pa.s, A=10"" sec.
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Fig. 4. Power consumption and roll separating

force for various roll radius ratioes; U./U.
==(0.3/0.3, H=0.0001m, x£=400Pa.s, A=10"*
sec, £%= 2.395.

of asymmetry, which brings about the maximum sepa-
rating force as well as the maximum power consump-
tion. Meanwhile, the change in roll speed ratio with the
sum of roll speeds constant shows a somewhat different
result. [n Fig. 5, the roll separating force attains a max-
imum when the roll speeds are the same with the same
roll size. This fact must be understood in the meaning
that the gradient of shear rate is the greatest when the
rotating speeds are the same. The power consumption
is, however, on the contrary. The larger the asymmetry
in the roll speed ratio, the larger the shear deformation

Kor.J.Ch.E. (Vol. 1, No. 2)
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Fig. 5. Power consumption and roll separating
force for various roll speed ratios; R./R:
=0.3/0.3, H=0. 0001m, £*=2. 395, = 400
Pa.s, A=10"" sec.
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Fig. 6. Relationship between power consumption
per unit volume flow rate E and roll sp-
eed ratio; U.=0, 3m/s, R:./R.=0.4/0.2,H=
0.0001m, x=400Pa. s, A=10"" sec.

becomes, and the less the power consumption at the
same roll speeds. Figure 6 reveals that the effect of roll
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Fig.7. Power consumption per unit volumetric

flow rate for various relaxation times of
fluids; U;=0. 3m/s, H=0. 0001m, £*=2.395,
u#=400Pa. s.

speed ratio on the power consumption E becomes larger
as the film thickness decreases and a minimum power
consumption per unit volumetric flow rate exists for dif-
ferent roll speeds in the case of realistic condition of
film separation. It appears more advantageous when
U,/U, is slightly smaller than unity accordingly, with U,
fixed, as in Figure 6. The relationship between the
power consumption E and the roll speed ratio for
various relaxation times of fluids and for the same/dif-
ferent roll sizes is shown in Fig. 7. As the relaxation time
or the Weissenberg number increases, which cor-
responds to increase in stiffness of the material, the
power consumption decreases for the geometric condi-
tions of interest. This can be explained by the reduction
in the shear rate due to the increase in the fluid elastici-
ty.

For the nonisothermal conditions, the temperature
rise mainly caused by the viscous heating and also by
convection and conduction leads to the reduction in the
apparent viscosity and in the shear modulus. The dif-
ference between the isothermal and nonisothermal
pressure profiles are illustrated in Fig. 8. It is an in-
teresting fact that the minimum bank region expands for
the nonisothermal case under the given processing con-
ditions compared with the ‘isothermal case, bringing
about the growth of the entrance zone. From this result,
it is observed that a point is eventually reached where
the velocity of the fluid is zero, which is called the

Kor.J.Ch.E. (Vol. 1, No. 2)
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Fig. 8. Comparison of isothermal and non- isothe-
rmal pressure profiles; R./R.=0,1/0.2,
U:/U.=0.3/0. 4, ¢*=2. 356, H=0. 0001 m,
To=T.=453"K, T:=443°k , K=9.23%x10"?
W/m°K.

stagnation point. Therefore, in the upstream region,
there exists the stagnation envelope which clearly con-
firms the existence of the recirculating flow. The locus of
the stagnation envelope is presented by the dashed line
as in Fig. 9. The temperature profile developed for the
condition of the same rotaing speeds is plotted in Fig.
10. The shear force is greater near the roll surfaces,
hence the two maxima are distinctly observed in the
vicinity of the roll surfaces in the upstream region. The
temperature in the central part of the flow field rises pro-
gressively in the further downstream. At the exit plane
the maximum is located at about 1/3 of the half gap
width from the wall. It is also noted that the value of
maximum temperature rises steeply in the inlet region,
and drops steadily down to the region of (2r-£*). Then it
rises again slightly near the nip and drops at the exit as
illustrated in Fig. 11. The existence of the two maxima
along the flow direction observed in this study agrees
with the results for the power-law fluid flow obtained by
Kiparissides and Vlachopoulos [11] and also with Lee's
[12] results to the extent of the tendency. Meanwhile,
Torner's finite difference solution gave only one max-
imum along the flow direction. However, a careful ex-
amination of the experimental profiles of Petrusanskii,
et al.[16] reveals the existence of a weak second max-
imum along the flow direction, agreeing with the pre-
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Fig. 9. Stagnation envelope at the entrance coo-
rdinate; R./ R.=0. 1/0. 2, U./U.=0. 3/0. 4,
£*=2.356, H=0.0001m, To=T:=453°K T:
=443°K,K=9,23x10"°" W/m°K.
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Fig. 10. Temperature distribuvion at the three di-
fferent cross-sections; R:./R.=0.1/0.2,
U./U.=0.3/0.3, H=0. 0001m, £*=2, 395, T,
=T,=T:=453"K.

sent result. On the other hand, a difference in the roll
speed exhibits unusual features in the temperature pro-
files, compared with the case of the same rotating
speeds. When the difference in the roll speeds is larger,
the velocity profile is almost linear and the shear
becomes greater. Hence the influence of the viscous

Kor.J.Ch.E. (Vol. 1, No. 2)
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Fig. 11. Maximum and center- plane temperature
profiles along the flow direction; R./R:
=0.1/0.2, U:/U:=0, 3/0. 3, H=0. 0001 m,
£¥=2.395, T,=T=T.=453"K.
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Fig. 12. Temperature distribution at the two diff-
erent cross- sections; R./R.=0.1/0.2, U,/
U.=0.2/0. 4, H=0. 0001m, £*=2.395, T, =
T.=T.=453"K.

heating is severe throughout the whole flow field, not
confined to the vicinity of the roll surfaces. The resulting
temperature profiles for the Maxwell fluid are compared
with those for the Newtonian as an example in Fig. 12.
It is interesting to note that in the inlet region the loca-
tion of a maximum is found near the surface of the fast
rotating roll, while at the exit it is shifted to the vicinity
of the surface of the slowly rotating roll. As a whole, the
temperature profile is higher for the ilewtonian fluid
than for the Maxwell fluid. This can be explained by the
reduction in shear due to the increase in the fluid
elasticity. From the results, it may be stated that the
asymmetry in roll speeds might play an important role
in determining the size and location of the maxima in
temperature profiles, which may explain the reason for
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the occasional appearance of blisters in calendered
sheet, as pointed out by Finston.[15]

CONCLUSIONS

1. An analytical solution is obtained for the linear
viscoelastic Jaumann-Maxwell fluid flow in the
isothermal calendering process. This approximation
is valid when the Weissenberg number does not ex-
ceed the value of 1.0.

2. The numerical results of this study indicates that the
increase in the relaxation time of the fluid leads to
the reduction not only in the power requirement but
also in the temperature profiles.

3. The maximum temperature profile along the flow
direction in the case of the same roll speed has
shown two peaks, the first strong and the second
weak, as evidenced experimentally.

4. The asymmetry in the roll speeds leads to the higher
temperature profile throughout the whole flow field
due to the effect of high viscous heating than the
symmetric cases in the roll speeds.

5. The effect of roll speed ratio both on the maximum
pressure and on the power consumption was signifi-
cant over the effect of roll size ratio.
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NOMENCLATURE

a: half distance between the poles (m)

integration constants

C,: specific heat of the fluid (J/Kg °K)

E: power consumption per unit volumetric flow
rate (W)

AE; activation energy for flow (J/Kg mole °K)

roll separating force (N)

elastic shear modulus (N/m?

roll separation at the nip (m)

variable defined by eq. (1) (m)

thermal conductivity (J/m °K)

pressure (N/m?)

grid Peclet number

volumetric flow rate per unit width (m%sec)

Q at £=£* (m?¥sec)

radius of upper dnd lower calendering roll

(m)

linear velocity of the calendering rolls,

respectively (m/sec)
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T: temperature (°K)

Ty, Ty, T, initial fluid temperature and roll surface
temperatures, respectively (°K)

u, v: velocity in ¢ and » direction, respectively
(mY/sec)

£, 7: bipolar cylindrical coordinates

n, 7o values of 7 at the wall of the rolls

En E*: the entrance and the exit coordinates

o fluid density (Kg/m?)

7 viscosity of the fluid (Pa. sec)

Al relaxation time of the fluid (sec)

T stress tensor (N/m?)

I rate of deformation tensor (sec™)
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