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Abstract—The problem of optimization of fed-batch fermentations using the substrate feed rate
as the control variable is singular it nature. Previous approaches, including the boundary condition
iteration method and transformation to a nonsingular problem using a different control variable, do
not work well for solving optimizaticn of systems governed by more than four differential equations.
The applicability of a first-order conjugate gradient algorithm for optimizing fed-batch fermentations
was tested for systems of varing complexity. This approach does not need any variable transformation
or a priori knowledge of the control arc sequence. Constraints on the feed rate are handled in a
simple and direct manner. The algorithm worked very well for three, four, and five-dimensional
singular systems, The correctness of the optimal profile was judged by observing the variation in
the sign of the gradient of the Hamiltonian. The gradient was found to be zero during the singular
period and had the appropriate sign on the boundary arcs. The optimization method based on conjuga-
ted gradient approach can be complementary to the boundary condition iteration method for determi-

nation of the exact optimum profile.

INTRODUCTION

Fed-batch mode of operation is particularly well suit-
ed for fermentations in which cell growth rate, product
formation rate and/or product selectivity are signifi-
cantly sensitive to the limiting substrate concentration.
In such cases, a control over medium feed rate results
in an 1mproved control over substrate concentration
inside the bioreactor, resulting in substantial improve-
ment in reactor productivity. Consequently, in recent
vears a growing number of studies [1-10] have been
devoted towards investigation of optimal control prob-
lems in fed-batch fermentations.

Medium feed rate is often used as the control varia-
ble in these investigations. Since feed rate appears
linearly in the resulting Hamiltonian, the problem is
singular in nature. Modak et al. £4,5] developed a
computational algorithm for solving singular optimal
control problems of dimensions less than five. They
argued that in some cases a physical insight into the
problem can reveal the optimal sequence of maximum,
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minimum and singular arcs. The problem of determi-
ning the optimal feed rate was then reduced to that
of an iteration over four variables, #1z. the durations
of the first two control arcs (maximum-minimum or
minimum-maximum) and the values of two adjoint
variables at the start of the singular period. This tech-
nique was successfully applied to a variety of biological
systems. A major limitation of this method, however,
is that it is applicable only for systems, which can
he described by less than five differential equations.
For higher dimensional systems, the number of possi-
ble switches in the control profile increases. This in-
creases the possible permutations of maximum, mini-
mum and singular arcs, thus making it very difficult,
if not impossible, to @ priori guess the sequence of
control arcs. Furthermore, it increases the rumber
of variables to be guessed.

In an effort to overcome these problems Modak and
Lim [ 7] proposed a transformation approach, ir. which
the original singular problem was converted to a non-
singular one by a proper choice of state and control
variables. The culture volume was used as the control
variable instead of the medium feed rate. This new
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problem was then solved by the steepest descent
method. In principle, this approach can be used to
optimize systems of any dimension. However, for sys-
tems with dimension greater than three, no results
have been reported. Also, the new problem contains
an inequality constraint on the time derivative of the
control variable. The optimal control theory does not
provide a satisfactory way of dealing with this con-
straint. If this constraint is ignored, the resulting con-
verged control trajectory may not be optimal.

A conjugate gradient method for functional optimi-
zation was proposed by Lasden et al. [11]. It was pro-
ved that the directions in function space generated
by the conjugate gradient method are such that the
objective function is decreased at each step. Pagurek
and Woodside [12] extended this technique to handle
directly saturation constraints on the control variables.
Stutts [13] tested the usefulness of this method to
solve singular fed-batch optimization problems. The
method worked really well with a three dimensional
singular problem. The optimal feed rate computed for
four or higher dimensional problems did not contain
regions of maximum or minimum feed rates. This pa-
per 1s concerned with investigating the applicability
of a simple conjugate gradient approach for determi-
ning the optimal feed rate profiles for complex biolog-
ical systems. Pagurek and Woodside's [12] first order
method was tested for biological systems of varying
complexity.

PROBLEM FORMULATION

1. Necessary optimality conditions

The problem of determining the best feed rate in
a typical fed-batch fermentation can be stated as a
problem in the calculus of variations [2.

min

Ft) IT=n(x(t)) (1)

Here I represents a suitably chosen performance in-
dex (sometimes refered to as the objective function),
x(t) 1s the value of the state vector x at the fixed
final time t; (when the fermentation is over). The objec-
tive is to minimize this performance index by a proper
choice of the medium feed rate profile, F(t). Normally
the substrate feed rate is constrained as,

0=F,u<F<F,u @

where F,.. and F,;, represent the maximum and mini-
mum allowed feed rates, respectively. In addition, the
state variables satisfy the following differential equa-
tions.

% =a(x)+bX)F, x(0)=x, (3)
where a and b are vector functions of the state vector
X, X, represents the vector of specified initial condi-
tions.

Pontryagin's minimum principle { 14] states that the
above minimization problem is equivalent to the mini-
mization of the Hamiltonian defined as,

H=MTa(x)+h(x)F], 4)

where the adjoint vector, A(t), is defined by

dv _ ¢H
dt ox ' ©)
with the specified terminal conditions given by
‘ oIl
}\I t, -
® ox(t) ©

The problem, as stated above, is a singular control
problem, becausc the control variable (the substrate
feed rate in this case) appears linearly in the Hamilto-
nian, so that the minimum principle does not provide
an explicit solution for the optimal control profile. The
necessary conditions for optimality have beer discus-
sed by Bryson and Ho [15].

The linear dependence of the Hamiltonian on feed
rate enables one to determine the optimal feed rate
by examining the coefficient of F, A’b=o0. If ¢ is iden-
tically zero over a finite time interval, the interval is
called a singular interval and the corresponding feed
rate, singular feed rate, F.. It can be deduced [4] that
the optimal feed rate F*(t) is given by,

F,.<0
FAty=1 F(t)=0 (N
F..>0

The singular feed rate can be determined [4] as
a function of the state and adjoint variables as
Aac—ca)

Aeb

F.= t)]
Here ¢=a.b and the subscript x refers to the Jacobian
with respect to x. The singular control theory just tells
us that the optimal control arcs can either be on the
boundary or singular. It is not possible to determine
the sequence and duration of these control arcs. Also,
the singular feed rate depends on the adjoint varia-
bles, which are unknown. Numerical methods are he-
nce necessary to determine the form of the optimal
feed rate.

2. Computational method
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Although Pagurek and Woodside [12] obtained bet-
ter results using a second order conjugate gradient
method for some systems, this method required deter-
mination of a lot of complex derivatives. Moreover,
the memory requirements are considerably higher
compared to the simple first order conjugate gradient
method. The latter method was used exclusively for
numerical calculations.

The hard constraint on the final volume, normally
imposed during fed-batch optimization [4], was con-
verted to a soft constraint by modifving the objective
function by adding a penalty function.

min

F(O = n(xtN +KV(E) — V) ©

Here V(t) is the final volume obtained by simula-
tion, while V, is the desired final volume. By choosing
a proper value for the constant K, the difference [V(t)
—V,| can be made arbitrarily small. No penalty func-
tions are needed for control variable constraints of
the type given by Eq. (2). The technique used in this
study takes care of these constraints in a simple and
direct manner. The algorithm consists of the follow-
ing steps.

(1) The procedure begins with an initial guess for
the feed rate profile, Fy(t). This profile may contain
boundary arcs. At the same time a function w is initial-
ized.

0fort &
1 elsewhere

w(n=1 (10
Here Q represents the control boundary region.
(2) The state differential Eq. (3) are integrated using

the guessed feed rate profile. The adjoint Eq. (5) are

integrated using Egq.(6) as final conditions.

(3) The first iteration is a steepest descent step with
the initial gradient direction calculated using the fol-
lowing equation.

s

So=g = IF (11)

(4) The contro] profile for the next iteration is com-
puted as

Fl = F«) = QoSaWy (12)

where @, is chosen using a one dimensional search
to minimize Il. A simple quadratic interpolation was
used to implement this minimization. However, before
IT is computed in each trial of the a-search, F; is trun-
cated at the upper and lower bounds of the feed rate
[Eq. (2)]. When the a4 is determined, the function w,
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(t) 1s calculated using the procedure shown in Eq. (10).
(5) The state and adjoint equations are integrated

again as before using the improved feed rate profile.
(6) The following quantities are evaluated.

L= ﬁ:w,gz(t)dt (13)

B= (14)

Here i refers to the iteration number. If B, turns out
to be negative, a steepest descent step is taken by
setting it to zero.

(7) The conjugate gradient direction, s, is deter-
mined using the following equation.

si=g+PBs (15)

Here g refers to the steepest descent direction.
(8) The control profile is modified by an a-search
as outlined in step (4).

F..i=F—asw, (16)

(9) Steps 5-8 are repeated till the improvement in
the performance index is negligible and the gradient
of the Hamiltonian shows expected trends.

Some comments are in order here. The algorithm
is somewhat sensitive to the initial control profile cho-
sen. Some initial profiles cause the procedure to
diverge. An important consideration is that the initial
guessed feed rate profile should satisfy the final con-
dition on volume. This assures that the penalty func-
tion term in Eq.(9) is zero at the beginning. If this
term is very large compared to n{x(t)], the algorithm
concentrates more on decreasing the penalty function
than on decreasing m.

It was found that after every few iterations, the con-
jugate gradient technique tends to stagnate. Under
these circumstances the same control profile gets re-
peated after two or three iterations. Reinitialization,
by setting B, to zero (a steepest descent step), was
found to cure this problem, hence was incorporated
in the algorithm. The optimal number of iterations,
before reinitialization, were found to be between 15
and 30, depending on the system.

An important feature of this method is that it does
not need any variable transformation to convert the
singular problem into a nonsingular one. Thus the dif-
ficulties associated with differential constraints on con-
trol variables, present in the transformation approach,
can be completely avoided. The convergence of this
method near the optimum is somewhat slow, tut the
only measure needed, to ensure a decrease in the
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Table 1. Parameters used for optimization of Modak’s
three-dimensional model

Case A B C
XV)o, g 1.0 1.0 1.0
(SV), g 0.0 0.0 1.0
Vo, L 1.0 1.0 1.0
Vi L 5.0 5.0 5.0
S, g/l 100 10.0 10.0
Foae. L/hr 4.0 4.0 4.0
t, hr 3.8 3.8 3.8
K 10 1000 10

performance index at each iteration, is a smaller step
size.

RESULTS

1. Optimization of a three-dimensional model
To test the effectiveness of the algorithm described
above, an optimization of a simple three-dimensional
model for fed-batch fermentations was attempted. The
governing equations for this model can be written as,

d _ -
it XV)=puXV Qan
4 qyy=pg, _ HXV

at SV)=FS; Y (18)
dv

e =F a9

Here X, S, V, F, 1, Y, S¢ and t refer to the cell mass
concentration, limiting substrate concentration, culture
volume, substrate feed rate, specific cell growth rate,
cell yield, substrate concentration in the feed and time,
respectively. The cell growth is inhibited at high sub-
strate concentrations, the maximum specific growth
rate occurring at a concentration 0.24 g/L, and the
cell yield is assumed to be gonstant.
p(S):——~S—~—~ Y=05 )
) 0.03+S+0.58"
The objective is to optimize the amount of cell mass
obtained after a fixed final time t,.

min

F(O) = —XV)+KVt)— V) @1

This problem has been solved by a control variable
transformation approach [7]. It is known that the opti-
mal singular feed rate maintains the substrate concen-
tration constant at 0.24 g/L, thus maintaining the spe-
cific growth rate at its maximum value.
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Fig. 1. Three-dimensional model (Case A): Optimal trajec-
tories of state and control variables (V: reactor

volume, F: feed rate, X: cell mass concentration,
and S: substrate concentration).
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Fig. 2. Three-dimensional model (Case A): Gradient of
the Hamiltonian (9H/oF).

In this study three different cases were considered
(Table 1). In Case A, the initial substrate concentration
was set to zero. According to singular control theory
the optimum feed rate profile should consist of an
initial period of maximum feed rate followed by singu-
lar and batch periods. This operating policy brings
the substrate concentration to 0.24 g/L and maintains
it there till the end of the fermentation. When the
fermentor is full, there is a short batch period.

The final control and state variable profiles obtained
using the conjugate gradient method are shown in Fi-
gure 1 and 2. The computed feed rate and substrate
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Fig. 3. Three-dimensional model (Case B): Optimal trajec-
tories of state and control variables (V: reactor
volume, F: feed rate, X: cell mass concentration,
and S: substrate concentration).
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0 1 2 3 4

TIME (hr)

Fig. 4. Three-dimensional model (Case B): Gradient of
the Hamiltonian (9H/gF).

concentration profiles agree very well with the predic-
tions of singular control theory. The optimality of the
converged feed profile can be established by looking
at the gradient of Hamiltonian (6H/0F). The gradient
is zero over the singular region, positive during the
batch period, and negative during the initial period
of maximum feed rate.

If a higher value of K is used, it is expected that
the final volume would be closer to the desired value.
This was tested using K=1000 (Case B). The final
converged feed rate profile in Case A was chosen as
the initial guess for Case B. The results are shown
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Fig. 5. Three-dimensional model (Case C): Optimal trajec-

tories of state and control variables (V: reactor
volume, F: feed rate, X: cell mass concentration,
and S: substrate concentration).
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Fig. 6. Three-dimensional model (Case C): Gradient of
the Hamiltonian (gH/gF).

in Figure 3 and 4. The converged feed profile is very
close to that obtained in Case A. The gradient of the
Hamiltonian is a little smoother though. The firal vol-
ume was indeed closer to the desired value (5.002
L in Case B compared to 5056 L in Case A).

In Case C, a higher initial substrate concentration
was chosen. The resulting feed rate profile (Figure
5) contains an initial batch period, which brings the
substrate concentration down to 0.24 g/L. It is follow-
ed by a singular period, which maintains the glucose
concentration constant. Near the end of the fermenta-
tion, the feed rate profile deviates a little from the
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Table 2. Prameters used for optimization of the four-di-
mensional model

Case - ' A - B
X0, oD 0l 015
S(0), g'L 2.0 2.0
P(0), (units/ml OD) 0.1 0.1
V(). L 0.6 0.6
V., L 12 12
S, g/L 10.0 10.0
Fou L/br 0.2 0.6
t, hr 3 10.0 10.0

optimum as indicated by the gradient of the Hamilto-
nian (Figure 6).

The conjugate gradient technique performed really
well for this simple system. The algorithm was found
to be robust and the choice of initial guess of feed
profile did not affect convergence.

2. Optimization of a four-dimensional system

In the case of recombinant Saccharomyces cevevisiae
with plasmid pRB58, which contains the SUC2 gene
coding for the enzyme invertase, a four-dimensional
model, written below, can describe the kinetics of cell
growth and invertase production [16].

%(XV): WXV =(R,Y, + RY,)XV 22)
d .
_BT(SV) =FS;—RXV 23)
d [ &S ] .

T [ K, +S+KS kP X @
dv

P F (25)

The respiratory flux, R, and fermentative flux, R, de-
pend on the total glucose flux R, as follows.

k/S
— ?
R=75 26)
kS o kS o
If R>3 7 R=qrg and R=R—R,

else R,=R; and R,=0

The objective of the optimization is to maximize
the total invertase activity at the end of the fermenta-
tion. The final time t, is assumed to be fixed.

min

i 1 v )V, : 27
F©) I1 (PXV)+KIVit)—V,] 27

The parameters used for optimization are listed in
Table 2. In Case A, the initial glucose concentration

0.0 T - T T T

0 j 4 ' 8 ' 12
TIME (hr)

Fig. 7. Optimization of invertase production (Case A):
Ovotimal flow rate and gradient of the Hamiltonian.
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Fig. 8. Optimization of invertase production (Case A):
Optimal glucose and invertase concentration pro-
files.

was chosen to be 2 g/L. The optimal feed rate (Figure
7 and 8) contains an initial maximum feed rate, which
increases the glucose concentation to more than 5 g/L,
thus increasing the specific cell growth rate. At these
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Fig. 9. Optimization of invertase production (Case B):
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Optimal flow rate and gradient of the Hamiltonian.

glucose levels, invertase production is repressed and
the specific activity is almost constant. This period
is followed by a batch period, in which the glucose
concentration slowly drops to an optimum level for
invertase expression, resulting in a gradual increase
in the specific invertase activity. During the singular
period, the glucose concentration stays almost con-
stant around 0.225 g/L. Invertase production rate is
very high during this singular phase. A small batch
period follows, when the fermentor is full and the sin-
gular feed rate can no longer be implemented. Thus
the optimal feed rate clearly results in an initial high
cell growth phase followed by a high invertase produc-
tion rate phase.

The effect of change in the maximum allowed feed
rate was studied by decreasing its value to 0.2 L/hr
(Case B, Figures 9 and 10). The only effect was a
change in the duration of the maximum, batch and
singular periods. The initial maximum feed rate period
was longer to allow high glucose concentration, requir-
ed to maximize cell growth at the beginning of the
fermentation. Again the singular period maintains the
glucose concentration at around 0.225 g/L.

In both cases, the resulting optimal feed rate profile
clearly shows a period of maximum feed rate followed
by batch and singular periods. The sign of the gradient
of the Hamiltonian shows expected trends. At the
transitions between different control arcs, the corners
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Fig. 10. Optimization of invertase production (Case B):
Optimal glucose and invertase concentration pro-
files.

in the control profile are not sharp, as opposed to
the predictions of the singular control theory. As opti-
mum is approached, the performance index becomes
very insensitive to small changes in the feed rate pro-
file. Thus the algorithm converges to a profile, which
has corners that are smoother than the exact optimal
feed rate profile.
3. Optimization of a five-dimensional system
Five-dimensional systems are difficult to optimize
with the two approaches previously developed by Mo-
dak et al. [5,7]. A complex five-dimensional model
was employed to verify the usefulness of conjugate
gradient technique for solving optimization problems
of high dimensionality. Sardonini and DiBiasio [17]
developed a model to explain the growth kinetics of
a plasmid-carrying strain of S. cerevisiae. It was found
that under phosphate-limited growth conditions in a
selective medium, the fraction of plasmid-free cell
population was much larger than expected. This phe-
nomenon was explained by assuming that the plasmid-
free cells could grow in the selective medium by using
a metabolite M, that is secreted into the medium by
the plasmid-carrying strain, for growth. The model
equations describing fed-batch fermentations are giv-
en below.

—éjt—(X’V)Z(.l—p)p'X‘V (28)
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Table 3. Parameters used for optimization of DiBiasio’s
five-dimensional model

Model e/ BT 043
parameters K., (mg phosphate)/L 1.1
K., (mg metabolite)/L 0.21
p 0.14

Y., OD per phosphate concentration  0.13
Y., OD per metabolite concentration  0.03

k, mg/(L. unit OD) 13.0
Optimization (X*V), OD.L 0.1
parameters (X"V),, OD.L 0.01
(SV)y, mg 0.1
(MV),, mg 0.05
Vn, L 10
vV, L 5.0
S, mg/L 6.8
Foar, L/hr 05
d R S ’
-dT(X V=pu'X*'V+u X V (29)
A gy WXV XV .
at (SV)= Y Y. +FS; B0
d N u XV
—MV)=kp' X"V~ 3
it (MV)=ku Y, (31)
dv
at =F (32)
S _ WM
where | TK+S u KoM

In the above equations p represents the probability
of plasmid loss upon cell division. Superscripts + and
— represent plasmid-containing and plasmid free ce-
lls, respectively and Y, Y are yield coefficients.

For this system, a suitable objective may be the
maximization of the amount of plasmid-containing
cells at the end of the fermentation. This can be the
case, for example, if plasmid-containing cells constitu-
tively produce an intracellular product.

min

— (Y'Y TOhY— V.2 -
Fo I=-X"V)+K[V(t)- V] (33)

As the substrate concentration increases, the specific
growth rate of plasmid-containing cells increases.
However, this also results in an increase in the rate
of production of the metabolite M, which increases
the specific growth rate of plasmid-free cells.

The parameters used for optimization are listed in
Table 3. The optimal feed rate consists of an imtial
batch period, followed by a period of maximum feed
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Fig. 11. Optimization of DiBiasio’s model: Feed rate, vol-
ume and gradient of the Hamiltonian (V: reactor
volume, and F: feed rate).
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Fig. 12. Optimization of DiBiasio’s model: Cell mass, sub-

strate and metabolite concentration profiles (S:
substrate concentration, and M: metabolite con-
centration).

rate and a batch period at the end of the fermentation
(Figures 11-13). The optimal control profile did not
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contain any singular arcs. Although the final time was
chosen to be 20 hours, the cells stop growing at
around 15 hours. Thus, for any final time between
15 and 20 hours, the optimal feed rate profiles should
be identical. The gradient of the Hamiltonian shows
expected trends, which confirm the optimality of the
converged feed rate profile.

CONCLUSIONS

A first-order conjugate gradient technique was de-
monstrated to be effective in solving a variety of opti-
mization problems, ranging in difficulty from a simple
three-dimensional model to a complex five-dimension-
al system. Although the convergence of this techni-
que is somewhat slow, especially for the five-dimen-
sional system, when the optimum is approached, the
method converged to the correct optimal profile after
a decrease in the step size. The correctness of the
optimal profile can be judged by the variation in the
gradient of the Hamiltonian. The gradient was found
to be zero during singular periods, and had appro-
priate sign on boundary control arcs.

A boundary condition iteration method, previously
developed by Modak et al. [5], was successful for
systems of low dimensionality. However, this method
fails for high dimensional systems because of two rea-
sons. First, it becomes more and more difficult to
guess the control arc sequence as the system dimen-
sion increases. Second, more adjoint variables need
to be guessed at the junction points. The conjugate
gradient method, on the other hand, does not need
a priori guesses of control arc sequences. After an
initial guess of the feed rate profile, which satisfies
the constraint on final volume, the method proceeds
towards the optimum in a smooth manner.

One of the attractive features of this method is its
simplicity. The method does not require determination
of many complex derivatives, which are needed for
getting a functional form for the singular feed rate.
It requires only a little more computation than the
steepest descent approach. The presence of boundary
arcs in the control profile actually results in a slightly
reduced computation time per iteration.

The method proposed here does not need any var-
jable transformation to convert the singular problem
to a nonsingular one. This is an advantage, because
the variable transformation result in constraints on
the rate of change of the coatrol variable. Appropriate
theory to deal with such constraints is not currently
available. Hence it is difficult to check the optimality
of the converged control profiles obtained using the
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variable transformation method.

The conjugate gradient technique can be used to
compute the optimal feed rates. Because this method
does not use an explicit functional form for the singu-
lar feed rate, the converged feed rate profiles are not
sharp at the corners of different control arcs. But in
most cases, starting from an arbitrary initial guess of
the feed rate, the method is able to get quite close
to the optimal feed rate so fast. Thus within a few
iterations, the general shape-the sequence of maxi-
mum, minimum and singular control arcs of the opti-
mal profile-can be deduced without any a prieri infor-
mation. This sequence can then be used to calculate
the optimal profile by Modak's [5] boundary condition
iteration method. The conjugate gradient method can
also provide good initial guesses for the switching ti-
mes and adjoint variables to the boundary condition
iteration method. Thus the approach developed here,
and the boundary condition iteration approach develo-
ped by Modak, can be used in a complementary man-
ner.
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NOMENCLATURE
F  :fraction of plasmid-free cells, or feed rate L/
hr
g :gradient of the Hamiltonian with respect to the

control vector
H :Hamiltonian
[ :a parameter defined in Eq.(13)
K, k : model parameters, or weight on the penalty func-

tion
k, :first order inactivation constant [hr ']
p  :probability of forming a plasmid-free cell upon

cell division
R fraction of glucose that is channeled through the
fermentative pathway, or metabolic flux [(g glu-
cose)/hr. OD]
S :substrate concentration [g/L]
: conjugate gradient direction
:time [hr]
V  :volume [L]
:a boundary function defined by Eq. (6), (12)
: cell mass concentration {g/L or OD]
: state vector
:yield of respiratory pathway [OD/(g. glucose)]
: vield of fermentative pathway [OD/(g. glucose)]

o % b E
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a

© 2 O >

:a search parameter in the conjugate gradient
method

:a search parameter in the conjugate gradient
method

: adjoint vector, or costate vector

: specific cell growth rate [hr]

: performance index, or objective function

: invertase formation rate [KU/hr]

: gradient of Hamiltonian in singular problems

Superscripts

+

*

: plasmid-containing cells
: plasmid-free cells
: optimal
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