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Abstract — Dissipative structures of autocatalytic reactions with initially uniform concentrations
are studied in tubular flow reactors. A unique steady state exists in a continuous stirred tank reactor.
Linear stability analysis predicts either a stable node, a focus or an unstable saddle-focus. Sustained
oscillations around the unstable focus can occur for high values of Damkohler number. In distributed
parameter systems, travelling, standing or complex oscillatory waves are detected. For low values
of Damkohler number, travelling waves with pseudo-constant patterns are observed. With interme-
diate values of Damkohler number, single or multiple standing waves are obtained. The temporal
behavior indicates also the appearance of retriggering or echo waves. For high values of Damkohler
number, both single peak and complex multipeak oscillations are found. In the cell model, both regular
oscillations near the inlet and chaotic behavior downstream are observed. In the dispersion model,
higher Peclet numbers eliminate the oscillations. The spatial profile shows a train of pulsating waves
for the discret model and a single pulsating or solitary wave for the continuous model.

INTRODUCTION

Autocatalytic reactions represent a very important
class of chemical reactions with a variety of applica-
tions in combustion, biological reactors, and homoge-
neous and catalytic reactors. To mention only a few:
Lotka’s model on population dynamics [1], the Brus-
selator description of theoretical tri-molecular reac-
tions [2-5], the Belousov-Zhabotinskii reaction [6-7],
the modified Lotka-Volterra model for hydrocarbon
oxidation and cool flames [8], and Yamazaki's reaction
ol

There are striking parallels between isothermal au-
tocatalytic and exothermic first-order reactions. While
there is a systematic analysis available on exothermic
reaction systems, no extensive study has been made
of the corresponding isothermal autocatalytic proto-
types where the feedback is not thermal but autocata-
Iytic. Fascinating dissipative structures (spatially, tem-
porally or even spatiotemporally organized states) have
been studied both theoretically and experimentally [2-
71. Among them, symmetry breaking structures, wave
trains including planar and standing waves, and target,
spiral and scroll patterns as well as chaotic behavior
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have drawn the attention of mathematicians, physi-
cists, biologists, chemists and chemical engineers.

The Belousov-Zhabotinskii reaction, oxidation of
malonic acid by potassium bromate with ceric/cerous
ions as catalysts, has been extensively studied. Tatter-
son and Hudson [ 10] observed chemical waves of pul-
se type propagating in a tube, in the absence of con-
vection effects. Frequency, speed and wavelength did
not change significantly during the process. This obser-
vation reveals the rich spectrum of wave phenomena
in the Belousov-Zhabotinskii reaction [11]. Marek and
Svobodova [12] observed experimentally sustained
oscillations and jump phenomena (transition of oscilla-
tory behavior to steady states) in a continuous stirred
tank reactor (CSTR) and standing as well as travelling
waves in tubular flow reactors. Schmitz, Hudson and
Graziani [13-14] established simple singlepeak and
complex multipeak oscillations, and chaotic behavior
in a CSTR. Rossler [15] also observed an irregular
screw-type chaotic behavior in a CSTR. Simoyi et al.
[16] noticed subharmonic bifurcations of a limit cycle
leading to alternating complex periodic and chaotic
regimes in a CSTR. Roux [17] studied experimentally
bifurcations of a limit cycle leading to guasi-periodic
oscillations.

To our knowledge, no systematic studies have been
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Fig. 1. Schematic sketch of the cell model with backflow, q.

reported on dissipative structures of autocatalytic reac-
tions occurring in distributed parameter flow systems,
for example, tubular flow reactors. In this paper we
attempt to comprehend the interplay of transport pro-
cesses, such as diffusion, convection and complex au-
tocatalytic kinetics. One-dimensional (1D) model is con-
sidered. Emphasis is placed on the problems of local
stability in a CSTR, wave propagation phenomena for
standing, travelling and spatio-temporal waves, and
chaotic behavior. Possible differences between dis-
crete and continuous descriptions of distributed param-
eter flow systems will be discussed.

GOVERNING EQUATIONS

Consider the following reactions whose rates are
described by Eq. (1). These autocatalytic reactions
give rise to undamped oscillations in a closed system
[18].

_ dC,

RI*E =kC,—k3C,Cs
dC
Rgz—(?z :k]CI—szg
dC.
Ry= " =heCokeCy ¢V

In this paper we are analyzing an isothermal autocata-
lytic system occurring in tubular flow reactors.

Two distinct types of description of mass dispersion
in tubular flow reactors have been adopted so far. The
dispersion model assumes that the transport may be
phrased in terms of continuous description while the
cell model visualizes the behavior of tubular flow reac-
tors by a sequence of well-stirred tank reactors as
shown in Fig. 1. It has been shown in the literature
£19-20] that certain differences, particularly concern-
ing multiplicity, do exist between cell and dispersion
models for an exothermic first-order reaction. There-
fore, both the cell model with backflow and the disper-
sion model are considered. Isothermal conditions, an
identical volume of each cell, same back-flow rates
for all components, and no changes of physical proper-
ties are assumed in the present paper.

i+1 N N+1

Mass balances around the i-th tank in the one-di-
mensional cell model as shown in Fig. 1, yield the
following dimensionless differential-difference equa-
tions [28]:

%gfz(y%Kou 1—(1+2K)Ui+ K, U
+ Da(U, — a,UW)

% =1+K)V, . —(1+2K)V. +K,V, .,
+Da(U, —a.V)

%Z—Vl =1+K)W,. ,— (1 +2K. )W, +K,W;.,

+ Da(a,V, — azW)). (2)

The mass balance of two fictitious cells, 0 and N+1,
gives

1=0: (1+K.)Uy=1+K,U,
(1+K)Vi=K.V,
(1 + K,,,)Wo: KmVVl
i=N+1: Uy, =Us Vi =V Wy =Wy 3)

The corresponding dispersion model is described
by three coupled partial differential equations of para-
bolic type [28]:

U _ 1 9U_9U
ot Pe gx* ox
oV_ 1 gV eV
ot Pe ox* ox
ow _ 1 gW oW

o = Pe o —6;+Da(an~' asW) @

+Da(U —~ o, UW)

+ Da(U - O.zV)

subject to Danckwerts boundary conditions

e s 1y 12U
Pe 9x
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Pe ¢ox
1 W
W= Pe gx
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oxX ox ox

Here we have denoted by U, V, W the dimensionless
concentrations of C;, C, and Cs, respectively. a,, o,
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and oy are dimensionless kinetic constants, Da is the
Damkohler number, K, the mass backflow ratio, Pe
axial particle Peclet number for mass, and t the dimen-
sionless time defined by

- C] 7 C“A v C.‘il
':_'_’ \/’:_L =
L‘ C‘;n Cll) \N Cl\r
Da:}Lk, K,,,:qf'" Pe:% t:q_t
q q D v
_ Cioks \E _ & _Z
al——Akl (Ig\kl ar;vk] x—dp. (6)

ANALYSIS AND NUMERICAL RESULTS

Numerical integration of sets of ordinary differential
Egs. (2)-(3) was performed using Gear's method for
integration of stiff systems of ordinary differential
equations. The error of integration was controlled to
six decimal places. The set of nonlinear parabolic par-
tial differential Egs. (4)-(5) was integrated by a Crank-
Nicolson method with an automatic time-step adjust-
ment. The error of integration was controlled to four
significant decimal places. The majority of calculations
was performed using forty mixing cells (N=40) in the
axial direction. In order to compare the results from
both models, the dimensionless length(x) in the disper-
sion model was converted into the equivalent number
of cells(i) in the corresponding cell model.

1. Lumped parameter systems

A detailed understanding of lumped parameter sys-
tems may provide a deeper insight into the dynamics
of corresponding distributed parameter systems. For
a single CSTR, Eq. (2) is simplified to a three variable
system represented by Eq.(7):

dU Sere

. =1-U+DaU—~aUW)=F(, V, W)

dv , row

e =-V+Da(U—-a,V)=GU, V, W)

dW . : ’
P ~W+ Da(a,V—ao;W)=H(, V, W). (7

The presence of multiple steady states in Eq.(7)
can be evaluated by setting F, G, and H equal to zero
and analyzing the resulting set of three nonlinear algeb-
raic equations. Among the four governing param-
eters in Eq. (7). the Damkohler number (Da) is the most
important parameter for understanding the properties
of flow systems. After simple algebraic manipulations
a quadratic equation results for the concentration U,
(the subscript s refers to steady state conditions):

aUz2+BU+v=0. (8)
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Fig. 3. Steady states versus Damkohler number in the

CSTR.
a;=03=0.2 (3 and HB denote Hopf-bifurcation
points). —— stable steady state; -+ unstable

steady state; @@@@® stable periodic solution.

Constants a, B, and y are defined by

a=o0, Da*
B=1+ (o, + a;— DDa—a.Da*— apasDa’
Y= — 1-—- ((Ix_) + (l_'{)Da - (lz(l;;Daz. (9)

Although multiple steady states are frequently obser-
ved in autocatalytic systems, our analysis revealed that
for the autocatalytic system in question, multiple solu-
tions do not exist.

Local stability properties in a region close to steady
states can be predicted from the eigenvalues, A, satis-
fying the cubic equation

M +8A+ed+(=0. (10)

Here the constants 8, €, and ¢ can be obtained as fol-
low:

() () (),
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Fig. 4. Time evolution depending on the Damkohler num-
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Fig. 5. Period of oscillations versus Damkohler number
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Linear stability analysis shows that a stable node
and a focus, and an unstable saddle-focus may exist
in the CSTR as shown in Fig. 2. A stable limit cycle
may occur around unstable steady states (see Fig. 3).
Hopf-bifurcation points occur at high values of Da with
increasing values of kinetic constants a, as depicted

Cell No., i

Fig. 6. Travelling waves in a tubular system.
Da=0.01, ;= ax=a;=0.2 (s.s. denotes steady sta-
tes).

in Fig. 3. The oscillatory behavior exists in the region
of higher Da’s, i.e., at low flow rates with higher feed
concentrations. Low flow rates favor the oscillations
while higher flow rates result in steady state modes
of operation (see Fig. 4). These trends are in accord-
ance with experimental observations on the Belousov-
Zhabotinskii reaction taking place in a CSTR [13-16].
Isolas and mushrooms in steady state diagrams “con-
centration versus flow rates”, which Gray observed
for his quadratic and cubic autocatalytic reactions
[21]. are not detected in our system,

The period of oscillations increases with decreasing
values of Da, see Fig. 5. This result is in qualitative
agreement with experimental observations obtained
by Marek [12] on the Belousov-Zhabotinskii reaction
in a CSTR.

2. Distributed parameter systems

Wave phenomena in distributed parameter systems
can be qualitatively explained as a kind of interaction
between two or more coupled or forced oscillators.
Pismen [22] analyzed conditions for spatial and/or
temporal order to emerge from a homogeneous steady
state: such as inhomogeneous oscillating states (wave
patterns). Neu [23], using singular pertubation analy-
sis around homogeneous oscillatory states, studied in
detail the phase desynchronization of two coupled os-
cillators in order to develop criteria for wave propaga-
tion.

Apart from phase desynchonization, external gra-
dients and inhomogeneities, the geometry of systems,
and initial conditions can also play an important role
in wave propagation phenomena (target, spiral waves
and scroll patterns).

The analysis presented below considers only one
component, C;, in the feed (C,=C;=0). Initial condi-
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Fig. 7. Travelling waves in a tubular system.
Da=0.05 a;=m=a3=0.2.
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Fig. 8. Single standing wave in a tubular system.
Da=0.20, a;=a=a3=0.2.

tions considered are U=3.0, V=W=4..

As shown in Figs. 6-11, travelling waves are obser-
ved at low Da’s while standing waves prevail at inter-
mediate values of Da. The Damkohler number can
be expressed as the ratio of the characteristic time
for bulk mass flow to that for chemical reactions. The-
refore, high flow rates favor travelling wave pheno-
mena while intermediate flow rates support the occur-
rence of standing waves.

The velocity of travelling waves increases slightly
during the initial stage, passes through the maximum,
and then decreases again before approaching particu-
lar stable structures in space. The shape of travelling
waves depicted in Figs. 6-7 is continually changing.
This trend is typical for problems featuring high values
of Da.

Steady state profiles presented in Figs. 6-11 show
the typical features of spatial structures. Increasing
values of Da modifies wave patterns from a travelling
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Fig. 11. Multiple standing waves in a tubular system.
Da=2.00, a;=a;=az=0.2.

to a standing wave. The transition occurs around Da=
0.1. Standing waves in Figs. 10-11 remind one of the
characteristics of triggering waves emerging from a
uniform homogeneous state. A single spatial structure
(or standing wave) appears in Figs. 8-9 in the region
near the inlet.

With increasing values of Da, Figs. 10-11, two or
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Fig. 12. Temporal behavior at different positions in a tu-
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Fig. 13. Temporal behavior at different positions in a tu-
bular system.
Da=20, a;=ax=03=0.2. Cell No. is: (@) 1, (b)
5 (@ 9, (d) 13, (e 17, (O 21, (g) 25, (h) 29, (i)
33, () 37.

more triggering waves or multiple standing waves ap-
pear in the system, after the first standing wave has
already developed upstream near the inlet. This phe-
nomenon may be elucidated in terms of a retriggering
process or echo wave, originally proposed by Krinsky
[24] for two coupled monostable generators. Consider
two coupled elements at rest. Then, if one element
is excited, the second also becomes excited after some
delay A. If the delay time (A) happens to lie between
the refractory and the excitement time (ie, Tp<A<
Tk), a retriggering wave may propagate in distributed
systems. The time history for travelling and standing
waves at different positions in the flow system is
shown in Figs. 12 and 13, respectively. Fig. 13 reminds
one of the behavior of retriggering waves. The dyna-
mical behavior of the cell model thus turns out to
be in good qualitative agreement with that in the cor-
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Fig. 14. Comparison of the oscillations at different posi-
tions in the 1-D cell model.
Da=80, mi=a=a:=0.2. K,,=0.0. Cell No. is:
@ 1, (b) 5, (©) 9. (d) 13, (e) 17, () 21, (g) 25,
(h) 29, (i) 33, (j) 37.
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Fig. 15. Three-dimensional stereoplot at different posi-
tions in the 1-D cell model.
Da=8.0, a1=a;=a3=0.2. K,,=0.0. Cell number
is: (@) 1, (b) 9, (©) 33.

responding dispersion model. In the range of low Da’s
leading to a stable state, the backflow for mass has
no qualitative effect on the dynamics of autocalytic
reactions.

Based on the analysis for a single CSTR we can
expect complex oscillatory behavior for high values
of Da. Temporal behavior of concentrations at differ-
ent positions in the tubular system, calculated from
the 1-D cell model with no backflow (K,=0.0) is
shown in Fig. 14. The oscillatory profile of limit cycle
type, generated in the first cell, propagates down-
stream the system. The amplitude of the “limit cycle”
shrinks and the regular behavior changes toward com-
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Fig. 16. Spatial concentration profiles in the 1-D cell mod-
el.
Da=80, oy=a;=0a3=02. K,,=0.0. Time is: (a)
56, (b) 6.6, (0) 11.0, (d) 12.0, (e) 214, (D 224,
(g) 31.8, (h) 32.8, (i) 3184, (j) 3284.

plex multipeak and eventually chaotic-type oscilla-
tions. The transition to an irregular behavior occurs
near cell twenty-one, see Fig. 14f. A 3-dimensional
plot clearly demonstrates the changing type of the os-
cillations (see Fig. 15a-15¢). Chaotic-type behavior in
the rear part of the system is depicted in Fig. 15c.
This figure shows a “spiral-type™ of chaotic oscilla-
tions. The corresponding spatial concentration profiles
in the 1-D cell model at different times are shown
in Fig. 16.

The dynamics of the 1-D cell model can be viewed
in terms of a set of forced oscillators. The cutput con-
centration from the preceding cell becomes the forcing
function of the concentration fed to the next oscilla-
tor. When any of these oscillators is subjected to an
oscillatory input, synchronization phenomena can be
expected. When the frequency of the input is fairly
close to the natural frequency, a simple type of forced
oscillation occurs. The range implied by “fairly close”
depends on the amplitude of the input. The numerical
study by Tomita and Kai [25] indicated that at input
frequencies near twice the natural frequency, and for
sufficiently large input amplitude, the subharmonic
oscillation becomes unstable and may give rise to irre-
gular behavior. Fujisaka [26] also showed that a set
of two or three coupled oscillators in a discrete model
may exhibit chaotic behavior for a certain interval of
parameters. Marek and Schreiber [ 27] also numerically
observed chaotic behavior for two identical oscilla-
tors of a Brusselator model with different diffusion
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Fig. 17. Temporal behavior at different positions in the
1-D dispersion model.
Da=80, i=a=a3;=0.2. Pe=2.09 (Re=100).
Axial coordinate is: (a) 1.0, (b) 5.0, (¢) 9.0, (d)
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Fig. 18. Spatial concentration profiles in the 1-D disper-
sion model.
Da=80, o,=a=03=02. Pe=209 (Re=100).
Time is: (a) 5.6, (b) 6.6, (¢) 11.0, (d) 12.0, (e) 214,
f) 224, (g) 716, (h) 72.6.

coupling for the two components. Fig. 14 may be said
to indicate subharmonic temporal and spatial bifurca-
tions in the tubular system. In a 1-D cell model, the
backflow has no significant qualitative effect on the
dynamics of oscillatory waves propagating in the reac-
tor. However, an increasing backflow does give rise
to a phase lag between the oscillations. This lag in-
creases with time. The backflow rate for mass (K,) is
calculated by using the formula proposed in [28].
The dynamic behavior of the 1-D dispersion model
is shown in Fig. 17. The corresponding cell model
was displayed in Fig. 14. For low values of the particle-
related Peclet number, the temporal behavior of the
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Fig. 19. Temporal behavior at different positions in the
1-D dispersion model.
Da=80, o=w=a;=02. Pe=0.72 (Re=0.3).
Axial coordinate is: (a) 1.0, (b) 5.0, (¢) 9.0, (d)
13.0, (e) 17.0, (f) 210, (g) 25.0, (h) 29.0, (i) 33.0,
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dispersion model closely resembles, in the qualitative
way, that observed in the cell model (cf. Fig. 19 with
Fig. 14).

Increasing values of Pe in the dispersion model sup-
presses the occurrence of spatial structures. This con-
clusion is in accordance with previous results for
exothermic reactions [29]. A comparison of axial con-
centration profiles for the cell and the dispersion mod-
el show different types of behavior, see Figs. 16 and
18. We observed irregular dynamic behavior for the
cell model while regular oscillations were always estab-
lished for the dispersion model.

CONCLUSIONS

Dissipative structures of autocatalytic reactions was
studied both in distributed and lumped parameter
flow systems.

In a continuous stirred tank reactor, uniqueness of
steady states exists. A linear stability analysis predicts
a stable node, a stable focus, and a saddle-focus to
be possible in the CSTR. Sustained oscillations around
the unstable focus can occur for high values of the
Damkohler number. The period of the oscillations in-
creases with increasing flow rates.

In the distributed parameter system, several kinds
of wave phenomena such as travelling, standing and
complex oscillatory waves were established.

For low values of Da, Da=0.01-0.05, travelling
pseudo-constant pattern waves were detected. The
characteristic steady state shows pattern formation in
the spatial dimension.

For intermediate values of Da, Da=0.1-2.0, single

or multiple standing waves were obtained. The num-
ber of standing waves increases with increasing values
of Da. A numerical simulation starting from different
initial conditions revealed that unique multiple stand-
ing waves occur. The tempporal behavior, at each
position in the system, may exhibit the characteristics
of retriggering or echo waves, particularly so at Da=
2.0.

For high values of Da, oscillating waves in the spa-
tial dimension were observed. The results of simula-
tion in a 1-D cell model show that regular oscillations
can occur near the inlet but these oscillations change
into irregular ones at a certain axial position. This
suggests that subharmonic limit cycle bifurcations,
leading to chaotic behavior, are possible. The effect
of backflow does not change the quality of dynamical
phenomena in the 1-D cell model except for the fact
that increasing the backflow rate shifts the phase lag
of the oscillation.

Dynamic properties of the 1-D dispersion model are
strongly dependent on the values of Peclet number.
Higher values of Pe suppress oscillations. Spatial pro-
files show a train of pulsating waves in the 1-D cell
model and a single pulsating or solitary wave in the
corresponding dispersion description.

NOMENCLATURE

: concentration

: diffusion coefficient
a : Damkohler number defined by Eq. (6)
d, :diameter of particle
F, G, H : defined by Eq.(7)
i : cell number
K, :mass back flow rate defined by Egq. (6)
ki ke, ks : reaction rate constants

ool e]

N  :total cell number
Pe :Peclet number defined by Eq.(6)
q :flow rate

Qw : back flow rate
R1, Ry Ry : reaction rates defined by Eq. (1)
Re :Reynolds number

t : time

u  :mean velocity of fluid through tubular flow reac-
tor

U  :dimensionless concentration of C, defined by
Eq.(6)

v :volume of a CSTR

V  :dimensionless concentration of C. defined by
Eq. (6)

W :dimensionless concentration of C, defined by
Eq. (6)
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: dimensionless axial length defined by Eg. (6)
: axial length

Greek Letters

a
Qa, a.

A > o o= ™

: defined by Eq.(9)

», a; - dimensionless rate constants defined by Eq.

6)

: defined by Eq.(9)
: defined by Eq.(9)
: defined by Eq.(11)
: delay time
: defined by
: defined by
: eigenvalues
: dimensionless time defined by Eq. (6)

Eq. (1)
Eq. (11)

Subscripts

1
s
0
1,2,

Oct

: cell number
: steady state
:initial state
3:components of 1, 2, and 3, respectively
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