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Abstract—The deposition of polydisperse particles under the influence of gravity is examined
using computer simulation. A parameter, o, that represents the standard deviation of particle size
is used for studying the effect of the variation in polydispersity on the resulting microstructures.
Structural correlations are examined through contact networks, radial and angular distribution func-
tions, and diffraction patterns. The results show that the onset of ordering appears near ¢=0.05
as o is decreased. The long-range ordering of the structures is not influenced by the introduction
of a small amount of polydispersity, which may increase the uniformity of local density distribution
in the angular direction. Polydisperse systems with small deviations in size display stronger positional
order in some directions and this in turn contributes to the uniformity of overall packing structures.

INTRODUCTION

The packing problem has received considerable at-
tention in chemical engineering [1] since the charac-
teristics of packings (or, deposits, or sediments) in-
fluence transport phenomena in porous media, as in
the case of fluid flow and heat transport in packed
bed reactors and adsorption columns, filtration, drying
of granular materials, diffusion and reaction in catalyst
particles, etc. In the recent years the general class
of packing problems further has relevance to deposi-
tion and coating phenomena and to the resulting mi-
crostructure of the deposits [2, 3]; for example, the
fabrication of films and coatings via liquid-phase as
well as vapor-phase deposition processes in fabrication
of electronic, magnetic, and optical devices.

It is also important to note that most of the above
studies have been mainly limited to monodisperse pac-
kings, although the use of polydisperse particles is
more common in practice. One motivation for using
polydisperse particulate systems is the existence of
an optimum particle size distribution that maximizes
the volume fraction of particles in a given packing.
It is of very significant practical interest to determine
such a particle size distribution. Another reason for
the interest in polydisperse systems is the occurrence
of a variety of packing problems such as mixing, per-
colation, segregation, etc., which are also practical sig-
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nificance in many applications.

Studies of polydisperse systems have been confined
mainly to binary mixtures of particles because of the
resulting simplicity. Most of the useful information
available for polydisperse systems is therefore restric-
ted to binary mixtures regardless of whether the ap-
proach used is theoretical, experimental, or based on
computer simulations; in particular, no systematic
study of multicomponent systems with more than two
components is available. In most cases, particle size
distributions obtained in practice can be approximated
with sufficient accuracy by continuous particle size dis-
tributions, which are determined in terms of just a
few parameters. A few examples of previous studies
which are relevant to the focus of the present paper
and serve as background to this study are surnmarized
in Table 1, where bulk properties such as packing
fraction, porosity, and coordination number of the re-
sulting structures as functions of particle characteris-
tics and packing methods have been examined. In con-
trast, little information about the effects of particle
size distribution on the variations in the structures
of the deposits is available. Recently, interest has ex-
tended to (i) the effects of the local arrangement of
particles on the overall packing structures, e.g., in the
case of the sintering of ceramic powder compacts [9,
10], and (ii) the effect of polydispersity on phase be-
havior e.g., in the case of hard-sphere colloidal suspen-
sions [11,12]. It is however surprising that, although
the structures of the deposits frequently have aniso-
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Table 1. A list of computer simulation approaches for random packing of polydisperse particles with a continuous size

distribution

Authors Type of polydispersity

Geometrical characteristics studied

Powell [4]
Suzuki & Oshima [5]

Log-normal
Log-normal, Log-uniform

Rosin-Rammler, Anderson

Rodriguez et al. [6] Triangular
Dickinson et al. [7] Triangular
Soppe [8] Log-normal

Packing fraction; Coordination number
Void fraction; Coordination number

Packing fraction; Coordination number

Packing fraction; Pore size distribution;
Radial distribution function

Packing fraction; Pore size distribution;
Radial distribution function;
Coordination number

tropic properties, methods appropriate for characteri-
zing the anisotropy have not been used in most cases.

The objectives of the present work are (i) to develop
general characterization methods for analyzing micro-
structures of deposits and (ii) to investigate the effects
of polydispersity on microstructure formation of depo-
sits. The paper begins with a brief summary of the
algorithm used and the essential computational details,
which are available elsewhere [3]. Following this, the
structural features of the packings (or, deposits) gener-
ated by the simulations are examined using local den-
sity distributions, diffraction patterns and so-called
‘contact-network’ diagrams.

DEPOSITION ALGORITHM

First a vertical strip into which the particles are
deposited is considered. The particles, whose radii are
already chosen from a given size distribution, enter
this ‘chamber’ one by one from the top at random
positions, distributed uniformly along the width of the
chamber. Each particle falls along the direction of the
external field (in this case, gravity) and comes into
contact with either a previously deposited particle or
the substrate. If the particle reaches and makes con-
tact with the substrate, it is assumed to rest there
permanently. If, on the other hand, it comes into con-
tact with a previously deposited particles, it rolls down
until it finds another particle or the substrate. If it
makes contact with another particle, one determines
if the current position of the rolling particle is stable.
For this purpose, the position is assumed to be stable
if the center of the rolling particle lies between the
centers of two contacting particles. Otherwise, the rol-
ling particle is allowed to continue to move (roll or
fall, as the case may be), until a suitable host is found.
This entire procedure is repeated until a predeter-
mined number of particles is deposited. In order to
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avoid boundary condition periodic boundary condi-
tions are applied along the horizontal direction, where
the periodicity of the strip is taken to be 40 times
the particle diameter of unit length.

In the present work a particle size distribution is
introduced in terms of Gaussian distribution given
by

f(R) = expl — (R—Rux)*/206%1/(2nc?), (1)

where R is the particle radius, R,, is the average par-
ticle radius, and o is the standard deviation in multi-
ples of the average diameter of particle, which is also
used here as a ‘polydispersity index’. Fig. 1 shows
the normal distribution of particle radii for different
polydispersity indices. Also in order to keep the range
of particle size reasonable, lower and upper cutoff li-
mits are set at 0.1 and 0.9, respectively. Note that
the cutoff limits do not affect the overall particle size
distributions for ¢ smaller than 0.15 (see Fig. 1).

In the present work the individual effects of polydis-
persity on the structures of deposits are investigated.
The results reported are based on the deposition of
a total of 4,000 particles and the average over 25 confi-
gurations.

CHARACTERIZATION OF STRUCTURES

The structure of the deposits generated in the si-
mulations is analyzed using contact-network diagram,
diffraction patterns, and radial and angular distribution
functions of particle positions. For calculating these,
only those particles within + 30% from the mid point
are taken so that the influence of the substrate and
of the free ’surface’ at the top of the packing is avoid-
ed. The diffraction patterns are prepared using the
structure factor S(q), which is defined by [13]

S(q)=(1/M)< | Zexpliq-r)|>>; j=1,--M 2
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Fig. 1. The normal distribution function of particle radii,
f(R)=exp[ — (R— Ray)?/20%1/(2n6%)"?, where Ruy,
is the average radius and o is the standard devia-
tion.

where r; is the position vector of the j-th particle, the
summation is over all M particles in the chosen region,
and the bracket <---> denotes the statistical average
over the configurations.

The radial distribution function, g(r), is a measure
of the probability of finding two particles at any cen-
ter-to-center separation r and is given by

(a) o = 0.0 (b) o = 0.005

(e) o = 0.05 () o = 0.075

g0)=[An(r)/2nrAr]/payg (3)

where [An(r)/2nrAr] is equal to p(r), the local particle
density, with An(r) equal to the number of particles
in the interval [r, r+ Ar]. The function, g(r), however,
is suitable only for isotropic distributions of the parti-
cles. The above definition can be generalized to in-

clude the angular dependence of the density variation
through

g(r, ©)=[An(r, 0)/rArA0]/pay @)

where An(r, 0) is the number of particles in the joint
interval [r, r+Ar] and [6, 8+ A0]. In both Egs. (3)
and (4), pay is the overall average density of the pac-
king.

The correlation length is defined using the variation
of the function ¥(r) defined as

¥Y(©)=[(1/n)Z{glr)— 1}*]*% n=1,M ®)

where {r, i=1,--M} is the discrete set of r-values
for which g(r) has been calculated. In Eq. (5), r; corre-
sponds to largest value of r for which g(r) is available;
r, is taken such that the value of g(r;) approaches the
sufficiently asymptotic value of unity. The correlation
length A is then defined as

(¢) o = 0.01 (d) ¢ = 0.025

(g) g = 0.1

Fig. 2. Contact networks corresponding to the packing structures.
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Fig. 3. Diffraction patterns corresponding to the packing structures.

A=r, such that ¥(r,)=¢ ©6)

where ¢ is a small number <1.
RESULTS AND DISCUSSIONS

First one can visually compare the structures that
are generated as the polydispersity index is varied.
Typical examples of the structures obtained for a set
of selected values of ¢ are shown as the corresponding
contact-network diagrams in Fig. 2. From this figure
one notes a gradual change in the structure as the
magnitude of ¢ is changed. It has been observed [2]
that the particles tend to form ordered (crystalline)
structures in the case of monodisperse packing (ie.,
in the case of polydispersity index, o, near zero). As
the polydispersity index increases the ordering of the
particles gradually disappears due to the gradual re-
duction in the uniformity of the particle sizes. A close
look at Fig. 2 reveals that, as the polydispersity index
increases, the number of polygons increases and their
size becomes larger. It is also clear that the polygons
are the source of defects. A large polygon in a contact
network diagram may be due to a large pore surround-
ed by many particles or due to a collection of large
particles. Small increases in o lead to a frequent occur-
rence of defects such as stacking faults along ordered
domains and tend to divide the ordered domains into
smaller ones (see Figs. 2a-d for 6=0-0.0025). But as
o increases, polygonal defects appear randomly with-
out any preferential direction, although small groups
of rhombic units can still be found (see Figs. 2e-f for
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5=0.05-0.075). As the value of o becomes larger, such
ordered domains disappear completely and the basic
unit in the structures changes from a rhombic cell
to a mixture of polygons with small triangles (see Figs.
2g-h for 6=0.1-0.4).

Fig. 3 presents two-dimensional projections of the
diffraction patterns for the structures shown in Fig.
2. It has been observed [2] that the diffraction pattern
corresponding to =0 has two strong scattering direc-
tions. As the polydisperse index increases slightly, the
scattering directions seem to remain unchanged, but
the streaks along the two scattering directions become
a little more diffuse (see Figs. 3b-c). As the polydisper-
sity index becomes larger than 0.025, the scattering
directions move away from each other and the diffrac-
tion patterns eventually become circular and diffuse,
indicating the absence of sizable crystalline domains.
This observation is very similar to that found in the
packings of adhesive particles [2]. But such diffraction
rings are observed only for ¢ near 0.025-0.05. Beyond
this range of o, the diffraction patterns tend to become
diffuse significantly and the rings fade away rapidly
at large ¢'s. The first ring is still noticeable for o as
large as 0.1, but dissipates for larger o’s (see Fig. 3h,
for 0=0.4).

The above observations are also illustrated in Fig.
4, which shows radial distribution functions, g(r), for
a few values of 6. One can observe that the peaks
for large r's disappear as o increases, thus indicating
the disappearance of the ordering in the structures.
Note that the magnitude of g(r) in the near-field re-
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Fig. 4. The changes in the radial distribution functions, g(r), for different polydispersity indices.

gion is gradually reduced as o increases, but the peaks
still remain at large r’s for smaller o (see Figs. 4b-c).
Also note that the peaks at large r for =0 are sharp-
er than those when 6=0.005 or 0.01, but have more
skewed shapes. Fig. 5 shows the correlation length
obtained from the radial distribution function for dif-
ferent values of c. Note a sharp decline in the correla-
tion length with increasing o for different A indicating
a sharp change from an ordered structure to a disor-
dered one. Such a structural transition at a value of
¢ in the interval [0.025, 0.05] is consistent with the
observation from the diffraction patterns shown in Fig.

3.

In addition, it is interesting to investigate the direc-
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Fig. 5. Correlation lengths obtained from the radial distri-
bution function, g(r), for different polydispersity
indices.
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Fig. 6. Angular dependence of g(r, 0) at r=1.05 for different polydispersity indices.

tional correlation in the packing structures as a func-
tion of o. As illustrated in Fig. 6, from the near-neigh-
bor value of g(r, 8) (i.e., for r=1) for various o, one
observes two dominant angular directions along which
there is a high probability of interparticle contact. With
increases in o, the sharp peaks shown from Fig. 6a
for =0 decrease rapidly and become broader, and
the angle between the two peaks increases. But no
other dominant direction of growth is found. The
above observations are illustrated more quantitatively
from normalized local density distributions, g(r, 8),
along the radial and angular directions for a few values
of o. Consistent with the observations based on the
diffraction patterns, one sees a monotonic decrease
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in positional correlation for 8=60° with increases in
o. But note that the long range of correlation is pre-
served along some directions (for 6=45°). Note also
that, while the peaks for 6=0 show some disturban-
ces, but those for nonzero but small 6’s (i.e., 6=0.005
and 0.01) become more stabilized and have higher val-
ues than those for 6=0. Based on these, one can con-
clude that the introduction of a small amount of poly-
dispersity (i.e., ~0.01) does not change the long-range
ordering of the structures and may, in fact, increase
the uniformity of local density distribution in the
angular direction (also see Figs. 4a-c).

The above observations can be clearly seen in the
angular dependence of the correlation length on the




Characterization of Simulated Microstructures in Polydisperse Particle Deposition 245

20.0 TR

(AR T
—8— g=0
—4— ¢=0.005

T T

E —8— g=0.01
D 15.0 ——t— 0=0.025
% —+— =0.05
I ——m— gm0.1
c
o 10.0
=
)
[}
S 5.0
o
&)

0.0 &B P0Gy £ DG

0 10 20 30 40 50 60 70 80 80
0
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ed from g(r, 0) for different polydispersity indices.

polydispersity index, shown in Fig. 7. This tendency
is very similar to that observed at r=1.05 (see Fig.
6). Note that the correlation length has its maximum
value within the range 6=30°-60°. The maximum
tends to shift to the right (i.e., to higher angles). This
indicates that packings with small polydispersity have
a strong directionality with respect to long-range cor-
relation. It is very interesting to investigate the varia-
tion of the correlation length with o at each angle.
For 8=~50°-~90° and ~0°-~15° the correlation
length decreases sharply as o increases. This agrees
well with the variation of the correlation length obtain-
ed from g(r) (see Fig. 6). But for §=~15°-~50° the
correlation length shows a sharp increase with increa-
sing ¢ for small values of ¢ (i.e., 6=0.005 and 0.01)
and decreases sharply for large o’s. This observation
becomes clearer when one examines g(r, 8) informa-
tion for very small 6 [2]. One can conclude from these
that polydisperse systems with small deviations in size
display stronger positional order in some directions
and that this in turn contributes to the uniformity of
overall packing structures. Also one can conclude that
the onset of ordering (or crystallization) appears near
0=0.05 as o is decreased (see Figs. 3, 5 and 7).

NOMENCLATURE

d :diameter of the particle

g(r) : cylindrically averaged radial distribution func-

tion

g(r, 0) : positional correlation (distribution) function in
r and 6

N :total number of particles

q :scattering vector

r :position vector of a particle in real space

S(q) : static structure factor

Greek Letters

e :cutoff value of ¥(r) defined in Eq. (6)

A :correlation length defined in Eq. (6)

0 :angle between r and the horizontal direction
p(r) :local particle density

o :polydispersity index

Y(r) : function defining the correlation length
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