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Abstract—A study of the instabilities in the interaction of an electrostatic field with a thin liquid
film flowing under gravity down an inclined plane is presented. First, the long-wave stability conditions
are studied by perturbing the evolution equation of film height about its steady-state solution. Three
limits of flow systems are considered, i.e., static state, Reynolds number Re=0(1) and Re=0O(1/¢).
Here &(«1) is the ratio of the characteristic length scale parallel to the flow to the primary film
thickness. Next, the long-wave behavior of the thin film flow is examined with the electrostatic poten-
tial of a Gaussian function in the two limits of Reynolds number, ie., Re=0(1) and Re=0(1/£).
These results are also compared with those from a full-scale explicit calculation. Finally, wave-growth
rates are calculated from the Orr-Sommerfeld equation to show the stability to wave number with
and without the electric field. The effect of the electric field is to lessen the range of the wave

number in which the thin film flow remains stable.

INTRODUCTION

The investigation of the thin liquid-film flow has
attracted much attention for many years. Such thin
layer of liquid acts an important role in many engi-
neering processes due to its high transfer surface of
heat and mass in comparison with the volume of
through-flow. When a thin liquid film flows under grav-
ity down an inclined plane, the film becomes unstable
as Reynolds number increases, that is, traveling waves
appear on the free surface. To determine this instabil-
ity onset has been a big research topic. The study
of the stability of thin liquid layers draining down an
inclined plane was initiated by Yih [1] and Benjamin
(2]. Their analysis identified regimes of linear stabil-
ity of the film as a function of the Reynolds number
and the angle of inclination. Yih [3] employed long-
wave asymptotics, and thereby determined a critical
Reynolds number. Benny [4] derived a long-wave
nonlinear evolution equation for the locai thickness
of a thin, isothermal liquid laver on a plane surface.
After this time a great number of extensions of the
isothermal case has been made, such as those by Lin
(5], Gjevik [6], Pumir et al. [7]. and Alekseenko et
al. (8], to name only a few. Their quasilinear investi-
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Fig. 1. The coordinate scheme of the plane flow under
an electrostatic field.

gations are for the height of the film as a function
of time, which is solved either numerically or analyti-
cally.

The objective here is to consider the linear stabili-
ties when an electrically conductive liquid layer flows
under gravity down an inclined plane over which an
electrostatic field is turned on through a chargeable
foil (see Fig. 1). This kind of flow system has the fol-
lowing research background. The study on the inter-
action of an electrostatic field with a thin liquid film
was started by Kim et al. [9] for a new design of
lightweight space radiator to replace present-day
heavy space radiator which employs armored heat pi-
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pes built in by the wick materials such as nickle, cop-
per and titanium, etc. The proposed new concept con-
sists of an enclosed metallic-foil/ceramic-cloth, thin-
film, pumped-loop radiator, in which leaks of the lig-
uid-metal coolant caused by punctures from most mic-
rometeorites and space debris are prevented by detec-
ting the leak and then switching on an internal elec-
trostatic field, that is, the applied electrostatic field
makes the pressure at the puncture sufficiently below
the pressure outside the radiator minus the capillary
pressure and stops the leakage. In order to under-
stand this basic effect of the electrostatic field on the
film flow and to establish the feasible working ranges
of the radiator, Kim et al. [10, 11] investigated two
kinds of flow systems of a thin liquid layer with evolu-
tion equations for film thickness derived from the
equations of motion with proper approximations. In
the first, the liquid film in the presence of a gravita-
tional body force flows along an inclined flat plate with
a specified initial film height. In the zero-gravity sec-
ond case, the liquid flows down the interior surface
of a rotating conical pipe, where the entrance film
thickness is specified at a constant angular velocity
and the centrifugal force replaces the gravitational for-
ce. The pressure distribution on the solid wall was
also calculated to check the possibility to prevent leak-
age of the coolant from a puncture. The result is that
the radiator will be allowed to have thinner, of no
armor, and hence there will be a considerable weight
savings. Important benefits of this idea could accure
to the space station, which is reported to be currently
overweight and underpowered. For high-power requi-
rements, such as propulsion systems, military applica-
tions, and large scale manufacturing and life support,
this technology is considered to be critical.

In the following sections, long-wave stabilities are
investigated by perturbing the evolution equation of
film height about its steady-state solution in the limits
of three cases of flow systems, i.e. static case, small
and large Reynolds numbers. Here the static-state
flow is treated as an extreme case of the film flow
down an inclined plane. In addition, for the long-wave
behavior of the flow systems the film height interac-
ting with the electrostatic potential of a Gaussian func-
tion is plotted and compared with the result from a
full-scale code. Wave-growth rates are alsc calculated
to obtain stable wave numbers from the Orr-Sommer-
feld equation without the thin film limits.

ELECTROHYDRODYNAMIC ANALYSIS

The flow is considered of an incompressible, vis-
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cous, thin liquid film draining down an inclined plane
with gravity g. The plane is assumed to make an angle
B with the horizontal, and the two-dimensional coordi-
nate system is chosen such that the x axis is parallel
to the plane and the y axis is perpendicular to it.
Above the liquid film there is a vacuum, where at
a distance H from the plane is a charged plate of
length /, which i: parallel to the x axis. The film thick-
ness in the primary flow is defined as d and ¢=d/L,
where L is the characteristic length scale paralle] to
the film (Fig. 1.

The electric field is satisfied by the Laplace’s equa-
tion,

Vip=0, 8Y)

for the electric potential ¢(x, y) in the fluid, ¢/, and
for that in the vacuum region, ¢*. To solve this equa-
tion the following boundary conditions are needed:

o(x, H)=FH®(x), for y=H,
¢=0, for y=0, 2

and along the free surface y=h(x, t) the interfacial
boundary conditions are

9 o

¢/(x, h, )=¢"(x, h, t), & an on’

3)
Here & is the dielectric constant of the fluid, g, is
that of the vacuum and the partial derivative is in
the direction of the outward unit normal, n, to the
interface.

The independent and dependent variables used in
the governing equations of motion and the evolution
equations are expressed in non-dimensional forms by
letting d be the unit of length in the v direction, L
the unit of length in the x direction, U, which will
be chosen later, the unit of the x-direction velocity
u, U, the unit of the y-direction velocity v, L/U, the
unit of time t, pUy the unit of pressure p where p
is the fluid density, F the unit of electric field and
FH the unit of electrostatic potential. Extensive calcu-
lations (Kim et al. [10]) have been performed to ob-
tain the film thickness and the bottom pressure as
functions of both space and time. Three methods of
calculation were employed. For a Reynolds number
of O(1), inertial effects may be neglected at leading
order, and a long-wave approximation is appropriate.
The Reynolds number Re is defined as

o= Pl
u

R 4

where p is the viscosity of the fluid and U, = pgd’sin(B)
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/3u is the average entrance velocity. In this limit, one
can derive a nonlinear evolution equation for the
height h(x, t) of the film accurate to O(&%). This equa-
tion has been studied extensively by Kim et al. [10]
and the result is

oh oh 6

2 J s oh . ah
~ h-k +EgE | — 6 v - _ 3¢
at +3 % Eax < 5 Reh ox cot(B)h ox

2& a@fﬁ) 2 <“_L)j_
+3 Cahax3 +S'EKI & / ox

(h3% [EJ) =0, )

where E3, is the normal component of the leading-or-
der electrostatic field at the surface of the film y=h(x,
t), the capillary number is defined by Ca=2uUs/oc
where o is the surface tension and K, assumed to
be order one, is a dimensionless electrostaric field con-
stant:

_ e,dF?
16muUy’

(6)

In Eq. (5) the coefficient £/Ca is assumed to be
order unity. The placement of the charged foil has
to be considered to get the Eq,. The electric potential
along y=H depends on the slow x scale and the char-
acteristic length scale in the y direction in the vac-
uum region is d. Hence, the leading-order electric
field can be transformed from the electrostatic poten-
tial at leading order in ¢, ie., E§,=H(g¢t/gy), where
o5 is calculated from the Eq. (1) with the boundary
conditions (2) and (3):

ai=eof1+ - Wb, o = ~1)+u] ',

f

for hix, t)<y<H. 7

For the applications a larger Reynolds number may
be necessary. For this large Reynolds number, ie.,
Re=0(1/&), the inertial terms appear at lowest order,
and it is necessary to use the Karman-Pohlhausen ap-
proximation to obtain an evolution equation. This has
successfully been applied to other thin film problems
(Thomas et al. [12] and Rahman et al. [13]). The
local x-component velocity is approximated by

3-8

where q is the local flow rate defined by
h
qZJ’ u dy. 9

One then obtains a coupled set of nonlinear hyperbolic

equations accurate to O() for the height h and flow
rate q. These evolution equations have been derived
by Kim et al. {10] and the results are

oh _ 9a
ot ox (10)
and
99,6 9 <1_2)__2£~( Al)a y 2
at 75 axn) R KU gfﬁﬂa"")
_34q QS@(E“ oh
Rh P2 \B ax>' (1)

where K=EK=0(1), R=ERe=0(1), B=¢Ecot(B)=0(1)
and the Froude number is given by

Pr=—7g- (12)

The previous two methods have shown asymptotic
solutions of the electrohydrodynamic problem. This
approach was taken because the system represents
a complicated nonlinear moving boundary problem
whose solution involves solving the Navier-Stokes
equations coupled to the electrostatic equations. A com-
plete numerical solution of this problem is still very
difficult. Suppose that the charged foil is far away from
the plane of the flowing film, this idea decouples the
electrostatic problem from the fluids problem. Hence,
a direct solution of the Navier-Stokes equations, using
the finite-difference code SOLA [14] based on the
marker-and-cell method, can be obtained in the pres-
ence of the electric field.

In the early study [10], for the electrohydrodynam-
ic calculations the dimensionless electrostatic potential
along the charged foil /, ie. the value of d(x) was
used as 1, that is, this was a specific value used for
solving the Laplace’s Eq. (1) of the electric potential
and the solution was found in Morse and Feshbach
[15]. However, in order to simulate a slowly varying
potential which will make a long-wave disturbance on
the thin-film flow a potential with a Gaussian function,
P(x)=e ““ " where a is an arbitrary constant and
Xo is the center of the electric foil, will be used later
on this work to show the film-thickness variations to
both space and time.

LINEAR STABILITY

The linear stability for the liquid film flow down
an inclined plane was studied by Benjamin [2] and
Yih [3]. In a long-wave limit their analysis identified
regimes of linear stability of the film as a function
of the Reynolds number and the angle of inclination:

Korean J. Ch. E.(Vol. 11, No. 4)
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Re<%cot(B). (13)

The aim here is to generalize this result to include
the effect of the electrostatic field on the film flow.
For this purpose, three cases of flow systems are con-
sidered : static case (§=0), Re=0(1) and Re=0(1/¢).
In addition, without the thin-film limit the Orr-Som-
merfeld equation is solved by the long-wave approxi-
mation. Recently the effect of a magnetic field on fluid
flow down an inclined plane has been studied by Shen
et al. [16].
1. Static Case: =0

In the static case with $=0, there is no driving
force for the liquid film to flow along a flat plate. When
an electrostatic field is turned on through a charge-
able foil, the stationary fluid will start to move toward
the center of the foil and have a symmetric shape
like a convex meniscus below the foil. In this case
the fluid filling up the peak comes from both ends
of the plate. There exists a similar approach used to
the lubrication theory for the Eq. (5) except that there
is none of the inertial effect and the primary flow due
to gravity. The evolution equation is

h 1 R h 2 & oh
aﬁtﬁéi{(‘_»ea_#i <

3 F? gx 3 Ca ¥
z _l a v 2\ 3% —
+3K[1 s_,]a-xm"“] )h} 0. (14)

To find a stability condition of this static problem the
Eq. (14) needs to be perturbed about its steady-state
solution h,. Letting h(x, t)=hy(x)+ h(x, t), where h(x,
t) represents the small-height disturbance, the film
thickness at steady state is reduced to

Fr2 & d’h, Fr¢

+2— K(k«)(e ¥, (15)

h= Re Ca dx* Re

where the boundary conditions that h,—1 and Ef,—0
as x—>* oo (with x,=0 as the center of the foil) are
used. And the linearized disturbance equation for h(x,
t) becomes

oh _ 1,9 fh 3(£ oh

¢

L bl BS2) w

Frr gx Ca ox¢'

With setting h(x. t)=e"®(x) and substituting into the
Eq. (16), the eigenvalue ¢ is determined to get a linear
stability condition of this problem for all ranges of
the parameters, The result after proper manipulations
is given by

c=~—¢&
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Re 3¢ 2F? &
f h’(—@‘%——@ 2+ — 0O, 2>clx
- Fr? Re Ca an

Frr &
Re Ca

3 f 0 +— 02 )dx

where the subscript x denotes the derivative with re-
spect to x. As we can see, the value ¢ is negative for
all the parameters. Hence this static problem is always
linearly stable. The Eq. (17) has only stabilizing effects
of gravity and surface .ension.

2. Order One Reynolds Number : Re=0(1)

Considering a linear stability analysis in the limita-
tion of lubrication theory, the Eq. (6) is perturbed
about its steady-state solution, i.e., by setting h(x, t)=1
+h(x, t), where the small disturbance h is assumed
a sinusoidal function h=e~, Here a>0 is the wave
number of the disturbance and ¢ is the complex wave
speed. The electric field Et, is obtained from the Eq.
(7), i.e., Eb, =H®)/{H+h(1/e,— 1)}. The effect of va-
riations of h on the electric field is accounted. And
for the similar disturbance in ¢" as in the liquid film,
the length of the foil is assumed to have the same
dimension as that of the inclined plane, i.e., [—co. Sup-
posing that ®(x)=1, the evolution Eq. (5) is linearly
stable when

0, Ha-1ey 5 & ,

B g K e H-17 "9 Ca @ 18
Here we can see that the electric field is a destabili-
zing effect but the surface tension makes the film sta-
ble. If there are no electric field and surface tension
in the above equation, the result has the same stability
condition derived by Benjamin and Yih.
3. Large Reynolds Number : Re=0(1/£)

As with the order unity Reynolds number case, a
linear stability analysis for this Re=0O(1/&) case can
be done. The definitions of the dimensionless con-
stants show that

Re sin(B) _
T L (19

Therefore a steady-state solution of the Egs. (10) and
(11) exists of the form h=1 and q=1. Letting n repre-
sent the perturbation of h from the uniform height,
1e. h=1+n, the linearized disturbance equation can
be derived from the nonlinear hyperbolic Egs. (10)
and (11):

o, 12oh (6 3B GKA-VeNE )
ot 5 atox 5 R R[l/g+H-1]"
om . 3 on .9 on _
pye R 3t +R ox 0. (20)
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Looking for a time harmonic solution proportional to
e~ where a is the real wave number and c=c¢, +ic,
is the complex frequency, the dispersion relation from
the Eq. (20) is given by

6R(1— 1/gPH?
R[1/e+H—-1F /

2— Ze+
C c 5 R

12 ( 6 3B
5

3i
+—(c—3)=0.

R -3 21
The condition for onset can be determined from the
Eq. (21) by requiring that the first and the second
derivatives of ¢; with respect to a vanish exactly. The
result of this calculation is that the critical Reynolds
number, Re, and the wave number, a. are given
by

Hz(l_l/ﬁf)z

Re.=cot(B)—2K———"7 a.=0.

(et 17 @2

The critical Reynolds predicted in this limit differs
from that in the order unity Reynolds number limit.
This situation comes from the different magnitude of
the Reynolds number and the approximation (8) used
for the velocity profile. Without the electric field this
flow system is studied by Prokopiou et al. [17].
4. Orr-Sommerfeld Equation

In the absence of the thin-film limit, that is, assum-
ing that the length scales in the vertical and horizon-
tal directions are the same (£=—1), that the length of
the plate is infinite, and that ®(x)=1 as in the thin-
film cases, a steady parallel flow can be found with
the velocity and pressure given by

_cos(B) , 2KH? (1 ) a0 \2
T Fe A=)+ Re (g, 1(\ oy ) @3
and the electric potential [10, 11, 18]
1 .
¢5:1+(y—H)(;+H—1) , for 1<y<H.  (24)
7 /

Following Benjamin [2] and Yih [3], u=w+u, v=v,
p=po+p. h=1+h and ¢"=¢;+¢" are introduced into
the equations of motion and then solved for the same
order of magnitude, where the small-amplitude distur-
bances are denoted by an overtilde. For the linear
stability the following time-harmonic assumptions are
applied:

u=y'(y)e ",
v=—iau(y)e ),
f) — f(y)em(x - m‘!'

h= g(y)emu- a
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& =qlye =, (25)

where the prime represents the derivative with y. Fi-
nally the linearized Navier-Stokes equations are re-
duced to the Orr-Sommerfeld equation for y=ywy(y),

v(y) - 202y (y) +aty(y)=iaRe{(us— c)[y" — aly

)] —wv't (26)
The boundary conditions along y=0 are
v(®)=v'(0)=0, 27
while along y=1
3
” 22 —
v+ a5 =0 28)
and
_ v(l) 3N
3a COth—Ei/2+a Re(c 2)\y(l) iy’ (1)
o )4 g YD (_2_62 ):
+ 3ia?y’ (1) + aC73/2 Ca +KW|=0, (29)
where the constant W is given by
W:aH2<1—l)<l+H41)'2
&/\E
1 -1
{; tanh(a)+tanh[a(H—1)]} . (30)
s

This is a linear eigenvalue problem for the complex
eigenvalue c=c, +ic. In the long wave limit, i.e., a—0,
the uniform flow is stable if

Re<£cot([3)— lQKW, (31)
6 9
where in the long wave limit,
201 . 2
W H*(1—1/¢gp) 32)

[(1/ep+H—-17° °

This is the same result as in the case of Re=0(1)
except for the effect of the surface tension. The eigen-
value problem (26)-(29) is solved numerically in the
next section by using a shooting method [19].

NUMERICAL COMPUTATIONS

1. Deformation of Film Surface

In the previous section 2 two asymptotic evolution
equations in the film thickness h are represented for
the electrohydrodynamic calculations. This approach
was taken because the system contains a complicated
nonlinear moving boundary problem coupled to the
electrostatic equation. Assuming H>1 so that the

Korean J. Ch. E.(Vol. 11, No. 4)
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Fig. 2. Free surface profiles determined by Eq. (5) for t=
0.01 n, n=1,---,25 with F=0.5 kV/cm, $=0.1
rad., d=0.15 cm, g=2 cm/sec?, c=0, Re=3.78,
K=0.9, H=13(1/3), and the other parameter for
lithium at 700 K.

charged foil is far away from the plane of the flowing
film, the electrostatic problem is decoupled from the
fluid problem. Hence, if a solution of the electrostatic
problem is determined, the Navier-Stokes equations
can be solved with a known forcing function of the
electric field. This moving boundary problem is solved
by using the full-scale code SOLA [14]. In order to
simulate a slowly varying potential, ®(x) is set by
e 16:-1732 Here the location of the charged-foil center
is taken as x=1/3.

The solutions of the approximate long-wavelength
models (5), and (10) and (11) will now be compared
with the solutions from the SOLA. Clearly, solving
either (5) or (10) and (11) is a much easier and faster
task than solving the Navier-Stokes equations. Hence,
if the approximate models can be shown to make good
predictions in the range of interest of parameters, this
justifies their usefulness. Uy is chosen as the mean
velocity of a steady parallel flow down an inclined
plane and proportional to d”. Here the physical param-
eters are taken for lithium at 700 K (un=0.0038 poise,
6=2363.2 dyne/cm, and p=0.493 g/cm?) and the fluid
is a perfect conductor, i.e., g—>w. As U, varies, Re,
Fr, Ca vary linearly with U, while K is inversely pro-
portional to U,. For fixed electric field F, K changes
as the Reynolds number changes. The effect of surface
tension is neglected because there is no regions of
large curvature on the free surfaces with the slowly
varying potential and the main concern is to show
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Fig. 3. Free surface profiles determined by SOLA for t=
0.01 n, n=1,-,25 with F=0.5 kV/cm, =0.1
rad., d=0.15 cm, g=2 cm/sec’, =0, Re=3.78,
K=0.9, H=13(1/3), and the other parameter for
lithium at 700 K.

how well solutions of the approximate models com-
pare with the solutions of the full system of equations.
The solution of the lubrication model (5) begins with
a fourth-order Runge-Kutta, and then continues with
the Hamming's predictor-corrector method. The non-
linear hyperbolic Egs. (10) and (11) are solved by
using a two-step Lax-Wendroff method with diffusion
and antidiffusion [20]. The steady flow down an in-
clined plane is chosen as an initial condition and the
upstream boundary condition is steady Poiseuille flow.
At t=0 the electric field is turned on and the interface
is determined.

To calculate the change of the unsteady free surface
when Re=0(1), the following properties, i.e., F=05
kV/cm, B=0.1 rad., d=0.15 cm, g=2 cm/sec’ and 6=
0, are taken. This will give us Re=3.78, K=0.9, &=
0.0025 and H=13(1/3). In Fig. 2 the dimensionless
film thickness h is plotted from the Eq. (5) as a func-
tion of x for t,=0.01 n, n=1,---,25. As t increases the
initial perturbation in height grows in absolute magni-
tude until a steady state is approached. As we can
expect from the linear stability condition (18), the per-
turbed wave becomes stable at this Reynolds number,
ie, Re—8.22 as a—0. To compare this approximate
model with the exact numerical prediction, the film
height h from the SOLA is plotted in Fig. 3. And for
a clear view the steady-state lubrication result is plot-
ted in Fig. 4 along with the last plot of Fig. 3. The
surface deformation is similar to that of the exact an-
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Fig. 4. Free surface profiles determined by the steady-state
lubrication result (---) and the last computed time
step shown in Fig. 3 (—).
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Fig. 5. Free surface profiles determined by Eqs. (10) and
(11) for t=0.01 n, n=1,---,20 with F=20 kV/cm,
B=0.1 rad., d=0.15 e¢m, g=100 cm/sec’, c=0,
Re=189.0, K=28.87, H=13(1/3), and the other
parameter for lithium at 700 K.

swer except that the absolute magnitude of the pertur-
bation in height is a little less. This means that in
the real system the inertial force is a slightly more
dominating than the viscous effect at this Reynolds
number.

For a large Reynolds number case: Re=0(1/8), an
increased gravity g=100 cm/sec? is applied and at the
same time the electric field is increased to 20 kV/cm

(h)

FILM THICKNESS

0.8 SR e
0.0 0.2 0.4 0.6 0.8
DISTANCE FROM ENTRANCE (x)

Fig. 6. Free surface profiles determined by SOLA for t=
0.01 n, n=1,---,20 with F=20 kV/cm, $=0.1 rad.,
d=0.15 cm, g=100 cm/sec’, c=0, Re=189.0,
K=28.87, H=13(1/3), and the other parameter
for lithium at 700 K.

1.0

for the compensation of the decreased K as Uy increa-
ses, while keeping the other parameters as in the
Re=0(1) case. The effect of this is to raise the Rey-
nolds number and the dimensionless electrostatic con-
stant, to Re=189.0, and K=28.87. For this case the
time-dependent Karman-Pohihausen mode! (10) and
(11) is solved and plotted in Fig. 5 for t,=0.01 n, n=
1,---,20. As in the smaller Reynolds number case, the
height of the film under the foil at first decreases
with increasing x and then increases. The film will
now rise up to about 20% of its equilibrium height.
The maximum height at steady state is around h=
1.15. As time increases note that a disturbance will
begin along the precursor through, this will develop
into a shock. We can expect this instability from the
result of the linear stability condition (22) at this large
Reynolds number. However this event is harmless to
this system, since the shock occurs downstream of
the foil and finally it will be washed away. In Fig.
6 the result from the exact numerical solution is plot-
ted. There are qualitative similarities in the shape and
speed of propagation of the disturbance. There are
some quantitative differences. In particular, the shock
appears to develop in a different way. The time-de-
pendent problem is only computed up to the time of
formation of the shocks. Both models will approach
a steady-state solution under the foil. In Fig. 7 the
steady-state film thickness from the Karman-Pohlhau-
sen model is plotted along with the last computed re-
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Fig. 7. Free surface profiles determined by the steady-state
Karman-Pohlhausen result (---) and the last com-
puted time step shown in Fig. 6 (—).
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Fig. 8. a vs ¢; for Re=5, $=0.1 rad., and H=13(1/3).
(a) K=0 and Ca=1.35x10"5 (b) K=2.73%x1¢*
and Ca=1.35x10"% (c) K=0 and Ca=c. (d)
K=2.73x 10" and Ca=co.

sult shown in Fig. 6. Note that the disturbance under
the foil is very close to the exact profile. The approxi-
mation model has a good prediction of the real inter-
face deformation.
2. Wave-growth Rates

In the previous section the linear stability of the
liquid film flow with the effect of the electrostatic field
is examined in the long wave limit. In order to un-
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UNSTABLE

0.6 -

Fig. 9. a vs ¢; for Re=20, f=0.1 rad., and H=13(1/3).
(a) K=0 and Ca=5.4Xx10-5 (b) K=6.82%10°
and Ca=5.4X10"5 (¢) K=0 and Ca=w. (d) K=
6.82X10° and Ca=oo.

derstand the effect of the electric field on the stability
for larger wave numbers, the eigenvalue problem (26)-
(29) needs to be solved numerically. The Orr-Sommer-
feld Eq. (26) is a 4th-order complex ordinary differen-
tial equation with the complex two-point boundary val-
ues (27)-(29) and this can be solved by using a shoot-
ing method. Here for one method to observe the sta-
bility regime the wave-growth rates are computed for
Re=5 and Re=20. These two Reynolds numbers are
selected for example calculations since the critical Re-
ynolds number resulted from the long wave limit, ie.,
from the Eq. (31), is 8.3 [=5/6 cot (0.1 rad.)] in the
ahsence of electric field, that is, the flow will be stable
at Re=5 and unstable at Re=20 as a—0. At Re=5
the wave number o versus the imaginary wave speed
¢ is plotted in Fig. 8 for the cases of F=0 and F=100
kV/cm (K=2.73X10*%) combined without and with sur-
face tension effect (Ca=1.35X107°). For positive a,
if ¢, is negative, the flow is linearly stable, while if
¢, is positive, the flow is linearly unstable. Note that
with surface tension in both K=0 and K=2.73X10*
the flow is much more stable than the case without
surface tension. The most unstable case is the flow
with electric field and at the same time without sur-
face tension as we can expect from the thin-film limit
model. With electric field and surface tension the most
unstable wave number is about 0.015 (see b in Fig.
8). In Fig. 9 the growth rates are depicted at Re=20.
Here the increased Reynolds number makes K de-
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crease and Ca increase, i.e, K=6.82X10% and Ca=54
X 1075 Without the K effect, that in the long wave
limit the flow at this Reynolds number is unstable
is expected from the analysis in the section 3. The
qualitative phenomena of growth rates in the four ca-
ses of flow are similar to those in Fig. 8 except that
all flows are unstable as a—0. As Reynolds number
increases the most unstable wave number is getting
bigger, that is, the system becomes unstable even in
a smaller wave length.

CONCLUSIONS

The purpose of this investigation is to study the
instabilities in the interaction of an electrostatic field
with a thin liquid film flowing down an inclined plane,
and to examine the long-wave modes of the film flow
with the electric potential of a Gaussian function. The
electrostatic field over the film flow has perturbed
the interface under the charged foil due to the effect
on the change of the normal stress condition and then
induced a traveling wave to be considered for its sta-
bility.

The linear stability conditions are derived for the
approximation models of Re=0(1) ‘and Re=0(1/6).
The result of lubrication model coincides with the re-
sult from the Orr-Sommerfeld equation in the long-
wave limit, while the Karman-Pohlhausen approxima-
tion has a different form due to the large magnitude
of the Reynolds number and the assumed parabolic
velocity profile. In the static-state case considered for
reference the flow is always stable since there is only
stabilizing effects of gravity and surface tension on
the perturbed liquid film. The linear stability analysis
indicates that the presence of the electric field reduces
the value of the critical Reynolds number at which
the flow becomes unstable.

The evolution equations for the thin-film approxi-
mate models allow easy predictions of the deformation
of the interface with the electric potential of a Gaus-
sian function. In the case of small Reynolds number
Re=3.78, the film flow becomes stable as the pertur-
bed wave is traveling in the down stream. However
at Re=189.0 the wave develops into a shock and the
liquid filmis unstable. To confirm the effect of the
electric field on the stabilily when wave number in-
creases, the Orr-Sommerfeld equation is solved numer-
ically to show the wave-growth rates. Four kinds of
flow systems are considered, ie., a) K=0, Ca#w, b)
K#0, Ca#oc, ¢) K=0, Ca=w and d) K+0, Ca=o.
The most unstable case is d), i.e., the flow with the

electric field and without the surface tension. As Rey-
nolds number increases, the range of unstable wave
numbers is increased for all the four cases.
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