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Abstract —Multicomponent mass transfer accompanied by instantaneous chemical reactions in a small drop has
been modeled and simulated for the case where two different solutes diffuse from a continuous phase into the drop
and react rapidly with a third reactant in the drop. The computational results obtained by Galerkin's finite element
method are reported in terms of concentration profiles, the locations of reaction front, the cumulative mass flux,
and the enhancement factor. The effects of physical parameters, such as diffusivities of the solutes and the reactant,
the interfacial concentration of solutes, and the relative amount of the reactant, on the calculated quantities are discus-

sed.
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INTRODUCTION

The simultaneous mass transfer and chemical reaction of solu-
ble solutes in a rigid drop are of practical importance in various
industrial gas-liquid and liquid-liquid contacting operations such
as spray absorption, liquid-liquid extraction, separation using lig-
uid membranes, and atmospheric scavenging. Numerous studies
related to mass transfer accompanied with reversible or irreversi-
ble and isothermal or nonisothermal reactions in a simpie geome-
try have been reported [1-4]. However, mass transfer to a drop
or a bubble with chemical reactions has not been sufficiently inves-
tigated. This is because mass transfer to a drop is more restricted
to solve than mass transfer to a simple geometry due to nonlin-
earity of the moving boundary. Ruckenstein et al. [5] studied
mass transfer from a drop, accompanied by a first order reaction
and obtained the concentration profile in the continuous phase
and the rate of mass transfer, using a similarity solution scheme.
Dang and Ruckenstein [6] obtained unsteady concentration pro-
file and the mass transfer rate from a single or binary component
drop with/without reaction for relatively large Reynolds number
flow. Ramachandran et al. [ 7] investigated mass transfer into the
core of drops with a liquid-phase first-order chemical reaction,
using the boundary layer concept for the gas phase and film
theory for the liquid phase. They showed their results in terms
of concentration distribution of the gas solute, but did not report
the parametric study on enhancement factor. Kleinstreuer et al.
[8] extended Ramachandrans’ work to the case of adsorption in
string of circulating drops. Dutta et al. [9] studied the simplest
binary mass transfer in which a single gas solute diffuses into
a liquid drop and reacts rapidly with a reactant present in the
drop, using the finite difference method. They reported the reac-
tion front positions, the rate of mass transfer, and the enhance-
ment factor for different system parameters.

In many industrial situations, diffused solutes into a drop usual-
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ly react instantaneously with a reactant in the drop. Therefore,
there are two regions inside the drop, each containing only the
solutes or the reactant. The boundary between these two regions
is called reaction front and its location moves away from the sur-
face of the drop toward the center of the drop as the reactions
proceed.

Despite its practical importance, this moving-boundary problem
is not understood satisfactorily for the general case in industrial
processes, where more than one solute diffuse and react rapidly
with a reactant in a drop. The goal of the present work is to
theoretically analyze this multicomponent moving-boundary prob-
lem and develop a mathematical model. The developed mathema-
tical model is simulated for absorption of two solutes from the
continuous phase into the drop and instantaneous reactions with
the third chemical component existing in the drop. The results
of this study include concentration profiles of solutes and the
reactant, reaction front position, and the cumulative mass flux
and the enhancement factor of each diffusing solute for different
values of the system parameters. For the development of the mod-
el proposed in this study, it is assumed that the drop is so small
that it is considered to behave as a rigid particle [10].

MODEL DEVELOPMENT

Let us assume that the following irreversible instantaneous reac-
tions occur between n diffusing solutes, A, B,---, N, from the contin-
uous phase into the non-circulating drop and a reactant, T, exis-
ting in the drop.

A+v,T products
B+ysT products
N+yyT products M

where y; is the ratio of stoichiometry coefficients of T to i. There
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are n chemical reactions described by the above eguations be-
cause n diffusing solutes react with T independently. The reac-
tions occur at the reaction front moving from the surface of the
drop to its center. In the following mathematical treatment, it
is assumed that the bulk concentrations of solutes are constant
and the initial concentration of T is uniform in the drop. Also
assumed are negligible mass transfer resistance in the continuous
phase and the dilute system for no cross effects between mass
fluxes of the solutes so that binary mass transfer coefficients can
be used to describe the system. The governing equations are;

For region I (x<r<R)
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For region II (0<r<x)
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and relevant initial and boundary conditions are;

t:0; CA:CB::“‘:CN:O, CTZCT,) for >0
I':R; CA:CA;, CB:CH,,“'. CA\-:CN,,for t>0
r=0; Cy=finite for-t>0
r=x; C4=Cg=+-=Cr=0, for t>0 3)

where C/’s and D/s are the concentrations and diffusivities of
i, respectively; r is radius coordinate of the system measured
from the drop center; R is drop radius; C; is the equilibrium
concentration of j at the drop surface; Cy, is the initial concentra-
tion of T; x is the distance from the drop center to the location
of the reaction front. The following compatibility condition relating
the fluxes of all components at r=x should be satisfied:

¥4 Natys Na+--+yv Nv=—Ny
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There is no analytical method to solve the above set of equations.
A direct application of any numerical technique becomes very
complicated because the reaction front is moving and given as
a function of time. Several studies have been reported on the
analogous problem-solidification of a liquid sphere initially at the
fusion temperature [11-13]. Those studies used a singular pertur-
bation technique to find an asymptotic solution of the moving-bound-
ary problem. However, such a technique may not be appro-
priate for the present problem which is more complicated. Instead,
it is desired that the spherical coordinate be appropriately trans-
formed in order to fix the reaction front.
If the following coordinate variables are introduced,
_p-0

="

< .
1—o 0<p<L1 (5)

W= 9*;‘9

0<p<o 6)

where p=r/R, ¢=x/R

the governing equations are transformed to contain the location
of reaction front as follows:
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Accordingly, the initial and boundary conditions reduce to:

'C:O; CA‘:CB‘:"': N*:O, C',-*:l~w” for >0
o= 1; CA* =1, CB*:O.H,' "CN*:(I:\" for ©>0
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and the compatibility condition becomes

aC4* aCs* aCy*
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where v,=v./y; and B=Cgp/ys Ca.

Thus, the new coordinate variables, o, and g, always have
the values between 0 and 1, even if they are functions of ¢. One
way to numerically solve Eq. (7) with Egs. (8) and (9) is to use
linear finite elements for the two regions of [ and IL

COMPUTATIONAL METHOD

The transformed governing equations will be numerically sol-
ved using the usual Galerkin formula, which is easy and economic
to apply on a regular grid such as @, and wy, over a fixed number
of linear finite elements for the two regions in the drop.

For a fixed time, i+ 1, ¢ is assumed and then, Eq. (7) is devel-
oped into finite element equations, using the Galerkin's formula
over the dimensionless distance grid and the lumped formulation
followed by the backward difference method over dimensionless
time grid. In order to solve the developed finite element equa-
tions, a delicate part of computer code is required to update the
nodal values of the previous time step, i, because the reaction
front moves with time. The element equations are then combined
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with the other element equations and summed over all the ele-
ments using the Direct Stiffness Method [14]. The Gaussian elim-
ination procedure is then used to solve the resulting set of
equations. After solving equations for all components, the compat-
ibility should be checked. If it is not satisfied, the Newton-Raph-
son method is used for another guess of ¢ and the process is
repeated until the matching is satisfactory.

The cumulative mass flux, Q;, and the enhancement factor, E,
of i can be obtained by integrating the produced concentration
profiles with various parametric values as follows [15]:

=[ (2%
Q'—J’o ( opP )p:l.dlan de a0
E*:—G_E—Qi— 1)
1-— I —e ™
M x=1 N

The number of elements and the grid size in the directions of
the dimensionless distance and time are chosen by trial and error
for efficient convergence.

RESULTS AND DISCUSSION

The developed mathematical models are simulated for the case
in which two gas components, A and B, are absorbed from the
surrounding continuous phase into the liquid drop and react in-
stantaneously with third reactant T, existing in the drop according
to the following equations:

A+Y,4T

products

B+vysT products 12)

The computational results, which were obtained by using of the
Galerkin's formula, are presented in terms of concentration pro-
files of all solutes in the drop, the reaction front position, the
cumulative mass flux, and the enhancement factor of A. The dis-
cussion on the calculated quantities of B is omitted because their
trend might be similar to those of A, although they must have
different numerical values. The maximum matching error for the
compatibility condition is below 0.1%.

The parametric studies are performed to evaluate the effects
of the initial concentration ratio of T to A (B) and the diffusivity
ratio of B and T to A (Dg. and Dr,, respectively). The ratio of
stoichiometric coefficients of the two reactions is taken as unity
for the simplicity of the calculation.

Figs. 1 and 2 show the concentration profiles of solutes in the
drop with different values of Dg4 and a, the interfacial concentra-
tion ratio of B to A, and constant D74 as a function of time and
radius. In Fig. 1, we can see that when the diffusivities of all
reactants are the same, T reacts with A and B simultaneously,
regardless of the interfatial concentrations of A and B. However,
Fig. 2 shows that when B diffuse slower than A, the reaction
takes place mainly between A and T as the reaction proceeds,
althoughthe same amount of A and B exists in the interface. Figs.
3 and 4 show the progress of the reaction front with time at
constant a. As can be seen in Fig. 3, larger B with smaller Dz,
at constant diffusivity ratio, Dr,, has a positive effect on the retar-
dation of the reaction front, resulting in a sharper slope in a large
time.

In Fig. 4, we can also see that as T diffuses faster and B slower
at constant B, the reaction front initially moves slower and finally
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Fig. 1. Variation of concentration profiles (I).
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Fig. 2. Variation of concentration profiles (II).

faster. This confirms that if the diffusivity of T is very high, most
amount of T must react with A and B, and consequently disappear
at early stage, resulting in no more reaction at later time. For
slower diffusing B, the disappearance rate of T will be lower be-
cause less amount of B diffuses and reacts with T. Therefore,
the movement of the reaction front becomes slower for the entire
reaction time.

The cumulative amount of A absorbed through unit surface
area of the drop, which is obtained by integral of the concentration
profile of A, is shown in Figs. 5 and 6. Fig. 5 shows that as B
with smaller values of Dp4 increases at constant Dz, the more
amount of A is absorbed. For constant § (Fig. 6), the faster diffus-
ing T and the slower diffusing B cause the larger amount of A
absorbed at a short time. However, the cumulative mass flux cur-
ves with constant B and Dgs tend toward the final limiting value
no matter how fast T diffuses compared to A, and obviously the
final limiting value increases as B moves slowly.

Fig. 7 shows the enhancement factor of A, which is obtained
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Fig. 7. Variation of enhancement factor of A (I).

by Eq. (11), with dimensionless time at constant a and Dry. As
expected, the larger B is and the slower B diffuses, the larger
is the enhancement factor of A, if A and T move at the same
diffusion rate. The effect of the slower moving B on the enhance-
ment factor of A becomes obvious for larger time and B. All curves
appear to reach their own asymptotic values as time proceeds.

The effect of the diffusivity ratio, D74, on the enhancement
factor of A at constant B is shown in Fig. 8. The faster diffusing
T compared to A results in the bigger enhancement factor of
A at early stage. However, it becomes smaller after it reaches
the maximum and approaches the final limiting value at final
stage. This trend can be understood based on general considera-
tions; A diffuses so fast at early stage due to the instantaneous
reaction with the fast moving T and consequently most of T dis-
appears during this period. Thereafter, there is only physical ab-
sorption because there is no more reaction in the drop. For slow
moving T (Dz4=0.1), the curve remains constant for a while at
early stage and gradually approaches the limiting value at final
stage. The effect of the slower diffusing B compared to A becomes
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obvious with larger value of Drs. As expected, the final limiting
value increases as B moves slow and is independent upon the
diffusivity ratio of T to A. The effect of a is not discussed because
it is likely to be replaced with the effect of Dg,, the diffusivity
ratio of B to A.

CONCLUSIONS

Dilute multicomponent mass transfer with instantaneous chem-
ical reactions in a small drop was modeled and simulated for
the case of absorption of two solutes and their reactions with
one component existing in the drop. After an appropriate coordi-
nate transformation in order to fix the moving reaction front, the
model was solved using the Galerkin's linear finite element meth-
od. The calculated results were presented in terms of the concen-
tration profiles, the progress of the reaction front, the cumulative
mass flux, and the enhancement factor with different system pa-
rameters. Parametric sensitivity studies showed the influences
of the diffusivity ratios, the relative amount of the reactant in
the drop, and the interfacial concentration of the diffusing solutes.
The effects of those system parameters are in agreement with
the general physical considerations; (1) the larger amount of the
reactant in the drop causes the larger amount of solutes absorbed,
and (2) the faster reactant in the drop moves, the faster solutes
are absorbed from the surrounding fluid-approaching the final
asymptotic value which is independent on the diffusion rates of
solutes and the reactant.

NOMENCLATURE

A, B, T : solutes and reactant

January, 1995

: concentration of i

: dimensionless concentration of i

: transformed concentrations of i

: concentration of j at drop surface

: initial concentration of T in a drop
: diffusivity ratio, D;/D;

: enhancement factor of i

: cumulative mass flux of i

Greek Letters

Q
B

10.
11.
12.

13.
14.

15.

. Cji/ Cai

: CTo/YTA Ca

:ratio of stoichiometric coefficients of T to i
:ratio of stoichiometric coefficients, yrn/yr;

: dimensionless radial position, r/R

: dimensionless time, tD4/R?

: dimensionless position of reaction front, x/R

, @y : transformed coordinate variables.
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