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Abstract— This paper is concerned with the small-amplitude oscillations of a bubble composed of an ideal gas
in response to an abrupt change in the ambient pressure field. Specifically, we consider the bubble response to a
pressure pulse and a pressure step in an otherwise quiescent fluid. The method of analysis employed in the present
study is a standard two-timing expansion to eliminate a secular behavior encountered in the asymptotic expansion.
In the impulse response the secularity is self-induced due solely to the nonlinearity of the problem whereas the
secularity in the step response arises from the change in the equilibrium bubble volume caused by the ambient
pressure change. The two-timing solution for each response shows that the secularity modifies the natural frequency
of the radial oscillation. Further, the critical intensity of either the pressure pulse or the pressure step for existence
of the steady-state bubble radius is determined from the frequency modulated solution and the stability of the bubble
response is also discussed in terms of the bubble compressibility and heat transfer across the interface.
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INTRODUCTION

In this paper, we consider the nonlinear dynamics of bubble
oscillations in response to abrupt changes in the ambient pressure
in a fluid at rest at infinity. The bubble dynamics problems have
attracted much attention for several reasons. First, the bubble
motion coupled with the pressure variation in the surrounding
is highly nonlinear, and second, this is responsible for many im-
portant effects, ranging from emulsifications to acoustic cavitation
noise. The cavitation noise associated with the bubble oscillation
is relevant particularly in the field of hydromachinery or to some
aspects of the propulsion systems of submarines and other under-
water vehicles. A time-dependent change of the bubble volume
causes a periodic compression and expansion of the surrounding
fluid, and thus produces sound wave. The energy exhausted by
these waves is supplied from the kinetic energy of the bubble
[1]. One of the most interesting subjects in cavitation noise is
the modifications of frequency and amplitude by the shape and
volume oscillations of the cavity. An important objective of the
present analysis is to predict the amplitude and frequercy modifi-
cations arising from the nonlinear effects on the bubble oscillation
of the radial ‘breathing’ mode which is the most significant sou-
rce of cavitation noise.

Since Rayleigh had first considered the problem of cavitation,
the dynamics of a bubble under time-dependent pressure field
has been extensively investigated and earlier studies of bubble
dynamics and cavitation were well reviewed by Plesset and Pros-
peretti [2]. For the volume oscillation of a spherical bubble gen-
erated by the ambient pressure field, Rayleigh-Plesset equation
is the most important governing equation. This equation describes
the so called radial ‘breathing” mode of bubble oscillations in an
infinite viscous liquid, i.e., change in the bubble radius in response
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to perturbations in the ambient pressure. However, the Rayleigh-
Plesset equation has some limitations for practical applications.
For example, it does not include the effect of thermal damping.
Moreover, when the gas contained in bubble is polytropic, the
equation becomes highly nonlinear and exact solution is impossi-
ble for arbitrary amplitude of oscillations. In this case, analytic
solution is possible only for small-amplitude motion in which the
equation can be linearized [3]. In spite of these restrictions, the
Rayleigh-Plesset equation is very useful in understanding the phy-
sics of bubble oscillations including the chaotic variation of the
bubble radius and the resonance effects due to the self-induced
secularity [4, 5]. Recently, studies about bubble have been extend-
ed to bubble oscillations either in the presence of external mean
flow or in the electric field (6, 7]. Further, the nonlinear oscilla-
tions of a constant-volume bubble have also analyzed to examine
the mechanism for energy transfer between modes of the shape
oscillations [8].

When a bubble oscillates in response to perturbations of the
ambient pressure, it executes the sustained growth and collapse
in its volume. Further, when the bubble is immersed in an exter-
nal mean flow or an electric field, the resulting nonuniform pres-
sure on the bubble surface generates shape oscillations around
an equilibrium shape. In the absence of the external field, the
volume oscillation associated with the radial mode yields a mono-
pole emission of sound which corresponds to a pressure distur-
bance decaying as 1/r with the distance r from the bubble. Accord-
ing to Minnaert [9], the frequency of the sound is close to that
of the radial mode oscillations of a spherical bubble containing
air. However, in the study of resonant interaction between shape
and volume oscillations, Longuet-Higgins [10] showed that shape
oscillations can also produce the monopole sound in a quiescent
fluid when the frequency of radial mode is twice that of shape
oscillations. Recently, Yang et al. {11] examined the resonant in-
teraction for a bubble oscillating around a nonspherical equilib-



Nonlinear Response of an Ideal Gas Bubble to Ambient Pressure Change in a Quiescent Fluid 67

rium shape in the presence of an external field. In this case,
the resonance occurs when the frequency of radial mode is either
equal to or twice that of the shape oscillations.

In the present work, we are concerned with the nonlinear ef-
fects on bubble oscillation in a quiescent fluid due to abrupt chang-
es in the ambient pressure. Since the fluid is at rest at infinity,
the equilibrium shape of the bubble is spherical. Our work utilizes
small-deformation, perturbation analysis carried to second and
higher order in the amplitude of deformation, &. Specifically, we
will discuss the bubble dynamics in response to a pressure pulse
at t=0 and a pressure step at t=0. We begin, at first, with formu-
lating the governing equation and boundary conditions. In this
part, we will perform dimensional analysis to determine the dimen-
sionless parameters inherent in this problem and linearize the
nonlinear problem by employing the domain perturbation techni-
que. The present analysis identifies two different mechanisms
for resonant interactions due to the secularities arising from non-
linearities of the original problem. The secularities will modify
the oscillation frequency, which is relevant to the stability of the
equilibrium bubble size.

FORMULATION OF THE PROBLEM

We begin by considering the governing equation and boundary
conditions for a small-amplitude oscillation of a spherical bubble
containing an ideal gas in response to an abrupt change in the
ambient pressure. The surrounding fluid is incompressible New-
tonian with viscosity u and density p and assumed to be motion-
less in the absence of the pressure fluctuation. Thus, the velocity
field is developed only by the disturbance due to the bubble oscil-
lation. We assumed the surface of bubble to be characterized com-
pletely by a constant surface tension ¢ and the radius of bubble
at the initial equilibrium state to be R,. In the subsequent analysis,
all the variables are nondimensionalized with the relevant charac-
teristic length (/), time (t) and pressure (P.) defined as

R3p 172 e} .
= =} - R ‘.:—v 1,
=Ry t=(=2]" P.=2 (
Then, at equilibrium the difference of the pressures inside and
outside of the bubble is balanced exactly by the surface tension,
ie.,

‘Fo - P()m - (2)

in which the tilde (~) symbolizes the pressure inside of the bub-
ble. In this paper the subscript ‘0’ denotes the equilibrium varia-
bles and the superscript ‘o’ the variables at large distances from
the bubble. Eq. (2) is simply the dimensionless form of Laplace-
Young equation.

We now define the oscillating surface of the bubble in response
to perturbation in the ambient pressure as

S:r—1-1(t)=0 3

where f(t) represents the time-variation of the bubble radius. For
the case in which the bubble contains only an insoluble gas and
mass flux across the surface due to vaporization and condensation
is small enough to be neglected, the radial component of velocity
u, can be related to the function f(t) by the kinematic boundary
condition on the bubble surface.

1+ df

AT db 4
ur,t) 2 dt 4)

The pressure field corresponding to the velocity field (4) is deter-
mined the Navier-Stokes equation as:

A+H*. QA+D ., A+
r f+2 r @ 2rt

P(H)=P=(t)+ (b (5)
in which f=df/dt and f=d/dt>. Since we are concerned with
the spherical bubble, the dynamic boundary condition on the bub-
ble surface r=1+f is simply given by

s b2
F(t)*PS(t)_E 1+  a+hH

(6)

where P(t) denotes the pressure inside of the bubble and Py(t)
the pressure on the surface outside of the bubble. The dimension-
less parameter Re is the Reynolds number for bubble oscillations
and defined as follows:

poRs
U

Re=

The pressure Ps(t) on the surface can be determined from (5)
in terms of the ambient pressure P<(t) and the shape function
f(t). Then, the dynamic condition (6) can be written as follows:

P e 2
(HD—EP'(t) P=(t)] i

T
a+nf+ 5(0 + Re )
The Reynolds number for a bubble executing shape oscillations
is very large and the contributions from viscous forces are usually
negligible. For example, when an air bubble of 100 ym in radius
oscillates in water at 20T, the Reynolds number is as large as
Re=85. Thus, in the analysis which follows we neglect the viscous
terms from the governing equations.

In addition to the governing equation and boundary conditions
for fluid motion, there exists a thermodynarnic constraint with
a pressure-volume relationship:

Poy=01+nH* P, 8)

Here, v is a polytropic exponent which depends on the thermody-
namic nature of the bubble oscillation. The exponent y ts bounded
by the two limiting values. The lower limit corresponds to the
slow oscillation case in which the rate of heat transfer is sufficient-
ly fast that the temperature is uniform throughout the fluid includ-
ing inside of the bubble. In this case, the oscillation is an isother-
mal process and the exponent y is unity. The upper limit is for
the fast oscillation in which the gas contained in the bubble is
practically thermally insulated from the surrounding. In this case,
y is given by the ratio of the specific heats and has a value 14
for an ideal diatomic gas. For many situations of interest, the
bubble behaves neither isothermally nor adiabatically, but some-
where in between two limits [12].

The problem defined above is a nonlinear free-boundary prob-
lem and analytic exact solution is not attainable for oscillations
with an arbitrary amplitude. In this study, we consider small am-
plitude oscillations of a spherical gas bubble in response to ‘ab-
rupt’ changes in the ambient pressure P=(t), ie.,

P*(t)=Py" +€A(t) 9)

where eA(t) is the pressure perturbation from the equilibrium
state and ¢ denotes the order of magnitude. The source of the
oscillations in bubble volume is an abrupt change in the pressure
at the bubble surface €A(t). This type of surface pressure can
be produced experimentally via modulated ultrasonic acoustic
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wave fields [ 13]. Since we are interested in small amplitude oscil-
lations for which analytic solution is possible, the magnitude of
pressure perturbation is expected to be small, ie., e<1. In this
case, the magnitude of amplitude function f(t) is also O(e). Under
these conditions, we can expand the thermodynamic relationship
(8) as a Taylor series about =0,

% =~ 3+ g yBr+ DE- Y1430+ 3NF+0E)  (10)
[}

Then, plugging (9) and (10) into (7) and carrying out the Taylor
series expansion, we get

(1+D'f+%(’f>2+s-A(t)

= —?D[3yf— gy(sﬁ e+ %y(l + 32+ 3p)F]
+2f— 22+ 28+ O(f*) 1y

In obtaining the above equation, we utilized the equilibrium con-
dition:

f():O
?{)“in:

Thus, if the amplitude function f(t) for bubble radius is deter-
mined from (11), the velocity and pressure fields generated by
the bubble oscillation can be obtained easily from (4) and (5),
respectively. Since we consider the small amplitude oscillations,
it is convenient to expand the amplitude function for the bubble
radius in the asymptotic limit e<1.

ft)y= X e, (12)
n=1

P)=P()~Py" —e-A()= Z &P, (13)
n=1

In (13), P.(t) is the disturbance pressure due to the bubble oscilla-
tion. As noted earlier, the monopole sound which is the most
significant source of cavitation noise is related to the pressure
fluctuation with decay like r™'. Thus, we present here first term
of the monopole pressure disturbance in terms of the amplitude
function:

P ()= %f'|+0(52) (14)

Now, the amplitude function can be determined by substituting
the asymptotic form (12) into (11). In the following sections, we
evaluate the monopole pressure disturbance due to the bubble
oscillation which is caused by the pressure impulse and the pres-
sure step both applied at t=0 and we begin with the pressure
impulse.

IMPULSE RESPONSE IN A QUIESCENT FLUID

We consider the radial mode oscillation of a bubble generated
by an impulsive change in the ambient pressure. In this case,
the perturbation £+ A(t) of the ambient pressure from the equilib-
rium state can be expressed in terms of Dirac delta function &(t),
ie.,

A(t)=Ad(t) (15)

Then, the solution for f,(tn=1, 2,-++) can be obtained straightfor-
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Fig. 1. Natural frequency w/2n of the linear oscillation of radial mode
as a function of the equilibrium radius R,.

wardly from (11) and (15): The leading order problem is sim-
ply

fi+ @fi= — AS(t) (16)

in which the natural radian frequency ® of the radial oscillation
with no contribution from the nonlinearity is defined as

0*=3Pyy—2 a7

In Fig. 1, the dimensional natural frequency in Hz is plotted as
a function of the equilibrium bubble radius for the polytropic con-
stant y=1 and 1.4. As anticipated, the natural frequency is increas-
ed as the bubble size becomes smaller. This clearly indicates that
the smaller bubble is more stable than the larger bubble, which
we shall see shortly. The leading order solution is given by

f,= —Aosin ot (18)
®

Similarly, the second order solution can be calculated by utilizing
the leading order solution (18):

f,=C, coswt+ Cssinwt — 11;1;4 (3@ + y)w?+2(3y — 1)]cos2et
AOZ
+ m [3yn®+2(3y—1)] 19)

where the unknown integral constants C; and C, must be deter-
mined from the initial conditions for O(e?) problem. It is clear
from (19) that there is no secular behavior in the O(¢?) solution.
In order to examine the existence of secularity, we seek the third
order solution. The corresponding differential equation for fi(t)
is given by:

fy+ w’fa= — (Bf + fifo + 3EE) + (@21 + 3y)+ 23y — DI,
+o- g 2@+ DB+ 2 @0)
Then, substituting f; and f, into (20), we encounter the self-induced

secular terms violating the validity of regular perturbation method
for a bounded solution as below:
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f+m2f3——2(A“)[ 67— 3y—2)+ — By — 1

122

+ %(77*2)(3*{* 1)]coswt+ns_t's @2n

in which n.s.t’s denotes the nonsecular terms. Since we expect
a bounded solution for a small perturbation in the ambient pres-
sure, we should eliminate the self-induced secularities. The meth-
od of analysis for eliminating the secular behaviors is a typical
multiple scale expansion. Details on the multiple-scale technique
can be found in Bender and Orszag [14]. To do this, we introduce
a new, slow time scale t which is related to the fast time scale
t by

T=gl (22)

In the two-timing procedure, the O(g) solution is expressed in
terms of two independent time scales, t and v, that is,

filt, = %[a(t)exp(iu)t)] +c.c. (23)
with
a®="2 (24)
®

in which a(t) is the slowly varying amplitude function on the
time scale t and c.c. denotes the complex conjugate of the prece-
dent terms. With this expression, we can solve the O(g?) problem
for f,. The result is

folt, = — =132+ 1)0*+ 2@y~ D]a® exp(i2wt)

12°

+ Q [3yw?+ 23y — 1) Jaa*+ %B(r)exp(imt) +cc (25

where B is a slowly varying complex function of T and can be
determined in such a way to remove the secularity occurred in
the higher order problem. In (25), a* denotes the complex conju-
gate of a.

After substituting (23) and (25) into (20) and collecting secular
terms, we obtain a differential equation for a, which can eliminate
the secular terms:

do

1 V4
prm @y—1)

— | @

= [16(67 3y 2)+12 -
L ovav— 1 laza*

+ (7y—2)3y 1)]0. ) (26)

The solution for a satisfying the initial condition (24) is given
by

a(t):i(%)exp{~i(%->z[l%(ﬁy ~3r-2+ 55 2 @y—1y
e - 23 Dt} @n

Finally, the asymptotic solution for the amplitude function can
be expressed in terms of the fast time scale t.

f,(t):—(%j)sin[[ (F‘A“’) {(6 23y —2)

-y -2+ 2 (28)
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Fig. 2. Modified frequencies (2 as a function of the intensities of the
pressure impulse and step for w=10.

It is simple matter to evaluate the monopole pressure associated
with the bubble oscillation from (28). The result is given as:

PA(t)= -—(ﬁ%)sin[[m (eAy) {(GW 3y—2)
+—E~;(3y— 1)(7y—2)+g%1—)2}]t] 29)

Hence, the monopole pressure is in phase with the radial oscilla-
tion.

It can be easily seen from comparing (28) with (18) that the
frequency is modified due to the nonlinear effects. In Fig. 2, the
modified frequency is plotted as a function of the intensity of
the pressure pulse. Also included for comparison is the modified
frequency versus the intensity of the pressure step which we
will discuss shortly in the next section. It can be easily seen from
the figure that the frequency is decreased monotonically as the
intensity of the pressure pulse becomes large, which is independ-
ent of y and ®. Further, the rate of decrease is larger in the
adiabatic oscillation than in the isothermal case. The fact that
the frequency of oscillation decreases has an important physical
significance, because at a critical intensity of the pressure pulse,
the square of the true frequency of oscillation becomes zero and
eigenvalues for the amplitude function change from pure imagi-
nary to real. This critical intensity (As). will corresponds exactly
to a limit point for existence of the steady state value for the
bubble radius in the pressure pulse. The critical intensity can
be determined readily from the present asymptotic solution. The
result is

240°
30'(6y° — 3y — 2)+ 60X 3y — Ty —2)+ 203y — 1¥*

(eAn),*= (30)
In Fig. 3, the critical intensity is illustrated as a function of the
polytropic constant y for various values of the natural frequency
. It can be easily seen that the bubble executing the isothermal
oscillation is more stable than it would execute the adiabatic oscil-
lation for the impulsive change in the ambient pressure. Thus,
heat transfer across the interface enhances the stability. Further,
as the radian natural frequency increases, the bubble becomes
more stable. As noted earlier, the natural frequency is a decreas-
ing function of the bubble radius and the larger bubble becomes
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Fig. 3. Critical impulse intensity as a function of the polytropic expo-
nent.

less stable.
STEP RESPONSE IN A QUIESCENT FLUID

In the preceding section, we have discussed the response of
a bubble to an impulsive change in the ambient pressure. In this
section, we consider the bubble response to a step change in
the ambient pressure.

At)=AH(t) 31)

where €A, is the intensity of the pressure step. In the step re-
sponse, the leading order solution without taking into account
the nonlinear effect is simply given by

fi=~ -2 (1 - cosot) 32)
@

Thus, the bubble radius oscillates around a new steady-state value
R=1—¢Ay/®® in response to the pressure step. It can be noted
that as the natural frequency is increased, the compressibility
of the bubble is reduced.

Following the preceding analysis, we can easily show that the
regular perturbation breaks down at O{g?) at which a secularity
appears. Thus, expecting a bounded solution of the bubble oscilla-
tion for a small perturbation in the ambient pressure, we define
a new, slow time scale as:

T=gt 33

Then, the leading order solution can be expressed in terms of
the two time scales

filt, ©= —;—[u(t)exp(imt) - %] +c.c. 34)
with
a(0)= Ag— 35
6}

where, a(t) is a complex amplitude function and c.c. denotes the
complex conjugate. The slowly varying function a(t) is determined
in such a way that the secular terms at O(e?) is eliminated so
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Fig. 4. Critical step intensity as a function of the polytropic exponent.

that the solution of O(e?) problem remains bounded. The differen-
tial equation for O(e?) problem can be obtained by utilizing the
solution form (34) and given as:

b+ 0= — inalte — A(,(ﬂ;—2

+cc.+nst’s (36)

“+ .3Y,_—2_1~> u(t)em!
[O)

The secularity at O(e?) in this case is not self-induced but arises
from the change in the steady-state bubble volume from the initial
equilibrium state, which is caused by the ambient pressure
change. As in the previous case, the condition for the absence
of the secular behavior determines the slowly varying amplitude
function which provides the solution for the bubble oscillation.
The result can be expressed as follows:

_ A BAo(3y+2 1.
fil)= o [oos[ﬁrl— o { 2 +;2(37 lA)}]t 1] 37
Then, the monopole pressure associated with the bubble oscilla-
tion can be readily determined from (14) and (37):

3y+2

Pi)=—- %[cos[aﬂr %L{ 5

+SG-njf-1] 69

When A,>0, the bubble volume decreases from the initial equi-
librium state to a new steady-state value in the increased ambient
pressure and the oscillation frequency increases. Consequently,
the bubble is stabilized by the positive pressure step. When A,<0,
however, the response of the bubble is guite different from the
response to the positive pressure step. For the negative pressure
step, the new steady-state bubble volume in the reduced ambient
pressure increases from the initial equilibrium value, which re-
sults in decrease in the oscillation frequency, which is depicted
in Fig. 2. In fact, there is a critical intensity of the pressure step,
(—€Ay). at which the square of the frequency is zero. As mention-
ed earlier, the critical intensity of the pressure step corresponds
to the limit point for existence of the steady-state bubble volume
in the reduced ambient pressure. The critical intensity can be
determined readily from the present asymptotic solution (37) and
given by

(l)‘

(—eho= 23y — 1)+ 0?2+ 3y)

39
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Fig. 4 signifies the effects of the polytropic exponent y and the
natural frequency (or the compressibility) of the bubble on the
critical intensity of the pressure step which leads to bubble break-
up. It can be easily seen from the figure that the bubble executing
the adiabatic oscillation is less stable than it would oscillates iso-
thermally. Further, as the natural frequency increases, the bub-
ble becomes more stable.

Finally, we consider the difference between the bubble respons-
es to the abrupt changes and response to the oscillatory change
in the ambient pressure, which has been considered by Leal [3].
In the oscillatory response, the ambient pressure is given by

A(t)=A, sin wyt 40)

where the forcing frequency wy is arbitrary. In this case, provided
only that w, is not equal to ®, the asymptotic solutions obtained
via a standard regular perturbation method are valid, i.e., the bub-
ble radius oscillates periodically with an amplitude of O(g). When
®=wy, however, the secularity appears at O(¢) due to the reso-
nance with the oscillating pressure field. It means that, if a bound-
ed solution is to exist, the O(¢) pressure variation must be bal-
anced by one or more of the nonlinear terms. This is quite different
from the cases of the pressure pulse and pressure step in which
the resonances occur at O(e®) and O(e?), respectively, due to either
the self-induced secularity or the secularity arising from the equi-
librium volume change. Leal considered the resonant interaction
between the bubble and the ambient pressure and obtained a
bounded solution by utilizing the two-timing expansion defined
as:

f(t, T)=¢e"A(t)sin{wt — ¢(r)} (41
with
=gt 42)

The response of a bubble to a periodic pressure field, in fact,
differs from the results for the pressure pulse and the pressure
step in several aspects. First, when the bubble oscillates in the
oscillatory pressure field, the resonant interaction modifies not
only the frequency but the amplitude of the radial oscillation.
Second, the resonant interaction with the small amplitude pres-
sure oscillation induces the bubble oscillation with an amplitude
of O(e'®) which is still asymptotically small but much larger than
the O(e) amplitude of the pressure forcing. Furthermore, the dis-
turbance pressure associated with the bubble oscillation is also
O('®) which is asymptotically very large compared tc the pres-
sure forcing. In the step or impulse response, the amplitudes
of the bubble and disturbed pressure oscillations are the same
order as the intensity of the pressure impulse or step. This is
a consequence of the difference in the pressure forcings. In the
pressure impulse or step, the pressure changes abruptly at t=0
and after then it remains constant without forcing any longer.
In the oscillatory response, however, the pressure forcing is contin-

uously sustained for t>0.
CONCLUSION

The small-amplitude oscillations of a compressible bubble in-
duced by a pressure pulse and pressure step in a quiescent fluid
have been analyzed discussed using a standard method of multi-
ple-scale analysis. From this analysis we have the following con-
clusions.

1. For an impulsive change in the ambient pressure, the regular
perturbation gives the self-induced secular terms at O(e*), which
can be removed by the multiple-scale analysis. From the frequen-
cy-modulated solution at O(g), the critical intensity of the pressure
impulse for existence of the steady-state bubble volume can be
evaluated. The critical intensity is independent of the sign of the
pressure impulse.

2. The bubble response to the step change in the ambient pres-
sure contains the secularity at O(e?) which modifies the oscillation
frequency at O(e). For a positive pressure step, the bubble is
always stable. However, for a negative pressure step in which
the bubble oscillates in the reduced pressure, there exists a criti-
cal intensity of the step.

3. As the bubble compressibility increases or equivalently the
natural frequency decreases, the bubble becomes less stable. Fur-
ther, heat transfer across the interface enhances the stability in
both the cases.
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