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Abstract—The motion of a Brownian particle in the presence of a deformable interface is studied by considering
the random distortions of interface shape due to spontaneous thermal impulses from the surrounding fluid. The
fluctuation-dissipation theorem is derived for the spontaneous fluctuations of interface shape using the method of
normal modes in conjunction with a Langevin type equation of motion for a Brownian particle, in which the fluctuating
force arises from the continuum motions induced near the particle by the fluctuation of interface shape. The analysis
results in the prediction of autocorrelation functions for the location of the dividing surface, for the random force
acting on the particle, and for the particle velocity. The particle velocity correlation, in turn, yields the effective diffusion

coefficient due to random fluctuations of the interface shape.

Key words: Brownian Particle and Diffusion, Interface Fluctuations, Capillary Wave, Velocity Autocorrelation,
Langevin Equation, Normal Mode Decomposition

INTRODUCTION

We consider in this paper motions of Brownian particles near
a fluctuating interface due to the thermal agitations cf the nearby
fluids. Interest in this problem stems from its relevance to Brow-
nian motion or diffusion near a fluid-fluid interface. The difficul-
ties experienced in trying to model the motions of Brownian par-
ticles near an interface are many and mainly attributable to the
deformation of the interface. Most of preceding investigations so
far pertain to the case in which the interface remains precisely
flat, in spite of the random motions induced in the two contiguous
fluids by the thermal agitations [ cf. Brenner and Leal, 1977, 1982;
Gotoh and Kaneda, 1982; Lee et al, 1979; Lee anc. Leal, 1980;
Yang and Leal, 1983, 1984; and Yang and Hong, 1987]. It is, of
course, that a real interface cannot remain precisely flat except
for the limiting case of a rigid wall. As a matter of fact, the inter-
face will fluctuate around the equilibrium flat configuration due
to the thermal agitation of the surrounding fluids, even in the
absence of Brownian particles, and these random changes in the
interface shape will produce fluctuating velocity fields and so in-
duce random motions of Brownian particles in the vicinity of the
interface. These random motions are in addition to the random
motions caused by direct interactions between the Brownian par-
ticles and the molecules of the surrounding fluid. Thus, the inter-
face effects on the motion of Brownian particles arz due to the
fluctuating velocity fields caused by the random changes in the
interface shape.

Whilst considerable progress has been made over the last de-
cade in understanding the equilibrium properties of the liquid-
vapor interface [cf. Buff et al, 1965; Evans, 1981], the macrosco-
pic structure and thermodynamical properties of an interface bet-
ween two immiscible fluids are relatively less well understood.
One approach, in principle, to understanding the structure of the
fluid-fluid interface would be to use the same type of detailed
microscopic molecular theory that has been used widely in the
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study of liquid-vapor interface [cf. Teletzke et al, 1982]. In the
present study, however, we approach the problem from a macro-
scopic statistical framework in order to develop physically appealing
and mathematically tractable theory for systems of this type. Phi-
losophically similar macroscopic statistical methods have been
very successful in determining macroscopic properties of gases
(e.g., the relationship between pressure and temperature in the
system) that are identical to the results from the molecular kinetic
theory. Further, essentially the same macroscopic method that
we describe here has been the cornerstone of theoretical descrip-
tions of the relevant dynamics of Brownian motion. In particular,
we adopt the conceptual idea of separating the phenomenon into
two parts: one associated with rapid fluctuations with time scales
characteristic of molecular motion, and the other associated with
a much slower response time characteristic of viscous relaxation
of the system.

In the present work, we examine the interface fluctuations due
to random thermal impulses, and evaluate the corresponding ve-
locity fields in order to determine the induced particle motions.
This is done by employing nonequilibrium thermodynamics in
conjunction with a capillary-wave model to describe the interface
dynamics. The objective of our study is to determine the statistical
properties of near equilibrium fluctuations of an interface between
two immiscible fluids based on macroscopic statistical mechanics
coupled with the concept of a fluctuation-dissipation principle as
developed by Landau and Lifshitz [1959]. According to the fluctua-
tion-dissipation principle, the statistical properties of nonequilib-
rium fluctuations, linear in the external forces from a macroscopic
point of view, can be related to equilibrium self-correlations. We
thus begin our analysis by determining the equilibrium self-corre-
lations of interface fluctuations.

EQUILIBRIUM FLUCTUATIONS

We begin by considering a system which consists of two immis-
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Fig. 1. Schematic sketch of the fluctuating interface and a Brownian
sphere. In the absence of the fluctuations, the interface is des-
ignated by the plane x;=0.

cible Newtonian fluids 1 and 2 that are separated by an interface,
as depicted in Fig. 1. We assume that the interface can be desig-
nated by the plane x;3=0 in the absence of the fluctuations. The
surface of the interface is denoted as Ils defined by

Is=x3—n(x, t)=0 @

where x; is a position vector representing points lying in a plane
paralle]l to the undeformed, flat interface. In our model system,
the interface shape function n(x,, t) is envisioned as fluctuating
around equilibrium, ie., n(x,, t)=0, due to the spontaneous ran-
dom impulses from the surrounding fluids. Indeed, our objective
in this section is to evaluate the autocorrelation function {n*(x.,
t)> of the interface fluctuation by determining the probability dis-
tribution of interface distortion, n(x,, t), and utilizing the general
theory of statistical physics. The autocorrelation function {n%(x,
t)> will in turn provide the statistical properties of the system
at equlibrium necessary to calculate the random velocity field
induced by the spontaneous fluctuations in interface shape. In
order to determine the probability distribution of n(x,, t), we thus
need to be able to evaluate the entropy change due to the inter-
face fluctuations.

The entropy change AS{n(x,, t)} associated with the interface
distortion can be related to the free energy functional A{n(x,
t)} corresponding to the distortion n(x,, t) as

Aln(x, B}

ASin(x, D}=— T

)
and thus the derivative of the entropy change with respect to
the free energy is just —1/T, where T is the temperature of
the system; the temperatures of fluids 1 and 2 are the same,
since the system is assumed to be in equilibrium. The free energy
functional A{n(x, t)} associated with the distortion nix,, t) is de-
fined to be the isothermal reversible work necessary at equilib-
rium to impose the disturbance, ie.,

Atntx, 01 =7 [ (Ao, 0+ 7i%ace, 017 ox, ®

Here, Ap(=p,—py) is the density difference between fluids 1 and
2, V, denotes the two-dimensional gradient operator on the plane
defined by x, and y is the surface tension between the two fluids.
The first term in the integrand represents the free energy asso-
ciated with the external acceleration due to gravity g and the
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second is associated with an increase in surface area. The requir-
ed probability distribution for n(x, t) is thus

Winx, 01=0ex] — oz [ (Ao,

+yIVax, 012} dn] @

in which kg is the Boltzmann constant and  denotes the normali-
zation constant. The distribution (4) is a Gibbs (or canonical) dis-
tribution for the interface distortion [Buff et al., 1965; Landau
and Lifshitz, 1980]. We now determine the autocorrelation func-
tion {n*(x, t)> using the probability distribution (4). Since the
integrand of (4) contains |Vn(x, t)|°, however, it is convenient
to resolve the arbitrary fluctuation n(x,, t) into independent modes
of a two dimensional Fourier-transform

(X, t)Ifk nk, texp(ik-x,)dk 5)

in which k is the wave vector (i.e., the wave number k= |k|).
In this formulation, the disturbed surface is represented as a col-
lective coordinate of decoupled surface harmonic waves. Further,
the entropy change can also be expressed in terms of the Fourier-
tranform variables. It is now simple matter to evaluate the autocor-
relation of the fluctuations for two different wave vectors k and
k'. The result is given by

Mk, ORK, 1)) =@2m ke T[(Ap)g—vk-k'] 8k+K) 6

where 8(k+k') is the two-dimensional Dirac delta function. The
correlation function in terms of the position vector x; can then
be evaluate by Fourier transformation of (6). The result is

(o Ok, Oy =kT [ Kok

kmin  (Ap)g+yk® dk M

in which r=|x,—x/'| and ], is the Bessel function of the first
kind of order 0. The lower limit, ks, of possible wave numbers
is inversely proportional to the largest length scale of the system
and thus kn.»—0 if the interface is unbounded. The choice for
an upper cutoff on wave number, Km., is somewhat arbitrary, and
the present continuum treatment cannot make a rigorous identifi-
cation of this quantity. However, in a theoretical treatment of
a liquid-vapor interface, Buff et al. [1965] selected k.. as being
inversely proportional to the interface width, L, across which
a sharp discontinuity in density may occur. In addition, thermody-
namic perturbation theories have been developed by Evans
[1981] for the study of a planar interface, which show that the
order of magnitude of L, is approximately the same as the inter-
molecular length scale o of surrounding molecules, and in fact
L,~1.50-3.0c.

The mean-square fluctuation, which provides a measure of the
magnitude of interface distortion via spontaneous fluctuations, can
be obtained readily from (7) with r=0 and k..»=0:

ksT
4my

ik, D)= ln[1+—Lkm2] ®

(Ap)g

It can be noted from (8) that the mean-square fluctuation {n*(x,,
t)> becomes magnified as either the density difference or the sur-
face tension between the two fluids becomes smaller. In fact, in
the limit Ap—0, the autocorrelation function of n(x, t) diverges
logarithmically. This weak divergence is related to the fact that
n(x, t) characteristic of distortions of the interface is a symmetry
breaking collective coordinate in terms of decoupled harmonic
surface waves (i.e., the Fourier decomposition, (5), breaks down



Particle Motion by Interface Fluctuations 333

in this particular case of Ap=0), which was also noted by Jhon
et al. [1978]. They have developed the so-called memory function
approach for interface dynamics and found that, associated with
the symmetry breaking variable, n(x. t) is a propagating mode
whose long-wave length dispersion relation is identical to the fa-
mous result for capillary waves, ie., o®k)={yk*/(Ap}}'? in which
o is the frequency of capillary waves. It then follows that capillary
waves must always exist if a nonuniform density distribution ex-
ists (i.e., Ap#0), even if y=0. It is noteworthy, in this context,
that the mean square fluctuation {n*(x, t)> approaches a finite
limiting value, ksTk,...2/4n(Ap)g, as the surface tension between
the two fluids vanishes (i.e., y—>0).

So far we have dealt only with fluctuations around the equlib-
rium state of the system using Gibbs ensembles, i.e., we have de-
rived the equilibrium correlation functions for the interface dis-
tortion in terms of ensemble averages. According to the ergodic
hypothesis by Landau and Lifshitz [1980], however, ensemble
averages yield the same results as long-time averages over the
history of a single system providing the system is statistically
stationary. Thus, we can regard the correlation functions in (6)-
(8) as limiting time-average values with t—o0. In the next section,
the time-dependent interface fluctuations and the corresponding
velocity fields will be considered explicitly. The tirne-averages
from these detailed time-dependent fluctuating fields must have
the same long-time values (or forms) as calculated in the present
section using the concept of an ensemble of near-equilibrium fluc-
tuations [Landau and Lifshitz, 1980; Kreuzer, 1984 .

TIME CORRELATIONS AND THE VELOCITY FIELD
INDUCED BY INTERFACE FLUCTUATIONS

The impulsive motion of a body surrounded by a “viscous”
fluid is accompanied by frictional processes, which ultimately
bring the motion to a stop. The kinetic energy of a Brownian
particle, contributed by thermal fluctuations of the surrounding
medium, is thereby converted into heat and is said to be dissipat-
ed. This is the basic concept of the fluctuation-dissipation theorem
developed by Landau and Lifshitz [1959]. A rigorous, purely me-
chanical treatment of such a motion is clearly impossible. Since
the energy of macroscopic motion is converted to thermal energy
of the molecules of the suspending fluid, such a treatment wouid
require a solution of the equations of motion for all of these mole-
cules. The problem of setting up an equivalent description, with
a macroscopic scale of resolution proportional to the Brownian
particle dimensions, is therefore a problem of statistical physics.

In the present system, it is the interface that fluctuates around
the equilibrium flat configuration, and thereby generates velocity
fields in fluids 1 and 2. In the presence of fluctuations, however,
there are also spontaneous local stresses in the bulk fluids 1 and
2, which are not related to the velocity gradient; Landau and
Lifshitz [1959] determined the statistical properties of these ran-
dom stresses, including formulae for the correlation between the
components of the stress tensor. Hauge and Martin-Lof [1973]
and Hinch [1975] showed that the macroscopic framework with
fluctuating stresses could provide a self-consistent theoretical de-
scription of Brownian motion. In their theories, the fluctuating
stress acts on the particle through its divergence, which drives
fluctuations in the bulk fluid and thence fluctuations in the viscous
stress on the particle and relates the white noise A(t) in the bulk
fluid to the fluctuating stress in the surrounding fluid. It is the
white noise contribution to the motion of Brownian particles, i.c.,

A(t), that will continue to be present even when the particle is
far removed from the interface. The random force contribution
on a Brownian particle due to interface fluctuations is in addition
to the white noise A(t) that derives from the fluctuating stresses
in the bulk fluids. In the present section, we thus determine the
statistical properties of the fluctuating velocity fields in fluids 1
and 2 caused solely by spontaneous random changes in the inter-
face shape. In our analysis, we introduce a fluctuating forcing
function y(x,, t) in the normal stress balance for the interface
as the “energy source” for interface shape fluctuations.

The energy of the interface imparted by thermal impulses de-
cays via viscous dissipation in the surrounding fluids, and this
process is governed by a fluctuation-dissipation theorem devel-
oped by Landau and Lifshitz [1959]. The construction of this
fluctuation-dissipation theorem begins from a purely macroscopic
description of the system, based upon the equations of motion
for the fluctuating quantities, e.g., the interface position n(x, t),
and the velocity and pressure fields (u?, p?) in fluids j(=1 and
2). The equations describing the fluid motions are simply the
Navier-Stokes equations with appropriate boundary conditions.
Provided the order of magnitude of the fluctuating velocity u?
is sufficiently small, as we shall assume here, we can neglect
the convective inertia terms in these equations, and we thus find
that the fluid motion is described by the unsteady Stokes’ equa-
tion plus the equation of continuity for each fluid j(=1 and 2)

0]
P a;t = —Vp?+ v )
Veu=0 (10)

Here, y; is the viscosity of fluid j. The boundary conditions to
be satisfied in dimensional form are the following:

u?—0 as x;—>t w (11a)

At the surface of the interface, defined by Ils=x;—n(x, t)=0

uP=y® (11b)
1 on
V= n-gd = L
n-u n-u VIL ot (11c)
[1tnT,11=0 (11d)
and
{Inn Tyl 1=v(V-n)+ (Ap)gn + y(x, t) (11e)

The parameters appearing in (11c)-(11e) are the unit outward point-
ing normal vector n from fluid 2 (i.e, n=VIIs/|VII}), the unit
tangential vector, t in the interface and a fluctuating forcing func-
tion y(x., t) which is introduced in this “macroscopic theory” as
the source of the interface fluctuations. The statistical properties
of this white notse function y(x;, t) will be discussed in detail short-
ly. Egs. (11b) and (11d) are the conditions of continuity of velocity
and tangential stress, respectively, while (11c) is the kinematic
condition which relates the rate of change of the random displace-
ment, 1(x;, t), to the normal velocities at the interface. The objec-
tive of the present analysis is to derive from Egs. (9)-(11e) a
Langevin-type stochastic equation for the unknown fluctuation
function n(x, t) which is driven by random forcing function y(x,
t). A correct formulation of the stochastic equations ultimately
requires that this forcing function (i.e., white noise) y(x, t) be
chosen so that the interface fluctuations exhibit the correct equi-
librium correlations (i.e., those from the equilibrium fluctuation
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theory of the preceding section) on taking the limit t—>c. The
procedure for determining y(x, t) is very similar to the method
used to specify the statistical properties of the white noise func-
tion A(t) in the Langevin equation from the assumption of equipar-
tition of energy at equilibrium [Batchelor, 1976].

The problem represented by (9)-(11e) is, of course, both time-
dependent and highly nonlinear due to the fact that n(x; t) is
unknown. As noted from (8), however, the magnitude of 1 is very
small and we can therefore linearize the terms in (11c) and (11e)
to proceed analytically. The most effective approach to solving
the resulting linearized problem is to apply the method of normal
modes, whereby the small fluctuations n(x, t) are resolved into
a complete set of normal modes. In particular, we resolve the
arbitrary fluctuation n(x, t) into independent modes of the form:

n(x, t)=J; J Nk, e s dkdw (12)
and it follows from this and Egs. (9)-(11e) that
@, pM)= f . f {09(xs; k, ), P(xs; k, o)le® = Odkde  (13)

In this formulation, the fluctuating variables n(x;, t) and (u®, p?)
in the problem are being expanded in terms of the same Fourier-
transform normal modes, f(k, w) and (@?, p®), that are usually
employed in theories of linear dispersive wave motior and hydro-
dynamic stability [Whitham, 1974]. It can be seen that the normal
mode, as usual, has an exponential dependence on time with a
complex exponent.

On substituting the expressions (12) and (13) into Egs. (9) and
(11) [i.e., applying the Fourier transform directly to Egs. (9) and
(11)], we obtain a system of ordinary differential equations for
@”, p?) and n(k, w). Then, the solution can be obtaired straight-
forwardly by utilizing the Squire transformation [Squire, 1933].
To determine the stochastic Langevin-type equation for n(k, @),
in terms of the random forcing function y(k, ), we therefore
substitute expressions for the stress components calculated from
@®, p) into (1le). The result is

[Afk, ©)] nk @)=yk o) (14)

If the function H{k, o) is specified, the response n(k, ) of the
interface to the random force y(k, ) is completely determined.
The functional quantity Hfk, ®), which is known as the gen-
eralized susceptibility (or system function), plays a fundamental part
in the theory described below and is given by

Ak, w)=% [pealk, o)+ piDy(k, W)}
— 20— ) kDalk, @)+ @ ¥alk, @} - {(Ap)g+yk?}

(15)
in which
iAWk + )+ vola,— K){2k3v;00— D(— 1Y + iwA? 7}
Dk ©)= ik — 1) +Avalk —ag)
(16a)
Yk, )= DO = 2vvk 0~ 1= 1Yy =) (165)

Ava(az — k) +wila,—k)

Here, A=w/ps, v;i=p/p;, 0;=K*—iw/v,)"* and the subscript q is
defined by q=j—(—1).

The statistical properties of the fluctuating forcing function y(k,
®) must now be specified so that the statistical properties of the
interface normal modes, N(k, ®), at equilibrium are the same as
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those derived in the preceding section via equilibrium fluctuation
theory, ie, Egs. (6)«(8). Thus, for the fluctuating random force
y(k, ), the following principal assumptions are made:

(i) y(k, ) is independent of f(k, ),

(i) y(k, w) varies extremely rapidly compared to the variations
of nk, ).

The second assumption implies that time intervals of duration
At; exist such that the expected variations in n(k, ) in period
At; are very small while the number of fluctuations in y(k, ®)
is still very large. Thus, the fluctuating force y(k, w) appears as
white noise (i.e., random and uncorrelated) on the time scale char-
acteristic of variations of fi(k, ®):

yk, @>=0 17

However, it is evident from (14) and (6) that the self-correlation
of y(k, w) cannot be zero but must take the general form:

yx, Oy(x', 1) =R(x, x') 8(t—t") (18a)
or
ik, ) K, @MW =R,k k) dw—o) (18b)

The unknown function R, (or R,), which specifies the intensity
of fluctuations in y(x, t) [or y(k, ®)], must be chosen so that
we obtain the correct equilibrium correlation results. The very
drastic nature of the ad hoc assumptions implicit in (17) and (18)
lies in the presumption that the forces that the surrounding fluid
molecules exert on the interface can be divided into two parts;
one associated with rapid fluctuations y(x,, t) with time scales
characteristic of molecular motion, and the other associated with
a much slower response time characteristic of viscous relaxation
of the system. They are, however, made with reliance on physical
intuition and an a posteriori justification based on the success of
the hypothesis, which will be shown shortly.

In order to determine the functions R, and R, by comparison
with the equilibrium correlation function, (6), from the preceding
section, we must solve (14) together with (15). Using white noise
y(k, w) with properties (17) and (18a, b) as input into (14), we
can evaluate the correlation function {n(k, ©) n(k’, ®)) in terms
of R,(k, k') and ALk, ). Then, from the Fourier inversion formula,
it follows that {n(k, t)in(k, t+t2) can be expressed in the form:

e““do

) Bk, —o)

Rk, DAK, t+0)) =R (K, k) f ‘fm ik 19)
It can be seen from (19) that the correlation function for n(k,
t) is independent of the present time t but depends only on the
time difference t°, and thus satisfies the invariance of the equilib-
rium state under a time translation t—>t’ which is expected as
a consequence of the hypothesis of microscopic reversibility in
statistical physics. The unknown function R.,(k, k') can now be
determined from (19) by setting t°=0 and comparing the resuit
with the equilibrium self-correlation function given by (6). From
this, we see

ksT{(Ap)g—vk-K'} "8k +K)
« do
(27’T)ZJ‘*co Hl(k, (.D) H[(k', _(1))

The central importance of the fluctuation-dissipation theorem can
now be grasped from Eq. (20). The left-hand side of (20) involves
a correlation function which is a measure of the magnitude of
spontaneous fluctuations about the equilibrium state, ie., of the
ever-present thermal noise y(x;, t). The response function on the

Rk, k)= (20)
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right-hand side incorporates the macroscopic mechanical (i.e., dy-
namical) response when the system has been removed from equi-
librium by the imposition of external forces or constraints. The
fluctuation-dissipation theorem then says that the time-correla-
tions of the nonequilibrium fluctuations, linear in the external
forces, are related to and can, indeed, be calculated from equilib-
rium self-correlations. Finally, with R, determined, we have all
the statistical properties that are necessary to specify the system
from a macroscopic point of view. In particular,

Rk k) dle+o)
Hik, o) BAK, o)

ik, onk’, o)= 2D
The statistical properties of the random velocity field u®=(a,",
1%, 05") associated with the interface disturbances can be evalua-
ted readily from (9)-(11e):

L‘hm:(—nﬂ{i@,{k, m)e"""“-ki%‘l’,-(k, w)e” 1”"’9"‘3}Tkl(k. o) (22a)

7= [k, e+ ¥k, @)k, ©) (22b)

Obviously, 1,”=1,". So far we have developed a general theory
for the spontaneous “thermal” fluctuations of shape which occur
in a real fluid interface, and determined the statistical properties
of the fluctuating flow field (@®, p) driven by the random bound-
ary fluctuations, n(k, w).

Before concluding this section, we turn, for illustrative pur-
poses, to a detailed evaluation of the correlation fuaction, given
by (21). Here, we consider a general case in which viscous effects
on the interface relaxation cannot be neglected. In this case it
can be easily seen from (15) that the interface fluctuations are
governed by two independent time scales

S S A - .l T 23
= o (Ap)gk+yk® (23a)

and

__btp
K2y + o)

Here, o, is the natural frequency for interface oscillation and
thus 2nt; represents the period of oscillation in the absence of
viscous friction. Meanwhile, t; denotes the viscous relaxation time
scale for the interface displacement on which the initial amplitude
due to the impulse decays exponentially. The same exponential
attenuation of capillary waves at the free surface of a body of
liquid (i.e., u;=0 and p;=0) was predicted by Lamb [1932] from
the fact that the loss of total energy (kinetic plus potential) of
the liquid over one cycle is necessarily equal to the rate of viscous
dissipation of energy per cycle, provided the net flux of energy
into the volume of liquid concerned is zero. In Fig. 2, the correla-
tion function {n(k, tm(k’, t')) given by Fourier transformation
of (21) is illustrated as a function of the dimensionless time differ-
ence t[ =(t—t")/tz] for {=0.2, 0.6, 1.0 and 1.4. Here, {=1/1.
It can be seen that the restoring process which drives the system
back to a flat configuration exhibits three particular modes de-
pending on the ratio { of viscous forces to capillary elastic re-
sponse forces: an oscillatory damping ({<1), a critical damping
(€=1) and underdamping ({>1).

This completes our study of the spontaneous fluctuations of
interface shape that are caused by the thermal agitation in the
surrounding fluids. In the next section, we shall consider motions
of spherical Brownian particles due to the random flow field that
is induced by these interface fluctuations.

Tk

(23b)

BROWNIAN MOTION NEAR A SPONTANEOUSLY
FLUCTUATING INTERFACE

In the previous section, we studied and derived a fluctuation-
dissipation theorem for spontaneous fluctuations of a fluid inter-
face around its equilibrium configuration. In this section, we will
consider the motions of a nearby Brownian particle which occur
as a consequence of the velocity field, (22a, b), that is generated
by these fluctuations. In general, a Brownian particle near an in-
terface will undergo random motions due to random fluctuating
forces of two types: the first, which we shall denote as Fg(x; t),
is caused by the boundary-driven random velocity field associated
with spontaneous interface fluctuations, and the second, which
we shall denote as A(t), is caused by random fluctuations in the
molecular environment immediately adjacent to the particle. It
is this latter contribution which will continue to be present even
when the particle is far removed from the interface. In this sec-
tion, we consider the motion of a spherical Brownian particle of
radius & that is located in fluid 2 near a fluid interface. The sepa-
ration distance between the particle center and the undeformed
flat interface is d. The usual supposition is that, for sufficiently
small fluctuations, the independent random forces and the macro-
scopic time-evolution of particle momentum have to obey a linear
law or a macroscopic rate equation of the Langevin type, ie.,

c(lj—ltj +B-U=F(x; t)+Al) (24)

in which B is a linear operator (called the Boussinesq operator)
determined from the unsteady Stokes’ equation such that B-U
represents the time dependent viscous forces including the virtual
mass and Basset memory contributions.

In the present section, we consider the motion which results
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from the random force Fg(x; t) that results from the fluctuating
velocity field (22a, b). The random force corresponding to the
velocity field (22a, b) can be calculated from the Faxen's law gen-
eralized to an arbitrary time-dependent flow by Yang [1987]. We
begin by taking the Fourier transform of the Langevin Eq. (24)
to obtain

[A(@)] 04d; k 0)=Fu(d; k @)+A) (25)

in which the susceptibility for the particle motion is given by

3
A= -mi+—6’:nﬂa—{1+a\/m/(2v2)(1—i)}~—2f§;ﬂ i (@26)
Here, m is the mass of the particle. The Fourier component of
the random force fr(d; k, ®) determined from the generalized
Faxen's law, is given by

Paw) =22 {1+ /v - DICGT;

3
el T @
Here, [+],° and [+J,” denote the average values of the quantity
in the bracket over the sphere surface and volume, respectively,
and each component of the undisturbed velocity 0.? is defined
by (22a, b).

Since the random fluctuating forces Fr; and A; are not correla-
ted (i.e., {FxA=0) and the problem is linear, we can consider
the contribution of the random force Fg in (25) independently
of the white noise A;. We thus examine the net effect of random
fluctuations of the interface configuration on the motions of a
spherical Brownian particle by determining the velocity correla-
tion of a Brownian sphere that is freely immersed in the fluctua-
ting velocity field driven by the spontaneous interface distortions.
Then, the particle velocity correlation function will, in turn, deter-
mine the net diffusion coefficient of the Brownian particle associ-
ated with the random force Fg; from (25). First, we now evaluate
the particle velocity correlation function Qi(d; k, k', , @)= <04d;
k, ») 0(d; k', @) by solving the Langevin Eq. (25) for each
mode of random force Fr(d; k, ®) of (27).

pl)(d; k’ k" o, (l)')
A A

and then relating the required statistics of the random force (i.e.,
the correlation function P; for the random force F) to the statisti-
cal property (21) of the interface fluctuations. The correlation
function P; for the random force can be determined from the
generalized Faxen’s law of (27) together with the random velocity
field (22a, b) which is related to the random stochastic fluctuations
n(k, ®) by (21). The resulting expression in terms of the correla-
tion function for n(k, ») is simply

Pid; k, K, ©, 0)=(Fald: k ©) Fuld: ¥, o))
=G,(d; k, o)Xk om®, o) 29)
in which each component of the tensor G; can be obtained from
(21)-(22b) combined with (27). Taking the inverse Fourier trans-
formation of (29) with respect to k; and k/’, and utilizing the pro-
perties of the Dirac 8-function, we get

Qid; k, K, o, @)= (28)

Pid; o, —w)=2n j:c,-,@; k o)k onk, —oPkdk  (30)

Thus, the particle velocity correlation function {Ui(d; t) U{d; t+t%),
which relates the present particle velocity to its velocities at other
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times, can be determine from (28) and (30), ie.,

Qe =AU § U troy=[" Bl S0 g,

31

It can be seen from (31) that the velocity correlation function
Qi(d; 19 is independent of the present time t and depends only
on the time difference t° between the present time and other
times as a consequence of the time-translational invariance of
the equilibrium state [Kreuzer, 1984]. In order to proceed analy-
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tically, there are two possible asymptotic limits corresponding to
the relative importance of viscous damping forces on the interface
relaxation compared to the capillary forces (i.e., k*»w/v; or K?<
o/v)). In the weak dissipation limit (i.e., k*€w/v;), however, the
amplitude of interface fluctuations caused by an initial impulse
sustains and does not decay since the viscous damping effects
are negligible. In the asymptotic limit, k2> /v, there exist two
limiting cases depending upon the relative magnitude of the parti-
cle radius a compared to the length scale of vorticity penetration
generated by the particle motions, i.e vo/(wa®)>1(or <1). The
nature of the response, in this case can be understood most clear-
ly by plotting (30) and (31) as shown in Figs. 3 and 4, where
the correlation functions for Fg; and U, are given as a function
of t for the same values of the parameter { as in the previous
Fig. 2. It can be seen from Fig. 3 that the force on the sphere
that is generated by the random impulse of the interface decays
exponentially on the same viscous dissipation time scale, tx, as
the amplitude n(k, t) of the interface distortion. The viscous damp-
ing of the force on the particle can be characterized by three
typical modes depending on { (i.e., the ratio of viscous forces
to elastic-response forces) as can be seen in section 3, and the
frequency of the oscillatory damping case ({<1) is exactly the same
as the frequency of the interface oscillation. The force correlation
lags behind the interface fluctuation. The phase lag - is always
negative

oF= —-Ztan“(v-lcj) (32)

and dependent on the ratio of the two intrinsic forces of the sys-
tem [ie., p{({—0)=0 and ¢«{({—1)= —n]. The velocity correlation
function indicates that the energy imparted to a particle by each
thermal impulse on the interface decays exponentially on the two
independent time scales, tz on which the amplitude n and the
induced force Fy; decay, and tp[ =m/(6np,a)] characteristic of the
viscous relaxation time for motions of Brownian particles in an
unbounded fluid. Thus the correlation functions of (30) and (31)
constitute the fluctuation-dissipation theorem for the motion of
a Brownian sphere due to the spontaneous fluctuations of a near-
by fluid interface. They relate the spontaneous fluctuations in
interface shape caused by the thermal white noise to the viscous
dissipation due to the corresponding motions of the surrounding
fluids. From (31) we can evaluate the phase lag gy for the velocity
response of the particle to the interface oscillations

o= —2tan"(\/1£__-?>+2tan“<i;ti 712_7) 33)

in which Aq,(=1/tp) is the ratio of the time scale for the interface
fluctuation (i.e., wo™?) to that of the viscous relaxation of the parti-
cle velocity. In Fig. 5, the phase lag is plotted as a function of
the parameter { representing the viscous damping force relative
to the elastic-response force. It can be easily seen that when A, =
1 the correlations of the random force and the particle velocity
are in phase. However, the velocity oscillates with the same fre-
quency as the force and interface fluctuations. Chaplin [1984]
experimentally measured forces acting on a horizontal cylinder
with radius a which is located at a distance d=2a-5a from the
undeformed plane of a free surface which is executing wave mo-
tions with the range of the dimensionless wave number, ka=
0.146-0.824. The existence of phase lags in the fluctuating force
and the particle velocity with respect to the phase of the incident
waves, which has been predicted in the present analysis, was
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Fig. 5. Phase lag for the velocity response of the particle to the inter-
face oscillations as a function of { for various values of A,.

demonstrated by the experimental data of Chaplin.

Let us now turn to the general expression for the velocity corre-
lation function, Eq. (31), in order to consider the effect of interface
fluctuations caused by the thermal noise of surrounding molecules
on the Brownian diffusion of particles in the vicinity of the inter-
face. As we mentioned earlier, the relaxation of the interface dis-
tortion, 1, back toward the equilibrium configuration is very rapid
and the displacement n after receiving a thermal impulse decays
exponentially on the time scale tz(~107* sec in water). Further,
the correlation functions of (30) and (31) show that the relaxation
of the particle velocity is exponentially rapid on the time scales
T and tx characteristic of the viscous relaxation of particle motion
and of the interface relaxation. In a time interval At which is
very large compared to the relaxation time scales tz and tp (ie.,
At> Tz, tp), the motion of a particle can therefore be viewed as
random and the mean square displacement {|x(t) x{(t)!> and the
Brownian diffusivity Dj; are related at equilibrium (ie., t—>o0) ac-
cording to

= tim L 900 x
Dy= fim 5 %O x> o

Recalling the fact that the time differential is commutted with
the ensemble averaging and the displacements written as inte-
grals of the velocity from the initial zero conditions [i.e., x{0)=0]1,
it follows that

D= ["CU: O s 46 de @)

in which the integrand is the velocity correlation function given
by (31). Thus, the diffusivity is immediately recognized as the
spectral density function Q,(d; w) at frequency w=0. Utilizing
(31), we thus have

Pid; o, —w)] 36)

S T T
In this low frequency limit, the functions Dk, )=2k%, Yk,
@)= —2k%;, and the susceptibility for the interface fluctuations
Adk w)= —[(Ap)g+k¥]. Thus we can readily evaluate the diffu-
sion coefficient by substituting the various functions into (30) and
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(31). The result is
D,; = kBTM,j (37)

which includes the contribution from the white noise A(t). In
(37), M; is the mobility tensor for the particle motion in the pre-
sence of a nondeforming flat interface. Thus, the contribution
from the random fluctuations of interface shape turns out to be
identically equal to zero. This implies that the fluctuating velocity
field caused by the random distortion of interface does not pro-
duce any net rate of change of mean-square particle displacement.
One possible explanation of the present result, (37), stems from
the linear theory of plane progressive waves which predicts that
at any fixed point the fluid speed remains constant, while the
direction of fluid displaced by the waves moves through a circular
orbit and the time average of net displacement is identically zero
in the linear theory, since the second order [in the wave ampli-
tude, O(n%)] mean Stokes’ drift in the direction of the wave propa-
gation can be neglected in the low frequency limit, w->0. In the
low frequency limit, which represents almost steady motion, the
trajectories of a Brownian sphere are exactly the same as those
of the fluid particle [Whitham, 1974].

CONCLUSIONS

We have considered the motions of Brownian particles in the
fluctuating velocity field induced by the random spontaneous
changes in interface shape owing to thermal impulses from the
surrounding fluid. We have, in addition, determined the various
covariance functions and the corresponding effect on the diffusion
coefficient.

The restoring process which drives the interface back to a flat
configuration is governed by two distinct time scales t; and tp
and exhibits three particular modes depending on the ratio §
(=t/tr), of viscous forces to capillary elastic response forces:
an oscillatory damping ({<1), a critical damping ({=1) and under-
damping ({>1).

The random force on the sphere that is generated by the ran-
dom impulse of the interface decays exponentially on the same
viscous dissipation time scale, 1z, as the interface distortion. The
viscous damping of the force on the particle can be characterized
by three typical modes depending aiso on {, and the frequency
of the oscillatory damping case ({<1) is exactly the same as the
frequency of the interface oscillation.

The diffusion coefficient tensor is related by the Stokes-Eins-
tein equation to the mobility tensor for the particle motion in
the presence of a nondeforming flat interface. Although the veloc-
ity autocorrelation is modified by the interface fluctuation, the
random fluctuations of interface shape does not produce any net
rate of change of mean-square particle displacement.

NOMENCLATURE

: particle radius

: White noise on the Brownian particle

: free energy functional for the interface fluctuations

: Boussinesq tensor

: separation distance between the particle and the plane inter-
face

D; : diffusivity tensor

Fr :force induced by the interface fluctuations on the particle

g :gravity

oW e R
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H; :susceptibility for the interface fluctuations

H. :susceptibility for the particle motion

i  :imaginary number \/3

Jo :Bessel function of the first kind of order 0

T wave vectors

: magnitudes of the wave vectors k, k'

: Boltzmann constant

: interface width

: particle mass

: mobility tensor

1 unit normal vector on the interface

: pressure of fluid j

: force autocorrelation

: velocity autocorrelation

: autocorrelation of y

s entropy induced by the interface fluctuations
:unit tangential vector on the interface

: time

: stress tensor

: absolute temperature

s velocity of fluid j, (u,?, u®, us®)

: Brownian particle velocity

: probability function for the interface displacement
: position vector of a ponit placed on the interface
: coordinate perpendicular to the plane interface
: White noise on the interface

: interfacial tension

: Dirac delta function

T/t

: interface displcement from the plane of x3=0
: viscosity ratio, py/ps
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u,  :viscosity of fluid j

v; :Kinematic viscosity of fluid j

IIs :shape function for the interface

p; :density of fluid j

¢ :intermolecular length scale

t :dimensionless time difference

T :reciprocal of the natural frequency of the interface oscilla-
tion

T, :viscous relaxation time for the particle motion

Ttz :viscous relaxation time scale for the interface fluctuation

¢r :phase lag for the force oscillation

¢v :phase lag for the particle velocity oscillation

®; :function defined in (16a)

¥, :function defined in (16b)

o :frequency of the interface oscillation

wo :natural frequency of the interface oscillation

2 :normalization constant

Symbols

V  :gradient operator
V, :two-dimensional gradient operator on the interface
(*) :variable () in Fourier transformed domain
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