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Abstract—A predictive control method for multivariable bilinear processes is derived based on ARMA model.
To identify bilinear process models, we use simple equation error method extended to multivariable system. We
.can obtain the adaptive predictive controller for multivariable bilinear processes by incorporation of the identification
algorithm. Offset compensator is provided to correct for the effects of unmeasured disturbances and model inaccuracies.
A filter with a singled parameter is used to correct for the effects of an incorrect model. Results of simulation on
multivariable bilinear processes show that the proposed control method has satisfactory performance.
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INTRODUCTION

Much research in the field of process control has been primarily
focused on the design of a control system capable of maintaining
the process at its optimal steady-state despite changing various
operating conditions. Most typical industrial processes are time
varing and nonlinear in nature, and in many instances the task
of modelling such processes is a very difficult one. This is why
many morden control methods that require an exact knowledge
of the process cannot be applied satisfactorily to the control of
such processes. Moreover such fixed gain control strategies can-
not satisfactorily accommodate changes in the operating plant.
Thus, it is essential to develop a new control technique applicable
to nonlinear system.

Recently, rapid development of digital computer technology has
made it possible to implement more sophisticated control meth-
ods. The predictive control method was subsequently developed
[Clarke et al., 1987a, b; Demircioglu and Clarke, 1993; Kouvarita-
kis and Rossiter, 1993a, b; Yeo, 1986] and applied successfully
to several industrial processes involving multivariable process dy-
namics [Clarke, 1988]. But, in many practical situations, the op-
erating conditions vary with time, and it is very difficult to obtain
any information about the parameters of the process to be control-
led. Thus, adaptive predictive control method is believed to be
the promising strategy applicable in these situations and has re-
cently received much attention as one of the computer control
techniques which meet today’s need for more effective control
strategy.

Many efforts have been devoted to the extension of existing
adaptive control method to predictive control method. Lee and
Lee [1983] described the adaptive control scheme for distur-
bance-free systems using a long term predictor. Martin-Sanchez
et al. [1984] proposed a stable adaptive predictive control system.
They used an equation error identification method and proved
several stability properties. Martin-Sanchez and Shah [1984] have
applied the above adaptive predictive control scheme to the con-
trol of a pilot scale binary distillation column. Cluett et al. [1985]
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also used the above adaptive predictive controller in the control
of a PVC batch reactor. But, since most of the adapive predictive
control methods developed so far are based on the linear system
models, they cannot handle nonlinear situations which arise espe-
cially in the control of chemical processes. Linear systems are
described by linear differential or algebraic equations, and the
principle of superposition applies. Nonlinear systems are describ-
ed by complex nonlinear differential equations and linear approxi-
mation methods have been used in the control of the nonlinear
system. However, the intrinsic limits of the use of linear models
appear more and more evident,

Recently, the class of bilinear models has been introduced as
a useful tool for examining many nonlinear phenomena. Yeo
[1986] proposed the adaptive predictive control method for
single-input single-output bilinear systems using the autoregres-
sive moving average (ARMA) model. Many successful application
results summarized by Mohler and Kalodzies [1980] illustrate
the effectiveness of the use of bilinear models as approximations
of nonlinear systems. The primary objective of the present study
is to provide the adaptive predictive control method using multi-
variable bilinear model which is applicable to more general situa-
tions and can be easily implemented on real processes.

CONTROLLER DESIGN

The multivariable plant to be controlled is assumed to be de-
scribed by a discrete, bilinear model of the form

Y*&= g [A*Y(k—i)+ Z By*Ykk—Duk—i—T)

i=1 j=1

+C*UKk—i—T)] (6))

T is the known time delay, but we do not need the exact know-
ledge of the plant structure. We will simplify the problem by con-
sidering one-step ahead prediction.
1. Prediction of Qutput

The prediction of the future outputs Y*(k+1),---, Y*(k+T) does
not require future inputs. Since the present modelling error vec-
tor E(k) given by (2) is known, these predicted future values can
be obtained by successive substitutions.
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EK)=Y(K) —Y*(k) @

Now we define
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B*=[B.* B.*- : B,*]eR*™, G,=[0- -0I0- - 0]R=V
Fo=EY;+BX, + FUyeR™!
Then Y*(k+T) can be written as
Y*k+T)=GF;+EK)=Qp 3
Using this equation, we have
Y*k+T+1D=A*Y*k+T)+ - - +A*Y*(k+T—N+ D+ - -
+B*Y*k+Du&+ » » +By,*"Y*k+T-N
+ Du(k— N+ 1+ C*UK)+ - - +Cy*Uk—N
+1D+EK
=(A*Qo+ G2Fp) + LyoU(k) + E(K)
=Qu+ Ly U(K) @

Continuing the above procedure, we obtain
Y*(k+T+2)=Q,+ My'Vi(k,k+ 1)+ LUk + 1) + LgoU(K) )

Y*(k+ T+ 3)= Qs+ Nio'Valk,k +2) + My 'Vi(kk+ 2)
+ MgolV1(k,k+ 2) + Mlozvl(k,k+ 1) +‘ L]zU(k “I‘ 2)
+ LUk +2)+ LaU(k) 6)

where
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it
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2. Design of the Controller

The computations involving the iterations of large dimension
matrices cause numerical difficulties. For simplicity, we consider
the case of one-step ahead prediction. The objective function is
given by

J=0Yuk+ T+ 1)~ Y*k+T+ DI T Yok +T+1)
—Y*(k+ T+ D]+ U(KBUK) @

where

I'=diagly.% v’}
B=diag{B. B’}

We define

Q=AY'k+T+ + + +A*Y*k+T—N+1D+E®K)

H=B,*Y*k+T—Duk—1+ + - +BAY*k+T— Duak—1)
+ o +By*Y*k+T—N+Duyk—N+1+ -« -
+Bu*Y*(k+T~N+ Dun(k—N+1)

Z=CUk-1)+ - - +Cy*UKk—N+1)

R=[Bu*Y*k+T) + - B,*Y*k+T)]

Then one-step ahead output Y*(k+T+1) can be represented by
Y*k+T+1)=Q+H+Z+(C*+RUK) 8)
Substitution of (8) into (7) gives

J=[Yk+T+1)-Q-H-Z~(C*+RUK]T
Y, k+T+1D—Q—-H—Z—(C*+RBUK]I+ U (KBUK) (9

Minimization of (9) yields

UK =[R* C* TR+ C*)+B] 'R+ C*T{Yok+T+1)
-Q-H-Z| a1

Rearrangement of (10) gives
UM = WY Ak+ T+ D— ArY*k+T)— { YK — Y* &)}
- % {A*Y*&+TH+H1-D+ o B;*Y*(k+T+1—1)
u,(l:z1—i)+C,"U(kr1—i)}]):] a1n
where
W=[(R+CH*R+C*+B] 'R+ C*HT (12)

3. Offset Compensator
At steady-state, (1) gives

Y*= lim Y*(k)=A*Y,+(B*+ CHU;, (13)

R

where
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N N _ N
A*= ZA*B*= I8, C'=3XC
=1 i=1 i=1

B=[B:*Y, - - B,*Y.]; 1<i<N

and Y, and U; are steady-state values of output and input variables
respectively. Sustitution of (13) into (11) yields upon rearrange-
ment

((]_31 + Cl'Xr(El + C1'l+ BIU,= (§+ CMTNs—Y,)
+(B,+C*)T(B; + C:*; (14)

where B;=[B,;*Y; - - By,*Y.]. From (14), we can see that there
is no offset if B=0, and that nonzero B; always gives offset. As
before, we introduce a constant offset compensation matrix K&
R™ such that (11) becomes

UK = WIKY (k+T+ 1)~ (A*~ A*+ KAMNY*k+T)
~K{Y()—Y*()}— g {A*Y*k+T+1-i+ ;: B;*Y*
(k+T+1-duK+ l:zi)+C,’U(k+1—i)}] " (15)
At steady-state, (15) becomes
{(B: + C*)T(B,+ C;*)+ BlU,= (B, + C'TLK(Ys — Yo) -+ {(K—T)
B>+ CH+ B+ CMIU]  (16)
Rearrangement of (16) gives
(B, + C*)T(Ys— Yo)={B— (B, + C*T(K— 1)B*+ CH}U, (17)
It is clear from (17) that zero offset is achieved if
B—(B,+C»TEK—-1B*+C*»=0
or
B+ (B, + C*T(B*+C*=(B;+ C*)TK(B*+C*) (18)

If n=m, ie., input and output vectors have the same dimensions,
K has the explict form given by

K=1+{(B,+C*T} 'BB*+C*"' 19
IDENTIFICATION ALGORITHM

Since an identification algorithm is itself an adaptation algori-
thm in the adaptive control system, the analysis of the identifica-
tion problem with bounded disturbances has often been coupled
with the analysis of adaptive control systems with bounded dis-
turbances. Samson [ 1983] analyzed the identification methods for
the discrete-time system subject to bounded disturbances. Identi-
fication for bilinear systems has been studied by Frick and Valavi
[1978], Kubrusly [1981], Zhang [1983], Wang et al. [1987]. Yeo
[1986] have used ARMA model in the identification of single
variable bilinear systems.

A single variable bilinear system can be described by ARMA
representation of a form

y(k)=p"x(k—1)+d(k) (20

In order to identify the system parameter vector p, we propose
a recursive identification algorithm of the form

p*kK)=p*(k—1+&k— Dx(k—De*(k) 21
where

e(k)=y(k)—y*klk)
e*k=yk) —y*klk—1)
y*&kik)=p*kK)xk—1)
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y*klk—1)=p*T(k— Dx(k—1)
and the gain {k—1) is calculated as follows

20 ()L4k) — 1]
Sk 1x(k—1)[ 17+ 6(k)
0

; Slo>1

: LR<1 @)

§k—-1) ={
where

le*(k)|
qD
0<AMk)<1
0<8(k)<R;< 0
1<g<R;y;<»

k)=

In this study the above identification algorithm is used and the
extension to multivariable bilinear system is relatively straigthfor-
ward.

EXAMPLES

To illustrate the proposed adaptive predictive control method
for multivariable bilinear models, we present some simulation
examples. To demonstrate the effect of tuning parameter g and
the usefulness of the offset compensator, the incorrect models
is used in non-adaptive predictive control. To correct for the effect
of model inaccuracy, we introduce a simple filter given by

UKk)=(1—-a)U*Kk)+aUk—1) 23)

where U*(k) is the unfiltered input vector from the control algori-
thm (15). In order to demonstrate the useful features of the iden-
tification algorithm used in this study, we present the result of
identification in example 2. Results of simulations of the proposed
adaptive predictive method are shown in example 1 and 3. In
examples 1 and 3, the disturbance is assumed to be constant
as D(k)=[0.5 0.5]". Constant matrices I and B are used in the
simulations, ie., v/=1(1<i<n) and B;=p(1<Li<m).
1. Example 1

The process is given by (24) and the model of the process
is assumed to be represented by (25).

e[
5 (¥ Dut—o+ [T O v 2uk-5)
[y psusor Y, geluemenweo
viw=[ 10 ) v+ % P lva-2
#lor 1]t Duk—0] gy oy ¥k D09
+is arlueo [ By gplues @

The result of control for =0 is shown in Fig. 1. For $=0, the
controller is unstable. The results of control for B=0.5, 1.0, and
3.0 are shown in Fig. 2, 3, and 4. Increasing B yields stable behav-
ior, but the offset increases as § increases. Fig. 5 show the effect
of the offset compensator for B=3.0. The offset is eliminated by
the introduction of the offset compensator, but the response is
much more oscillatory and takes much longer to reach steady
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Fig. 1. Results of control for example 1 (8=0.0).
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Fig. 2. Results of control for example 1 ($=0.5).

state. Fig. 6 shows the smoothing effect of the filter. As a is in-
creasesd, the response becomes more damped and more sluggish,
but it does not take significantly longer to reach steady state than
it does when the compensator is used without the filter.
2. Example 2

The multivariable bilinear process used in this exaraple is the
same as that in the previous example. In the identification, the
algorithm given by (20) and (21) with g=1, 8(k)=1, and Ak)={(k)
/2[§(k)— 1] was used. The inputs are pseudo-random binary se-
quences (PRBS) with an amplitude of 0.5. The ranges of distur-
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Fig. 3. Results of control for example 1 (B=1.0).
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Fig. 4. Results of control for example 1 (B=3.0).

bances are —12<di(k)<1.2 and —0.2<dx(k)<0.2 respectively.
The initial values of the model parameters correspond to non-zero
process parameters and zero process parameters are set to 1.0
and 0.0 respectively. Fig. 7 shows the output tracking errors. We
can see that the output tracking errors are confined within the
expected bound of disturbances.
3. Example 3

The process used in this example is the same as that in the
previous example. The process initially has zero inputs, outputs
and disturbances. The initial values of the model parameters are
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Fig. 5. Effect of offset compensator for example 1 ($=:3.0).
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Fig. 6. Effect of filter for example 1 ($=3.0).

the same as that in example 2. The results of the adaptive predic-
tive control are shown in Fig. 8. As we can see outputs track
the set points very well.

CONCLUSION

A predictive control methods for multivariable bilinear process-
es have been developed in this study. The controller uses a bili-
near model, which makes possible a greater range of accurate
representation of a general nonlinear process than is possible with
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Fig. 7. Tracking error of output and disturbances for example 2.
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Fig. 8. Results of control for example 3 (3=3.0, a=0.8).

a linear model. Representation of future outputs in terms of avail-
able data is complicated for multivariable bilinear processes, and
one-step ahead prediction was employed in the present study.
But, numerical simulation results show the satisfactory perfor-
mance even with disturbances and incorrect model. The offset
caused by the increase of tuning parameter B is eliminated by
the offset compensator proposed in this study. A filter is used
to reduce the oscillation caused by the introduction of the offset
compensator. Simulation results show the effectiveness of the off-
set compensator and filter. Controller tuning is simple through
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the following adjustment of two parameters. The control algorithm
parameter B should be selected based on the assumption that
the model is perfect. The filter parameter a should be selected
to reduce the oscillation.

Any suitable recursive identification algorithms can be used
in the present adaptive predictive control method. The equation
error identification method extended to multivariable system was
used in this study. By combining the previous identification algo-
rithm with the predictive control method developed in this study,
we could obtain the adaptive predictive control method for multi-
variable bilinear processes. Tuning and the theoretical study of
robustness of adaptive predictive control method for multivariable
bilinear process remain as major problems.

ACKNOWLEDGEMENT

This research was supported in part by NON DIRECTED RE-
SEARCH FUND, Korea Research Foundation.

NOMENCLATURE

A, B;, C, : process parameter matrices (€R™", €R*™ and €R™*"
respectively)

A* B;* C*:model parameter matrices (ER*", €R™ and €R™™
respectively)

D  :disturbance bound
: disturbance vector, €R™!

d :disturbance

E  :output error vector, €R™

e, €*: control output error

I : unit matrix

J  :objective function

K :offset compensation matrix, ER™"
k  :time (sampling interval)

m :the number of input variables

N  :process order

n :the number of output variables

p . process parameter vector

p* :model parameter vector

q :identification parameter

R, :constants

T :time delay

U :plant input vector, €R™!

U* :unfiltered input vector, €R™!

U, :steady-state values of input vector, &R™!
u  :process input

X : process data vector

Y :plant output vector, €R*!

Y* :model output vector, €R*?

Y, :output setpoint vector, &R™!

Y. :steady state values of output vector, €R™
y : process output

y* :model output

Greek Letters
a  :filtering parameter

B, I': diagonal weighting matrices

B:  :weight parameter on the input

: weight parameter on the control error
: normalized control output error

: gain identification algorithm

: identification parameter

: identification parameter

D > I R
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