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Abstract — A mathematical model of diffusive transport of macromolecules across the arterial wall was developed in
order to analyze the enhancement of molecular transport into the media in the presence of the endothelial injuries. The
model is based on the continuum description of the distribution of macromolecules in the arterial wall with multiple in-
juries periodically dispersed on the endothelial surface. A boundary element method is successfully employed to model
the problem geometry along with the relevant boundary conditions. The concentration and surface flux are computed for
various physical conditions of the artery. Among other factors, the proper estimation of the mass transfer resistance,
characterized by the Biot number, of the endothelial surface is crucial for the analysis. In addition the curvature effects
are negligible when the vessel radius is larger than 10 times the wall thickness.
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INTRODUCTION

Abnormal transport of macromolecules such as LDL, albu-
mine, and fiblinogen from the blood stream across the artery wall
is an important factor in the early development of arterial dis-
ease [Getz, 1990; Weinbaum and Chien, 1993; Yli-Herttuala,
1991]. The inner surface of the normal arterial wall is completely
covered with the endothelial cells which effectively control the
transport of macromolecules. When endothelial cells are injured
or disturbed by either hemodynamic or biochemical factors, the
transport characteristics of macromolecules are substantially al-
tered [Ross, 1986]. The alteration is usually accompanied with
the enhanced endothelial permeability to macromolecules. It is
generally believed that the intima region of high permeability of
macromolecules is prone to the formation of lesion in athero-
genesis [Nerem, 1992].

The transport of macromolecules across the normal artery en-
dothelium attributed to two mechanisms: the transendothelial Bro-
whian diffusion of plasmalemmal vesicles which contain macro-
molecules inside, and the filtration and diffusion of macromol-
ecules through the intercellular cleft between the adjacent endo-
thelial cells. When the endothelial cell is injured, the diffusive
flux of macromolecules is significantly increased through the in-
jured area. The endothelial injury generally means not only the
morphological changes of the endothelial cell but also the phy-
siological and metabolic impairments of the endothelial cell. In
addition to actual endothelial injury, the normal process of cell
turnover leads to a transition state in which the junctional com-
plexes between cells becomes more diffuse, which results in the
increased transendothelial transport.

Macromolecules which pass through the endothelium diffuse
into the arterial media. The arterial media consists of two parts:
the dispersed cellular phase and the continuous interstitial fluid
phase. It is believed that macromolecules first diffuse into the in-
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terstitial fluid phase, and some of them are eventually transport-

‘ed into the cellular phase. Assuming the concentration of macro-

molecules is sufficiently high, a continuum description for the
distribution of macromolecules in the media can be made. A
simple continuum model was first developed by Weinbaum and
Caro [1976]. The transport rate is modeled to be proportional to
the difference in concentration between the two phases. At steady
state the concentrations in both phases are equal, and the concen-
tration distribution satisfies the Laplace equation. In their subse-
quent analyses [Nir and Pfeffer, 1979; Pfeffer et al., 1981] the
artery wall was modeled as a planar slab of uniform thickness
and of infinite extent neglecting curvature effects. However, as
shown in Table 1 [Fung, 1984], the typical values of the ratio
of the inner radius to the wall thickness for human arteries lie
between 5 and 10, for which the curvature effects may not be
small.

In this work we extend the earlier continuum model [Pfeffer
et al., 1981] by analyzing the transport through the cylindrical
wall of artery with multiple endothelial injuries. The solution pro-
cedure for the cylindrical geometry is facilitated by employing
the boundary element method which is especially suitable for the
problem of complex geometry with mixed boundary conditions
[Beskos, 1987]. The concentration and surface flux of macro-
molecules are determined for various conditions, and the results

Table 1. Typical size of human arteries

Vessel Inner Wall Dimensionless
radius (mm) thickness (mm) radius, R
Ascending aorta 75 0.65 11.5
Descending aorta 6.5 0.65 10.0
Abdominal aorta 4.5 0.5 9.0
Femoral artery 20 04 50
Carotid artery 25 0.3 83
Main pulmonary artery 85 0.2 425
Arteriole 0.025 0.02 1.2
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are discussed in order to elucidate the enhancement of the endo-
thelial transport caused by the endothelial injuries.

MATHEMATICAL MODEL

According to Weinbaum and Caro [1976], the concentrations
of macromolecules in the interstitial fluid phase and the dis-
persed cellular phase of the arterial wall are represented by

Jc
Ve +v(c,—cy)= ala—tl,

dc,
Y(Cl C’Z) 0—— at

Here the subscript 1 and 2 denote interstitial fluid phase and dis-
persed cellular phase, respectively. The symbol ¢ is the dimen-
sionless concentration of macromolecules and o is the volume
fraction of each phase. The term Y(c,— ¢;) accounts for the trans-
port of macromolecules into celluar phase. At steady state, con-
centration of macromolecules in the interstitial fluid phase is gov-
erned by the Laplace equation:

Vic=0. @

Here we drop the subscript 1 for simplicity. In this study the con-
centration is normalized such that the dimensionless concentra-
tion at lumen is 1 and the dimensionless concentration at adven-
titia is 0. A portion of the arterial wall considered in our a-
nalysis is schematically shown in Fig. 1. The injuries of rectan-
gular shape are periodically dispersed on the endothelium. Uti-
lizing the periodic nature of the problem geometry, we consid-
er a single repeated unit for the analysis. The geometric scales
of the problem domain are normalized to the thickness of the
arterial wall so that the wall thickness is set to 1 regardless of
the radius of the artery. Since the thickness of the endothelial
layer is vanishingly small compared to that of the arterial media,
we approximate the endothelial layer as a surface at r=R. The
size of single injury is represented by the half distances € and
8 along the axial and radial directions, respectively. The linear
dimension of single endothelial cell is about 20 um, thus for
an artery of the wall thickness of 0.5 mm the value of € and &
is around 0.02. The half distances between the injuries along the
axial and radial directions are denoted by { and 1, respectively.

We solve Eq. (1) for the repeated unit of the arterial wall shown
in Fig. 1 with the following boundary conditions:

% =—o0(1-¢) for S, @
c=1 for Si, 3
c=0 fOr Sa N (4)
%;-:0 for Se+Sz. (5)

The endothelial surface S, consists of two parts: the normal sur-
face S; and the injured surface S!. At the normal surface the
mass flux is proportional to the difference of concentrations at
the lumen and the surface [Eq. (2)]- The proportionality constant
o is known as the Biot number which depends on the hemody-
namic conditions in lumen, the surface properties of the endo-
thelium, and other factors {Lever and Jay, 1990]. When 6=0 the

adventitia

| o=~

Fig. 1. Skematics of a portion of artery with a periodic injuries
on the endothelium.

endothelial surface becomes impermeable, and as © increases the
mass transfer resistance across the endothelial surface decreases.
Thus, the role of the endothelium as a principal barrier for the
mass transport completely disappears when =cc. The appro-
priate value of ¢ for normal endothelium must be determined
from experimental observations. At the injured surface we as-
sume that the surface concentration is equal to the concentra-
tion at lumen [Eq. (3)], which is equivalent to the case of nor-
mal endothelium with 6=00. With the boundary condition [Eq.
(4)] we set the concentration at adventitia as a constant value.
The last boundary condition [Eq. (5)] is the symmetric con-
dition, where d/0n is the normal derivative in the outward direc-
tion to each surface.

The analytical approach for solving Eq. (1) with the relevant
boundary conditions is very complicated and not practical. The
boundary element method can be conveniently applied to this type
of problem. Applying Green's second identity, the Laplace equa-
tion transforms into an integral equation [Jawson and Symm, 1977,
Kellogg, 1953]

petwy=J G(1xx'1) XXX sy
- c(x’)é%Gﬂx—x’I)dS(x’). ©)

Here G(|x—x'[)=1/4njx—x'| is the fundamental solution for the
Laplace equation. The constant B in the LHS of Eq. (6) has
one of the following values:

0 for x outside,
B=412 for x on smooth boundary,
1 for x inside.

By applying the boundary conditions, Eq. (6) can be rewritten as
Be(x) =—j dS j

+j oGdS—j (0G+ ?TG)ds

dS + j G—dS

+j G dS j —dS )

For arbitrary points on the boundary surface Eq. (7) can be solv-
ed with B=1/2. This boundary integral equation contains two kinds
of unknowns: the concentration ¢ on S¢+S.+S. and the normal
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Fig. 2. Discretized surface of the problem boundary.

derivative of the concentration dc/on on S,+S:. After solving the
boundary integral equation one can readily compute the concen
tration at any arbitrary points using Eq. (6). The boundary inte-
gral equation is solved numerically after discretizing the whole
surface of the repeated unit into a number of small boundary ele-
ments. In our analysis flat triangular elements are used. Fig. 2
shows the triangulated surface of the repeated unit where the in-
jured region is depicted by a shady area. Depending on the size
of the injury we adjust the size of each triangle. We assumed that
the unknowns ¢ and dc/on vary linearly within each triangular
element. The problem than reduces to solving for the unknowns
at the vertices of each element. The surface integral for each ele-
ment is performed using Gaussian quadratures [Cowper, 1973].

NORMAL AND DENUDED ENDOTHELIUM

Before we investigate the transport across periodically injured
endothelium, we first consider the transport through normal en-
dothelium as well as through completely denuded endothelium.
These limiting analyses are important, since they furnish the lim-
iting behaviors valuable to check the results of the full analysis,
and also by comparing the two limiting cases one can determine
the Biot number 6. Eq. (1) can be readily integrated for both
cases to obtain

r

In
1+R
cd(n)= ) ®
R
In
1+R ]
In !
1+R
(D)= , ®
R 1
In -
1+4R ] oR
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where ¢’ and ¢" correspond to the concentration distributions in
the media with denuded and normal endotheliums, respectively.
The dimensionless mass fluxes at the endothelial surface for both
cases are given by

1

I — (10)
(i
po_ 1 an
o ()

Note that Egs. (9) and (11) approach Egs. (8) and (10), respec-
tively, as ¢ increases.

We plot the dimensionless surface flux as a function of ves-
sel radius in Fig. 3. For normal endothelium three different val-
ues of ¢ are considered: 0.1, 1.0, and 10. As G increases, the
resistance to the transendothelial transport decreases, thus the

2.0

—  denuded

surface flux, ¥

0.5 T e

0.0

2 3 135877 z 3 4567
1 10 100
inner radius, R
Fig. 3. Dimensionless surface flux as a function of vessel radius
for normal and completely denuded endotheliums. Dots
are numerical results obtained by the boundary element
method.

2 3 2567 T 2
0.1 1 10
Biot number, ¢
Fig. 4. The ratio of transendothelial fluxes for denuded and nor-
mal endotheliums.
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flux curve approaches that of denuded endothelium. It has been
observed experimentally that denuded endothelium showed en-
hanced transmural transport [Tedgui and Lever, 1987]. Fig. 3
suggests that when 0=1.0, the denuded endothelium may result
in about two times increase of the transendothelial transport. In
order to estimate the enhancement rate of the endothelial trans-
port the ratio /%" is plotted in Fig. 4 as a function of 6. As
o increases the enhancement becomes marginal. Fig. 4 can be
useful for estimating the value of ¢ of normal endothelium by
experimentally determining /",

The curvature effects are also manifested in Figs. 3 and 4.
When R is larger than 10 the values of the surface flux almost
approach those for infinite slab, i.e., R=co. Fig. 4 shows that
the enhancement of the transendothelial transport is nealy unaf-
fected by R when R is larger than 10. Thus, unless R is much
less than 5, the estimation of 6 of the normal artery using Fig.
4 can be performed with the endothelium of planar geometry.

RESULTS

We first test the boundary element method by computing the
surface fluxes for normal and denuded endotheliums. The num-
erical results for selected values of R are presented as dots in
Fig. 3. The agreement is excellent so that the boundary element
method is very reliable to produce accurate results for our prob-
lem. In Fig. 5 the endothelial surface concentrations are plotted
for the case of periodic injuries dispersed on the endothelium.
The injury corresponds to the region where the surface concen-
tration is 1. Two different shapes of injuries are considered:
square (€=0.1 and 6=0.1) and rectangle (€=0.2 and 8=0.05). Note
that the half length of the single injury €=0.1 corresponds to ac-

surface concentration

surface concentration

© @
Fig. 5. Endothelial surface concentration with periodic injuries.

tual length of 0.05 mm for the artery of thickness of 0.5 mm.
For both cases the single injury has the same area and the total
surface area fraction ¢ of the injuries (¢=0.01, n={=1.0). The di-
mensionless inner radius of the artery is 5. Two different values
of ¢ are considered: 6=0.1 for (a) and (c); and 6=1.0 for (b) and
(d). Except the region near the injury the surface concentration ra-
pidly approaches the constant concentration. For normal endothe-
lium the surface concentrations for 6=0.1 and 0=1.0 are 0.0835
and 0.476, respectively. Because of the interactions between the
neighbouring injuries, the constant surface concentration far away
from the injury in Fig. S is larger than the value for the normal
endothelium. Since the surface flux is proportional to 1-c, the
transport across the endothelial region far away from the injury
is reduced comparing with the normal endothelium. The reduc-
tion of the transport in this region can be observed from the slope
of the concentration profile near the endothelium in Fig. 6.

The concentration distribution within the media is shown in
Fig. 6. The system parameters are identical to those used in Figs.
5(a) and 5(b). Since R=5, the radial coordinate in Fig. 6 ranges
from 5 to 6. The cross section of the media considered in Fig. 6
is the surface S; in Fig. 1, i.e., the surface of constant 0, which

cuts through the center of the injury. Except the region near the

concentration

concentration

[o/
amage (b)

The inner radius R is 5, and the total surface fraction of
the injury is 0.01. The values of the injury size and ¢ are
(a) £=0.1, 5=0.1, 6=0.1; () £=0.1, 5=0.1, 5=1.0; (¢) £=0.2,
8=0.05, 6=0.1; (d) £=0.2, 5=0.05, 5=1.0.

Fig. 6. Concentration distribution of the arterial media with pe-
riodic injuries. The inner radius R is 5, the total surface
fraction of the injury is 0.01, the size of the injury is e=0.1
and 5=0.1. The values of ¢ are (a) 6=0.1; (b) 6=1.0.
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Fig. 7. The ratio of transendothelial flux for periodically injured
and normal endotheliums as a function of vessel radius
R for various values of o, &, and ¢. The reference con-
ditions are 0=0.1, £¢=0.01, and ¢=0.01.

injury the concentration approaches almost linearly the value at
the adventitia. Compared to the logarithmic variation of the con-
centration at the normal endothelium [Eq. (9)], the concentration
varies more slowly in this region.

The enhancement of the transport across the arterial wall with
periodic injuries are summarized in Fig. 7. The effects of Biot
number ©, injury size €, and the total area fraction of injury ¢
are investigated. The curvature effects are also shown in the
Figure. For the reference system we use 6=0.1, £=0.01, and ¢=
0.01. The effects of ¢ is shown in Fig. 7(a). As 6 of normal en-
dothelium increases, the mass transport resistance of normal en-
dothelium decreases, thus the transports across normal and injur-
ed endotheliums become indistinguishable. When 6=10, there ap-
pears no enhancement of the endothelial transport. The effect of
the size of single injury is shown in Fig. 7(b). All 3 curves are
for $=0.01, i.e., the population density of the injuries decreases
as € increases. The case of large number of small injuries results
in the bigger enhancement of the endothelial transport than the
case of small number of large injuries. This increment is due to
the increase of the total area of perimetric region of the injury
where the concentration gradient is very steep. When the size of
each injury is fixed, the effect of its population density is shown
in Fig. 7(c). As the population density (or the total surface frac-
tion of the injuries ¢) increases, the enhancement increases. As
for the curvature effects, the inner radius R must be less than 10
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Fig. 8. Average transendothelial flux through periodically injur-
ed endothelium as a function of . The total surface frac-
tion of the injury is 0.01, the values of inner radius are
(a) R=5; (b) R=20.
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Fig.9. The ratio of transendothelial fluxes for periodically in-
jured and normal endotheliums as a function of 6. The
total surface fraction of the injury is 0.01, the values of
inner radius are (a) R=5; (b) R=20.

to see any noticeable differences from the case of planar endothe-
lium.

As discussed earlier, a proper choice for the value of 6 is cru-
cial for our mathematical analysis to be physically meaningful.
In Figs. 8 and 9 the surface fluxes for 3 cases (normal, complete-
ly denuded, and periodically injured endotheliums) are plotted
and compared as functions of . Here the total surface fraction
of the injury ¢ is 0.01. Two different values of R are con-
sidered: (a) R=5 and (b) R=20. As shown in Fig. 7, the case of
R=20 can be considered as the case of planar endothelium (R=
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o). In Figs. 8 and 9, when €=0.1, the curves for R=5 are very
close to those for R=20, thus the curvature effects are negligi-
ble. When €=0.01 and 6=0.1, one can see only 3.8% change
of the enhancement rate for the case of R=5 compared with the
case of R=20. Thus, the curvature effect is not significant in
this respect.

DISCUSSION AND CONCLUSION

The major difference between our present model and the pre-
vious model [Pfeffer et al., 1981] is the problem geometry. The
previous model is based on the planar slab of infinite extent,
whereas our model is based on the circular cylinder. Figs. 3
and 7 suggest that the curvature effects are negligible when the
inner radius of the artery is larger than 10 times the wall thick-
ness. Aorta and large arteries fall under this category. However,
for human arteries of medium and small sizes the curvature ef-
fects can be significant.

The endothelial injury results in the enhancement of the trans-
endothelial transport of macromolecules across the injured re-
gion, which will eventually lead to the formation of lesion in
atherogenesis. When the total area of multiple injuries is fixed,
the transendothelial flux increases as the size of single injury de-
creases. This increase is due to an increase of the endothelial re-
gion where the concentration gradient is very steep. The enhance-
ment of the transendothelial transport due to injury is strongly
affected by the Biot number ¢ which characterizes the mass trans-
fer resistance of the normal endothelium. Thus, the proper es-
timation of ¢ is very important in our mathematical analysis.
By measuring the enhancement rate of the transendothelial flux
across the denuded endothelium one may estimate ©. Fig. 4 can
be useful for this purpose. As an alternate (or complementary) ap-
proach, one may estimate G theoretically by analyzing the de-
tails of the molecular or vesicular transport process across en-
dothelial cells [Tolmin, 1969; Weinbaum and Caro, 1976].
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NOMENCLATURE

: dimensjonless concentration

: Green function of the Laplace equation

: dimensionless inner radius normalized by wall thickness
: bounding surface of a repeated unit

: volume fraction

: constant

: half size of injury along radial direction

: half size of injury along axial direction

: half distance between injuries along axial direction
: half distance between injuries along radial direction
: Biot number

: total surface fraction of injuries

S a3vim oo LI QO

¥ :dimensionless mass flux

Superscripts

d  :denuded
i : injured

n :normal
Subscripts

a  :adventitia

e :endothelium
1  :interstitial fluid phase
2 :dispersed cellular phase
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