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Abstract — Optimization of chemical processes often leads to nonlinear programming problems that are non-
convex. Such problems may possess many local optima, whose objective function values vary significantly from
one to another. Thus identifying the global optimum is an important, albeit difficult, endeavor. A deterministic al-
gorithm based on interval analysis branch and bound is proposed in this paper to be suitable for global op-

timization of chemical processes.
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INTRODUCTION

Most chemical process optimization problems are nonlinear
programming (NLP) problems in the following form.

®

min f(x)
subject to
gx)<0
h(x)=0

where x € R, f:R" > R,g:R"— R, and h:R" — R™. If
the objective function and the feasible region are convex, e.
8. when f and g are convex and h is linear, the problem is
called a convex problem, which has only one local min-
imum that is the global minimum. Most of chemical pro-
cess optimization problems, however, have a nonconvex fea-
sible region because of nonlinear equality constraints. There-
fore, they are nonconvex, and in many cases, have multiple
local optima. However, most optimization techniques current-
ly used are local methods, which easily crash, and at best, find
only one local optimum. The goal of this study is to devel-
op a method for global optimization of chemical processes.

Most global optimization algorithms belong to one of the
two categories: (1) Stochastic approach and (2) Deterministic
approach. Algorithms such as simulated annealing [Kirkpa-
trick et al., 1983] and genetic algorithm [Goldberg, 1989] are
based on the stochastic approach. These algorithms aim high
probability of finding the global optimum, and do not guaran-
tee the finite e-convergence (convergence to the global op-
timum in finite computation steps for a given finite error tol-
erance), or the global optimality of the obtained solution. Al-
gorithms that use the deterministic approach such as branch
and bound [Soland, 1971] guarantee the finite g-convergence
and the global optimality of the obtained solution.
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The deterministic approach to global optimization of chem-
ical processes has actively been studied since the 1980's. Most
of the proposed algorithms are based on one of the follow-
ing methods.

1. Generalized Benders Decomposition (GBD) [Geoffrion, 1972]

This algorithm iterates between a primal and a master
which give upper and lower bounds respectively for the glo-
bal optimum. Based on this approach, Duran and Grossmann
[1986] proposed an Outer Approximation algorithm for a par-
ticular class of Mixed Integer Nonlinear Programs (MINLP).
Floudas et al. [1989] proposed Global Optimum Search (GOS)
algorithm for general problems, which was considered very
efficient, but Bagajewicz and Manousiouthakis [1991] indi-
cated an error in this algorithm. Floudas and Visweswaran
[1990] corrected the error, proposing Global Optimization Al-
gorithm (GOP), but the computation time for convergence
greatly increased.

2. Underestimator Branch and Bound

Soland [1971] presented an algorithm of the branch and
bound type which solves a separable nonconvex problem
by solution of a sequence of convex subproblems. Each con-
vex subproblem, if feasible, gives a lower bound on the glo-
bal minimum in its domain. Subproblems are discarded if
they are infeasible or their lower bounds are higher than the
upper bound which is set by the value of the objective func-
tion at a feasible point. Feasible subproblems are divided into
more subproblems, and the algorithm continues until the low-
er bound converges to the upper bound. Based on this ap-
proach, Ryoo and Sahinidis [1995] and Adjiman et al. [1996]
proposed algorithms for chemical process optimization.

3. Interval Analysis Branch and Bound

Ratschek and Rokne [1988, 1991] presented a branch and
bound algorithm which uses interval analysis to calculate the
lower bounds. Unlike the above mentioned algorithms, their
algorithm can be applied to any type of problems, not requir-
ing any problem transformation. This algorithm was modifi-
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ed and applied to chemical process optimization by Vaidyan-
athan and El-Halwagi [1994].

Global optimization of a nonconvex NLP is an NP (Non-
Polynomially)-hard problem, and thus, when a deterministic
algorithm is used, the computation time drastically (generally,
exponentially) increases with the size of the problem. This
is the reason that all the example problems in the papers that
propose deterministic algorithms are extremely small. Chem-
ical process optimization problems are generally highly non-
linear, nonconvex, and very large. Therefore, the conventional
deterministic algorithms are not suitable for chemical process
optimization. Some people suggest that the stochastic approa-
ch is practically the only way to global optimization of large
problems. However, as the computer hardware is rapidly be-
ing improved these days, it is still justifiable to study on the
deterministic approach.

The deterministic approach is frequently based on the bran-
ch and bound technique. The problem is how to minimize the
number of branching variables. A positive aspect of the branch
and bound algorithm proposed by Soland [1971] is that bran-
ching is required only for the variables that cause nonconvex-
ity of the problem. Let us refer to such variables as non-
convex variables. Unfortunately, however, in most chemical
process optimization problems, all variables appear in non-
linear equality constraints, and thus, all variables are non-
convex variables. Therefore, the only method to reduce the
number of branching variables for the conventional branch
and bound technique is to reduce the total number of vari-
ables in the problem based on the symbolic solution of the
equality constraints. However, it is not easy to symbolically
solve a large system of highly nonlinear equations. This pa-
per presents a method for reducing the number of branching
variables using the equality constraints without any symbolic
manipulations. Too many nonlinear equality constraints are gen-
erally a trouble, but in this work, they are the last hope.

THE PROPOSED AIGORITHM

The proposed algorithm is based on Algorithm 2 of Rats-
chek and Rokne [1988]. Their algorithm always treats all
variables as the branching variables even though there exist
many equality constraints. Other interval analysis algorithms
such as proposed by Vaidyanathan and El-Halwagi [1994] also
branch all variables. The algorithm proposed in this paper,
however, exploits the equality constraints so that the inter-
vals of some variables can be determined by those of other
variables, and thus the number of branching variables can be
reduced. Consider the following optimization problem in which
variables are divided into two groups.

min f(x, y)

X,y
subject to

g(x, <0
h(x, y)=0

xEX:={X|xER" 0 <x{ <x,<x <+%,j=1, -, n}

yEY ={y|]yER? —© <yf'$ Vi< y,-U< +o0,j=1,---, n}

where f, g, and h are continuous functions. The variables x
and y are selected in such a way that the intervals of vari-
ables y denoted by Y, can be determined from the intervals
of variables x denoted by X, using the constraints in the
above problem.

The proposed algorithm is as follows.
1. Interval Analysis Branch and Bound Algorithm
1-1. Step 0. Initialization

(1) Define X' := X.

(2) Initialize the set of unsolved subproblem indices B «—
{1} and the set of solved subproblem indices D «— @.

(3) Set the upper bound on the global minimum U «— +o0
or f(x°, y°), where (x°, y°) is any feasible point.

1-2. Step 1. Interval Analysis and Bounding. For all k € B,

(1) Remove k from B, and enter k into D.

(2) Determine Y* corresponding to X*.

B)SetY'—Y'N Y.

@WEY' =@orbfX, Y)>Uorb gX, Y)>¢gorlb
h(X’, Y) > g or ub h{X*, Y*) < — ¢ for some i, then
remove k from D.

(5) Otherwise,

(a) Set x* := mid X",

(b) Determine y* corresponding to x.

(© If y € Y and g(x", ¥) < & and h(x’, y) €[ ¢,
+&/] for all i, then
(i) Update U «— min(U, f(x, y")).
(ii) Remove all r from D such that Ib (X, Y') > U.

1-3. Step 2. Convergence Test and Branching

(1) If D = @, terminate as the problem is infeasible.
(2) Otherwise,

(a) Select k & D such that Ib f(X", Y") = min,ep Ib f
X, Y).

(®) If y € Y and f(x', y)~1b f(X", Y) < ¢, and g
5 ¥) < & and b(x, y) € [-¢, +¢] for all i,
then terminate with (x*, y*) as a global solution.

(c) Otherwise,

() Select varable x; which has the maximum length
of interval in X*.

(i) Bisect X* normal to coordinate x;, getting X*
and X’ such that X* = X* U X', where p, q&D.

(iii) Remove k from D, and enter p and q into B.

(iv) Go to Step 1.

The operators Ib and ub in the above algorithm represent
lower bound and upper bound respectively, and they can be
calculated by any interval arithmetic method such as natural
inclusion, centered-form inclusion, efc. [Ratschek and Rokne,
1988]. The natural inclusion has been used in this work,
which is defined as follows.

[ab] +[c,d]=[a+c,b+d]
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[a,b]-[c,d] =[a~d, b—c]
[a, b] X [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b)/[c, d] = [min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/
d)] if 0&[c, d]

The parameters € and €, in the above algorithm are the feasi-
bility tolerance and the optimality tolerance respectively. The
values of & and €, should be set to a moderately small po-
sitive number based on the numerical scale of the problem.
The value of & in Step 1(4), however, can be set to zero if
the machine interval arithmetic [Ratschek and Rokne, 1988]
is used to calculate the lower and upper bounds of the con
straint functions.

The proposed algorithm applies branching (bisection) to
the x variables only. The finite e-convergence of the pro-
posed algorithm is guaranteed if we select x and y such that
the following property is satisfied.

Property (Y) : For any X‘ C X, as w(X®) := ub X* —1Ib
Xt — 0, w(Y")— 0.

This indicates that, for anywhere in the search space, if the
intervals of the x variables approach zero, then the intervals
of the y variables also approach zero. If this property is sat-
isfied, we can safely apply branching to the x variables
only. The convergence is guaranteed since the proof of con-
vergence presented by Ratschek and Rokne [1988] still ap-
plies to our case. If the above property is not satisfied, the
convergence is not guaranteed. Nevertheless, however, if only
the procedure converges, then the global optimality of the
obtained solution is still guaranteed. This is because the low-
er bound of the objective function is always valid with or
without Property (Y).

The simplest case in which the intervals of y can be de-
termined from those of x arises when the following type of
equality constraints are available.

Ay =b(x) o

where A is an n, X n, matrix, b is an n,-dimensional column
vector, and their elements are constants or functions of x
only. If the coefficient matrix A includes a singular matrix
for given intervals for x, ie., 0 € [Ib det A(X), ub det A
(X)], then Property (Y) is not satisfied. However, numerical
experiments show that the proposed algorithm can still con-
verge in such a case also. As mentioned before, if it con-
verges, the global optimality of the obtained solution is gua-
ranteed. If it fails to converge, we have to try a different set
of the y variables.

Chemical process optimization problems generally include
many equality constraints, and many of them are of the type
of Eq. (1). Furthermore, other types of equality constraints
and inequality constraints can also be used to calculate the
intervals of y from those of x. Therefore, the proposed algo-
rithm is considered suitable for chemical process optimization.

CASE STUDIES

The following examples were used in this work for per-
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formance evaluation.

(1) Design of a three stage process system with recycle
[Stephanoploulos and Westerberg, 1975]

(2) Reactor network design [Manousiouthakis and Sourlas,
1992]

(3) Heat exchanger network synthesis [Floudas and Ciric,
1989]

All local optima of these problems were found by an ex-
haustive search using local optimizer GINO [Winston, 1995],
and the interval analysis algorithm proposed in this paper
was programmed in FORTRAN and implemented on a Pen-
tium 100 MHz computer.
1. Example 1: Design of a Three Stage Process System with
Recycle

This is an example problem of Stephanopoulos and West-
erberg [1975] which minimizes the capital cost of a three
stage process with recycle as shown in Fig. 1. The problem
formulation is as follows.

min x26+x26+x04 —4x; +2x,+5%x5— x4
subject to

=-3x,+x,-3%x,=0

—2%,+%X;—2%5=0

4x,—x,=0

X +2x,<4

X, +X5<4

X3+X,<6

0<x<(3,4,4,22 6)

This problem has three local minima including the global
minimum as listed in Table 1. Vaidyanathan and El-Halwa-
gi [1994] indicated that the GBD algorithm of Floudas and
Pardalos [1990] converged to a wrong solution, and report-
ed that their interval analysis algorithm with the tolerance
on the width of the solution box £=0.001 and the accuracy
of the objective function inclusion 8=0.01 located the global
minimum consuming 436.4s on Sun SPARCstation 10. Ryoo
and Sahinidis [1995] reported that their underestimator branch
and bound algorithm with the optimality tolerance £=10"° locat-
ed the global minimum by solution of only one subproblem,

Xy

X X3 X3

X5 Xg

Fig. 1. A three stage process system with recycle.
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Table 1. Computation results of example 1

. Number of branching Convergence Objective Number of Computing
Algorithm Class variables criterion function value  subproblems time
Floudas and GBD 0 - -11.96 - -

Pardalos [1990] (wrong solution)
Vaidyanathan and  Interval analysis 6 e=10"° —13.402 - 436.4s on Sun
El-Halwagi [1994] 8=10"° SPARC:station 10
Ryoo and Underestimator 6 e=10"° -13.401904 1 0.5s on Sun
Sahinidis [1995] SPARCstation 2
This work Interval analysis 3 g=10"" —13.40187 769 0.11s on Pentium
£~10"* 100 MHz
Local 1: f= —4.258899 at x=(0, 0, 4, 0, 2, 0)

Local 2: f=—12.507887 at x=(0, 1.8, 3.6, 0.6, 0, 2.4)
Local 3: f=—13.401904 at x=(0.166667, 2, 4, 0.5, 0, 2)

and the computation time was 0.5s on Sun SPARCstation 2.

This problem has three equality constraints, and using these,
the intervals of variables Xx,, X5, and X, can be determined
by those of x,, x4, and x;. Exploiting this property, i.e., us-
ing x;, X4, and X5 as the branching variables (the x variables
in the algorithm), the proposed interval analysis branch and
bound algorithm with e=10"* and €,=10"* required 769 sub-
problems and computing time of 0.11s on Pentium 100 MHz
to find the global optimum. The results are summarized in
Table 1.
2. Example 2: Reactor Network Design

This is an example problem of Manousiouthakis and Sour-
las [1992] which optimizes a two reactor system as shown
in Fig. 2. The objective is to maximize the concentration of
component B in the output stream of reactor 2, satisfying a
given constraint on the capital cost. The problem formulation
is as follows.

min —x,

subject to
x~-1+k x;x5=0
X—-X +k X xs=0
X3 +X —1+kyx3x5=0
X=X+ X — X+ kX4 x=0

05 4 505
X3P +x0°<4

Table 2. Computation results of example 2

' kg
A—»B—>(

/ /

A—k-‘—>B—ka—>C

A ( A.B,C '/ A,B,C
S
Ca =1.0 X;= €y X,= Cgy
X3=CA2 X.;:Céz

%=V Xs= Vp

Fig. 2. A two reactor system.

0<x<(,1,1,1, 16, 16)

where k;=0.09755988, k,=0.99 k;, k;=0.0391908, and k,=0.90
ks;. This problem has three local minima as listed in Table
2. Local 1 corresponds to using reactor 1 only, local 2 cor-
responds to using reactor 2 only, and local 3, which is the
global optimum, corresponds to using both. Note that the
difference in the objective function value between local 2
(—0.388102) and local 3 (—0.388812) is extremely small.
Therefore, this problem will check the robustness of the test-
ed algorithm. The results are summarized in Table 2.

Ryoo and Sahinidis [1995] reported that their algorithm with
the optimality tolerance €=10"° located the global optimum
by solution of 179 subproblems, and the computation time
was 21s on Sun SPARCstation 2. In this work, the variables
xs and x4 were selected as the x variables, and x,, x,, X,, and
X, as the y variables. The implementation of the proposed al-
gorithm with £=10"* and £,=10"* required 20,651 subproblems
and computing time of 11.87s on Pentium 100 MHz to find

. Number of branching Convergence Objective Number of Computing
Algorithm Class variables criterion function value  subproblems time
Ryoo and Sahinidis  Underestimator 6 e=10"° —0.388812 179 21s on Sun
[1995] SPARCstation 2

This work Interval analysis 2 (-:,:107'1 —0.38881 20,651 11.87s on
€,~10"" Pentium 100 MHz
e=10"* ~0.3888 6,281  1.81s on Pentium
£,=10"° 100 MHz

Local 1: f=—-0.374617 at x=(0.390479, 0.390479, 0.374617, 0.374617, 16, 0)

Local 2: f=—0.388102 at x=(1, 0.392874, 0, 0.388102, 0, 16)

Local 3: f=—0.388812 at x=(0.771462, 0.516997, 0.204234, 0.388812, 3.036504, 5.096052)

Korean J. Ch. E.(Vol. 14, No. 4)
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the global optimum. The algorithm also located the global
optimum with £=10"* and £,=107, and in this case, the num-
ber of subproblem was 6,281, and the computing time was
1.81s.
3. Example 3: Heat Exchanger Network Synthesis

This is an example problem of Floudas and Ciric [1989]
which determines the optimal configuration of two heat ex-
changers for two hot streams and one cold stream. The su-
perstructure of the heat exchanger network is as shown in
Fig. 3. The problem formulation for minimizing the capital
cost is as follows.

min ~06
1200 800

25 [% (320-1) GO0—1) + (32042);(300—&)

~06

+1200 1000
02| 2GH-E00-t)+ T+ N7
subject to
f,+1£,=10 @
fi+fs=1; 3)
f,+1f;=1, @)

Fig. 3. A heat exchanger network superstructure.

Table 3. Computation results of example 3

fs+f,=1, ®)
fo+f=1, ©
100f, +t,f,=t,f, @)
100f, +t,fs=t,f, ®)

£,(t,—t,) =800

£, (t, — t;) = 1000

0<f<10

100 < ¢ < (290, 310, 290, 330)

In order to improve the numerical stability of this problem,
all the constraints were scaled using new variables defined
by the original variables divided by their upper limits, and
adjusting the coefficients of the equations in terms of the
new variables to the order of magnitude of one. The objec-
tive function was not scaled, because the optimality tolerance
can be adjusted independent of the feasibility tolerance in
the proposed algorithm. This problem has 3 local minima in-
cluding the global minimum as shown in Table 3. Local 1
corresponds to the parallel configuration, local 2 corresponds
to the 1-2 serial configuration, and local 3, which is the glo-
bal optimum, corresponds to the 2-1 serial configuration.

The above problem has 12 variabies and 9 equality con-
straints, and thus 3 degrees of freedom. However, it was im-
possible in this work to find 3 x variables and 11 y vari-
ables with which the algorithm converges. While many al-
ternatives exist, the following 6 variables were selected as
the x variables: f;, f,, t;, t,, t;, and t,.. The intervals of the
other 6 variables (the y variables) are determined as tight as
possible taking advantage of all of the equality and inequa-
lity constraints whenever possible. For example, when the
intervals of f;, fi, t, t,, t;, and t, are known, the intervals of
fi, £, fs, and f; can be determined by Egs. (3), (4), (7), and
(8), and those of f; and f; by Egs. (5) and (6). The intervals
of f, and f, can further be reduced by Eq. (2) as follows.

max(lb f;, 1—ub £,)<f, <min(ub f,, 1 - Ib f,)
max(lb f), 1 —ubf))<f, <min(ubf,, 1-1bf)

This process can decrease the extent of underestimation of
the objective function, and thus greatly improves the efficien-
cy of the branch and bound procedure without loss of glo-

Aleorith a Number of branching Convergence Objective Number of Computing
gonthm ass variables criterion function value  subproblems time
Ryoo and Sahinidis = Underestimator 8 e=10"° 12292.467132 1 2.2s on Sun
[1995] SPARCstation 2
This work Interval Analysis 6 g=10"* 12290. 57,041 34.70s on Pentium
£,=10" 100 MHz
g=10"" 12200. 4,591  2.64s on Pentium
£,=10" 100 MHz

Local 1: 0bj=24,172 at f=(3.8095, 6.1905, 3.8095, 6.1905, 0, 0, 3.8095, 6.1905), t=(100, 310, 100, 261)
Local 2: 0bj=22,970 at £=(10, 0, 10, 10, 10, 0, 0, 10), t=(100, 180, 180, 280)
Local 3: 0bj=12,292 at £=(0, 10, 10, 10, 0, 10, 10, 0), t=(200, 280, 100, 200)
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bal optimality.

Ryoo and Sahinidis [1995] reported that their algorithm
with the optimality tolerance £=10"° solved one subproblem
consuming 2.2s on Sun SPARCstation 2 to find the global
minimum. The proposed algorithm with £=10"* and €,=10"
required 57,041 subproblems and computing time of 34.70s
on Pentium 100 MHz. When more relaxed tolerances of &=
107 and €,=10" were used, the number of subproblems was
4,591, and the computing time was 2.64s. The results are sum
marized in Table 3.

DISCUSSION AND SUGGESTIONS

The underestimator branch and bound algorithms such as
the algorithm of Soland [1971] or Ryoo and Sahinidis [1995]
use a local optimizer to solve each subproblem. For such al-
gorithms, a very small value for the optimality tolerance can
be used without significant loss of efficiency, as shown by
Ryoo and Sahinidis [1995]. For the interval analysis branch
and bound algorithms such as proposed in this work, how-
ever, it is extremely inefficient to rely solely on interval analy-
sis to locate the global optimum within a strict accuracy. This
is because the objective function is evaluated at the midpoint
of the box for each subproblem. The experimental data in
Tables 2 and 3 indicate that significant improvement in the
efficiency of the proposed algorithm is obtained by relaxing
the feasibility and optimality tolerances. Therefore, a two tier
approach to global optimization is suggested, in which the
proposed interval analysis algorithm is used with relatively
large feasibility and optimality tolerances, and then the result
is used as a starting point for a local optimizer so that the ac-
curate global solution is obtained.

A significant advantage of the interval analysis algorithms
such as proposed in this paper is that the original problem
formulation can directly be used without any modifications
unlike the other algorithms such as GBD or the underestima-
tor algorithms which require major reformulation of the ori-
ginal problem to the form that is allowed, sometimes intro-
ducing many new substitution variables. Therefore, the pro-
posed algorithm is considered suitable for maintaining the size
of the given problem as small as possible.

A disadvantage of the interval analysis algorithms is that
the number of required subproblems is much larger than that
of the underestimator algorithms. The reason is that the low-
er bounds on the objective function calculated by interval anal-
ysis are not as tight as determined by the underestimator al-
gorithms. However, it is a great advantage that each sub-
problem can easily be solved without any local solver requir-
ing only small amounts of computer memory and CPU time.
Therefore, the proposed algorithm is considered suitable for
implementation by the massively parallel computing techni-
que, which is suggested as future work. Futhermore, develop-
ment of a new method for calculating tighter lower bounds
is also suggested. ‘

Most importantly, the efficiency of any deterministic algo-
rithm based on the branch and bound technique mainly de-
pends on the number of branching variables because of the

inevitable NP-hardness of the nonconvex NLP problems. The

proposed algorithm is considered the most suitable for reduc-
ing the number of branching variables. However, the meth-
od of reducing the number of branching variables presented
in this paper, which uses the equality constraints in the form
of Eq. (1), is just the simplest case. Development of methods
for using other types of equality and inequality constraints is
suggested as future work.

CONCLUSION

An interval analysis branch and bound algorithm has been
proposed which is suitable for large nonconvex nonlinear pro-
grams which have many equality constraints. Although the
nonlinear equality constraints are generally a burden to the
other algorithms, this algorithm exploits them to reduce the
number of branching variables, which is the actual measure
of the size of a problem. Therefore, the algorithm is con-
sidered suitable for chemical process optimization problems
which are large but have relatively small degrees of freedom.
The proposed algorithm should be used with moderately small
feasibility and optimality tolerances, and the final solution
can be refined by a local optimizer. Case studies indicate
that the proposed algorithm can be applied to global optimi-
zation of small chemical processes. Application to larger pro-
cesses will be possible in the future when significant improve-
ment in the computing power is achieved.
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