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Abstract — The Guggenheim nonrandom lattice-hole theory for open chain molecules was extensively studied re-
cently and a new rigorous equation of state (EOS) was proposed by the present authors. A method was also pro-
posed for the estimation of EOS parameters based on a group contribution (GC) applicable to large molecules. In
the present study, the formalism was extended to closed chain molecules and small molecules based on the Stav-
erman combinatory. Using the new method properties of alkanes, ethers, ketons, alcohols and their mixtures were
predicted. Since the present method is an EOS method, it applies to pure systems as well as mixtures and to high
pressure systems. Flash calculation results indicate that the present method is as accurate as the UNIFAC method.
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INTRODUCTION

Although some limited success has been achieved, it is still
difficult to predict thermophysical properties of mixtures sole-
ly in terms of intermolecular forces and the molecular struc-
ture of pure components. Taking a step forward, the present
authors recently formulated a fundamental concept of a group
contribution method for thermodynamic properties of single-
and multi-component real fluids [Yoo and Lee, 1996; Yoo et
al., 1996, 1997]. The approach is based on a recent rigorous
model for general r-mer fluids [You et al., 1993, 1994a,b,c].
The authors introduced a postulate that functional group in-
teractions between molecules should be identical whether the
groups are in pure fluids or in multi-component mixtures. The
approach was found predictive for simultaneously estimating
various physical properties of pure substances, and vapor-lig-
uid, liquid-liquid and vapor-solid equilibria of real mixtures.

The basic scheme of the group contribution method invol-
ves the determination of molecular parameters from group
parameters. The intermolecular interaction energy is an aver-
age of inter-group interactions. The molecular size and surface
area are the sum of corresponding group properties. However,
the previous approach [Yoo and Lee, 1996; Yoo et al., 1996,
1997] satisfied the summation conditions only approximately.
Subsequently Lee and Yoo [1997] proposed a more general
scheme involving the group bulkiness factor. The present study
explores the consequences of the generalization.

APPROXIMATE LATTICE-HOLE THEORY

As we discussed in detail elsewhere [You et al., 1993,
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1994a,b,c, 1995a,b], the lattice-hole description of fluids is
developed for a lattice space of the coordination number z
and of the unit cell size, V4. Molecules of component i oc-
cupy r; sites and interact with a neighboring segment of mole-
cules or holes. The effective surface area of species i for in-
teraction is q; so that zq, is the number of external contacts.
The r; values for holes are assumed unity.

The configurational lattice-hole partition function of Gug-
genheim [1952] for linear or branched chain r-mers is based
on the relation,

M

The present authors [You et al., 1994b] recently derived a new
approximate configurational Helmholtz free energy by expand-
ing the full Guggenheim partition function. The resulting e-
quation of state (EOS) from the approximate Helmholtz free
energy was found adequate in calculating various phase equilib-
rium properties of pure fluids and complex mixtures [You et al.,
1993, 1994 a,bc].

In the general scheme of Lee and Yoo [1997] the open chain
assumption was relaxed using the Staverman formula [Staver-
man, 1950; Smirnova and Victorov, 1987]. In the method re-
lation Eq. (1) is extended by introducing the ‘the bulkiness
factor, [,

zq; =(z—2)r; +2

zq; =(z-2)r; +2(1-1) 2)

Following the similar derivation for the Guggenheim com-
binatory without the bulkiness factor [You et al., 1994b], a
new expression of Helmholtz free energy stemming from the
Staverman formula can be obtained. After some algebra, the
Helmbholtz free energy expression is obtained,
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BA® = ENi% + ENJN, — SN, ~NeInN; +N, + EN; 11N,
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where B=1/kT, and N, and N; (i>0) are the number of holes
and molecular species. qy (=Zxq;), 1y (=Zx1;) and I, (=Zx1)
are mole fraction averages of relevant properties for the molec-
ular species. The 6 (=26) is the total surface area fraction of
molecules and p (=Zr,N/[Nop+ZrN}) is a reduced density. Ex-
pressions for other thermodynamic properties may also be
obtained. We set z=10 and N,V;z=9.75 cm’mol "' where N, is
Avogadro's number. Thus parameters for pure subtances are
1, & and /. For binary mixtures an adjustable binary interac-
tion parameter, A;, is defined by g=(e.g,)"*(1-1y).

GROUP CONTRIBUTION METHODS BASED
ON EOS

1. Basic Framework

The basic framework for determining molecular parameters
from corresponding group parameters is that the intermolec-
ular interaction energy is an average of inter-group interac-
tions and that molecular size and surface area are the sum of
corresponding group properties. Thus r; and &; are expressed
in terms of the group characteristics r’ and rj [Yoo and Lee,
1996; Yoo et al., 1996, 1997].

= Svrf ©)
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where v; is the number of group j in species i. r and g are
the segment number and the surface area parameter of group
j. 6% is the surface area fraction of group k in species i. g
is the interaction energy parameter between group k and /.

The temperature dependence of these parameters 1 and &
is represented by

T,
er=d]‘-7+e]‘-7(I‘—T0)+ff["['ln?° +T—T0J 8)

]

T
€5/k =aG +bJ(T-To) +c [nn?" +T—T0J ©

where T, is a reference temperature (298.15 K). The function-
al form defined above is adopted from the theory proposed
by a previous investigator [Kehiaian et al., 1978]. In principle,
the numerical parameters can be determined from experimen-
tal pVT and vapor pressure data of pure substances, and the
phase equilibrium data of mixtures. A; is no longer required
in the group contribution method.

In the determination of group parameters, r; and &, lat-
tice theories require that r; and q; satisfy Eq. (1) if the bulk-
iness factor is set to zero. High and Danner [1990] separate-
ly determined r{ and qf for each group without introducing
the molecular bulkiness factor. Yoo and Lee [1996] assum-
ed g is proportional to r{. This approach leads to a viola-
tion that the resulting 1; and q; as a sum of group properties
do not satisfy Eq. (1). The summation condition for ¢; may be
written as,

4= gvﬁqf (10)

The freedom in choosing both 1’ and qf is allowed only with
the nozero bulkiness factor as in Smimova and Victorov [1987].
2. Case I: g=r and =0

This condition requires that Egs. (1), (6) and (10) be sat-
isfied simultaneously. Since the effect of the molecular buik-
iness factor is not significant for a large chain molecule, q'=
17 becomes an approximate solution, which is convenient. This
assumption also avoids the complexity associated with the bulle
iness factor. This relation was the basis for previous works
[Yoo and Lee, 1996; Yoo et al., 1996] and was tested exten-
sively [Yoo et al., 1997]. Various experimental phase equili-
bria behaviors were predicited. However, they produced large
errors for the hydrocarbons of low carbon number (ie., C,
and lower) as expected.
3. Case II: /=0 and I,G =n,;

Instead of case I, a new relation was established to satis-
fy Eq. (1) on the molecular level. On the group level Eq. (2)
is written for qf for linear or branched chains as

Zin'_-(Z—Z)l',«G‘*‘(z_ne,i) (11)

where n,; is the number of branches in a group i [Lee and
Yoo, 1997]. Thus, for example, n.=1 for end groups and n,;
=2 for internal groups in a linear chain. Although the argu-
ment here is not exact for groups in aromatics and cyclic com-
pounds, the idea was extended empirically to such compounds.
Based on this relation, new sets of parameters were determined
from existing data resources [Timmermans, 1950; Gmehling
et al., 1980] and presented in Tables 1 and 2.
4. Case III: 1+0

In the present case we have the freedom of chosing two
out of three parameters, r7, q,-G and I, Case II may be regard-
ed as a special case for open chains. Abusleme and Vera [1985]
proposed a method to predetermine . Then qf is calculated
by the relation,

z2qf =(z-2f+(2~1°) (12)

The summation condition also applies to /. The consequences
of this case have yet to be explored.
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Table 1. Temperature coefficients for the group size parame-
ter defined by Eq. (8)

Group df; ef tJG Range (K)
CH;- 2.5718 —0.0002716  0.002181  250-550
-CH,- 1.5721 -0.0002531 0.000182  250-550
-CH,CH- 3.6887 —0.0003520  0.002024  250-550
OH- 1.0237 0.006175 0.008315  250-550
-CH,- (alcoholic) 1.7037 —0.0006369  0.0006194 250-550
CH;COCH,- 5.7414 0.002418 0.003990  280-510
-CH,COCH,- 4.6687 0.001233 0.0005835 330-540
CH,OCH,- 4.8392 0.0002767 0.0008777 260490
-CH,OCH,- 3.9596 0.0003899 0.002218  250-570
-CH< 0.4646 —0.0001526 —0.0000553 280-540

Table 2. Temperature coefficients for the group-group inter-
action energy defined by Eq. (9)

Group-Group ag by 5 R?Inge

CH;- -CH,4 720002 0.0605 02353 250-550
CH;- -CH,- 103.5676 —0.0449 —0.2455 250-550
CHs- -CH,CH- 833604 0.1663 1.2005 250-550
CH;- -OH- 1451020 —0.3984 1.0499 250-550
CH- CH,COCH,- 110.6718 —0.0439 —0.1011 250-510
CHs- -CH,COCH,~- 131.0306 —0.0261 —0.1009 330-540
CH;- CH,OCH,-  106.1215 —0.0238 —0.0372 280-510
CH;- -CH,OCH,- 100.8041 —0.0318 —0.1728 330-540
CH;- -CH< 267.6021 —0.0334 —1.6012 240-560
-CH,- -CH»- 1052091 0.1517 0.2598 250-550
-CH,- -CH,CH- 105.8167 —0.0619 —0.4234 250-550
-CH,- -OB- 247.6686 —2.0408 —5.9744 250-550
-CH,- CH;COCH,- 1112109 0.0023 —0.0062 280-410
-CH, -CH,COCH,- 109.0029 0.1262 03102 330-430
-CH,- CH,OCH,- 1034076 0.0954 0.1453 280-510
-CHy- -CH,OCH,- 989180 0.1734 0.3692 330-540
-CH,- -CH< 1154852 0.8807 1.6680 240-560
-CH,CH-  -CH.CH- 1021526 0.0227 —0.9038 250-550
-OH- -OH- 1068.1043 —3.9862 —3.5600 250-550

CH;COCH,- CH;COCH,- 140.4363 —0.0480 —0.1099 250-510
-CH,COCH,- -CH,COCH,- 145.6958 —0.0153 —0.0537 330-540
CH,OCH,- CH,OCH,- 1015714 -0.0226 —0.0989 280-510
-CH,OCH,- -CH,OCH,- 143.4861 —0.0089 —0.0552 330-540
>CH- -CH< 281.5604 0.0543 —0.8205 240-560

RESULTS AND DISCUSSION

Among three cases discussed, the applicability of the case
I (,#0 and l=n.;) is presented in this study. Fitted values
of temperature coefficients for Eqs. (8) and (9) are listed in
Table 1 and 2. Using these parameters, we predicted the vapor
pressure and saturated densities of vapor and liquid phases of n-
alkanes (C;-C;). An expert system based approach was pro-
posed by Lee et al. [1993] for division of molecules into
groups. We found a larger group gives better results for mo-
lecules with double bond, ethers, and ketones. The predicted
results were compared with the experimental data [Reid et al.,
1986] in Figs. 1 and 2. Except for the critical region the meth-
od is seen to yield quantitative agreement. The saturated lig-
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Fig. 1. Predicted vapor pressure of pure n-alkanes.
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Fig. 2. Predicted saturated densities of pure n-alkanes.

uid-phase densities of four pure ethers (i.e., dibutyl-, diethyl-,
ethylbuthyl- and ethylpropyl-ethers) were predicted by the mod-
el and compared with the experimental data [Reid et al., 1986]
in Fig. 3.

In general, the traditional group contribution approaches in-
cluding the present method cannot differentiate isomers com-
posed of the same functional groups. For four dimethylhexane
isomers (i.e., 2,3-, 2,4-, 2,5-, and 3,4-dimethylhexanes), the va-
por pressures [Reid et al., 1986] were illustratively predicted.
As shown in Fig. 4 the vapor pressures of these dimethylhex-
anes are not much different; therefore predicted values show
reasonable agreement.

Results for cases I and II are compared in Fig. 5 for pro-
pane/n-decane system [Gmehling et al., 1980]. It was noted
that case I corresponds to the large molecule limit. Therefore,
properties of a small molecule like propane are not adequate-
ly represented. Such difficulties are seen to have been remov-
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ed in case IL

The applicability of the present method is illustrated for
different types of mixtures. Average absolute errors are sum-
marized in Table 3. The 1-butanol-n-heptane system is seen
to show large errors for liquid composition. The trend is expect-
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Fig. 3. Predicted saturated liquid densities of pure ethers.
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Fig. 4. Predicted vapor pressure of pure dimethylhexanes.

Table 3. Errors for flash calculation by the present method

ed for strongly polar/nonpolar systems due to the neglect
of specific interactions in the present method. For other sys-
tems the results are better. The errors in vapor mole fraction
are comparable with those by UNIFAC {Sandler, 1993]. It
should be noted that the present method applies to pure sys-
tems and mixtures while the UNIFAC method applies to mix-
tures only.

As an example of nonpolar/nonpolar systems, results for
isothermal P-x-y data [Gmehling et al., 1980] of n-octane/n-
heptane system are shown in Fig. 6. The prediction result is
based on parameters given in Tables 1 and 2. As a polar/po-
lar system, prediction was made for isobaric T-x-y data of a
1-decanol/1-octanol system [Gmehling et al., 1980] as shown
in Fig. 7. The present GC-EOS predicts accurately the polar/
polar systems. The method is also applicable to polar/nonpolar
systems as shown by Fig. 8. The predicted and experimental
isothermal P-x-y data of an n-dibutylether/n-heptane system
[Gmehling et al., 1980] show close agreement.

For isomers made up by the same group bonded at a differ-
ent position, different numerical values are given for the group
was bonded to end in a molecule and bonded to inside skele-
tal position as shown in Table 1 and 2. In case of dibutyle-
ther, numerical value of ether group was the case of inside
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Fig. 5. Predicted isothermal P-x-y data by the previous and
present revised GC parameters for propane/n-decane
system at 344.26 K.

System T/K P/kPa AADX AADY Ref.
n-pentane-propane 344.26 292.3-2663.4 - .021 .012 a
n-octane-n-heptane 328.15 8.5-23.1 .020 .023 b
isopentane-propane 273.15 50.7-48.1 .051 037 a
n-hexane-2.3-dibutylbutane 298.15 20.2-31.3 013 012 b
1-hexadecene-n-heptane 377.15-437.15 2.7 .050 .023 b
1-butanol-n-heptane 303.15 4.6-80.5 135 .002 b
1-hexanol-1-octanol 370.15-400.15 2.7 .039 .014 b
2-butanone-n-hexane 333.15 66.7-80.2 .073 .049 b
dibuthylether-n-heptane 363.15 26.5-68.4 .002 .024 b

a: Knapp et al. [1982], b: Gmehling et al. [1980]
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Fig. 6. Predicted isothermal P-x-y equilibrium of n-octane/n-
heptane system at 328 K.
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Fig. 7. Predicted isobaric T-x-y equilibria of 1-decanol/1-oc-
tanol system.

bonding. By this way, it was possible to predict more accu-
rately then the case of present work [Yoo et al., 1996]. As
a final example, the isothermal x-y equilibrium of 2-butanone/
n-hexane system was shown in Fig. 9. Even for an azeotropic
system, the model is seen to give good results.

CONCLUSION

The previously proposed group contribution method for EOS
parameters of large open chain molecules was extended to
accommodate small molecules and closed chain molecules.
The summation condition that segment numbers and surface
area parameters for groups should correctly add up to give cor-
responding properties for molecules can be met by introduc-
ing bulkiness factors. A method for predeterming the group
bulkiness factor was proposed for open chain molecules. Us-
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Fig. 8. Predicted isothermal P-x-y equilibrium of dibutylether/
n-heptane system at 363.15 K.
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Fig. 9. Predicted x-y equilibrium of 2-butanone/n-hexane sys-
tem at 333.15 K.

ing the new method, we predicted properties of alkanes, ethers,
ketons, alcohols and their mixtures. Flash calculation results
indicate that the present method is as accurate as the UNIFAC
method.
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