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Abstract — The purpose of this research was to investigate the extent to which the thermal conductivity of non-
Newtonian fluids is affected by fluid motion, and then the effect of this shear-rate-dependent thermal conductivity,
measured in Lee [1995], on the heat transfer for a typical convective system. Such information would have impor-
tant implications in the design and analysis of non-Newtonian thermal systems such as are found in food proces-
sing operations, polymer processing, paint manufacturing, biological systems and many others. A simple parallel
plate flow model with temperature-independent properties gave increases in heat transfer on the order of 30-80 %
compared to the heat transfer with shear-rate-independent thermal conductivity in Newtonian fluid flow over the en-
tire temperature range (20-50 °C) of CMC solutions depending on the inlet average velocity due to the effect of the

shear-rate-dependent thermal conductivity.
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INTRODUCTION

Non-Newtonian or rheological fluids are used in many prac-
tical applications. This can be illustrated by listing a number
of such fluids. Some examples: paints, pharmaceuticals, inks,
food products, suspensions, blood and other body fluids, poly-
mer solutions, coal-water mixtures, etc. Most of these belong
to the class of purely viscous non-Newtonian fluids that are
defined as those fluids in which the shear stress in the fluid
is a function only of the shear rate (or velocity gradient). For
non-Newtonian fluids, this functional relationship is non-linear.
Those fluids that have a linear relationship between the shear
stress and shear rate are defined as Newtonian fluids.

There has been a renewed interest in recent years in ob-
taining more quantitative information about non-Newtonian
fluids in order to better understand their physical nature and
to optimize their use in practical applications. Many studies
have been carried out to investigate their viscous properties,

" i.e., the above-mentioned relation between the shear stress
and shear rate. Such information is required in order to be
able to solve the basic equations of fluid motion.

Most of the investigations mentioned above, however, have
dealt with isothermal systems. When temperature differences
exist within a system, it is necessary to solve the equations
of fluids along with the fluid energy equation in order to de-
termine the internal or boundary heat transfer. In this case, a
knowledge of the thermal properties is required, and, in par-
ticular, the thermal conductivity of the fluid must be known.
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Although the viscous properties of non-Newtonian fluids
have been, and continue to be, thoroughly investigated, this
is not the case for the fluid thermal conductivities. A few in-
vestigations have been reported for polymer mixtures which
have indicated that for low polymer concentrations, less than
1% by weight, the thermal conductivity of the solution is the
same as the solvent. At larger concentrations, the thermal con-
ductivity appears to increase slightly.

The most interesting aspect of the previous investigations,
however, is that all of the measurements have been made un-
der static conditions, i.e., the fluid was stationary when the
thermal conductivities were measured. If there are significant
non-Newtonian effects on the thermal conductivity, then the
measurements must be made over an appropriate shear rate
range when the fluid is moving with respect to a stationary
boundary.

A few investigations have been made to study the influ-
ence of shear rate on the thermal conductivity of polymer so-
lutions, but the results have been confusing and contradictory.
Cocci and Picot [1973] and Chitrangad and Picot [1981] ob-
served that at low shear rates the thermal conductivity increas-
ed with shear rate, reached a maximum and then decreased
with shear rate. The thermal conductivity change from the min-
imum to the maximum was on the order of 20 %.

Conversely, Wallace et al. [1985] found that depending on
the polymer molecular weight, there was either an increase
of thermal conductivity with shear rate and a leveling off, or
a decrease in thermal conductivity with shear rate and a lev-
eling off. Thermal conductivity changes with shear rate up to
55 % were reported.

When investigating the influence of convective heat trans-
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fer on typical thermal systems, one generally assumes that
the thermophysical properties of fluids are constant. How-
ever, such an assumption could result in significant errors in
the case where it is applied to the actual heat transfer systems.
This research concemns the experimental determination of the
thermal conductivity of non-Newtonian fluids under condi-
tions when the liquid is in motion and the measured values
of the thermal conductivity are used to calculate heat flows
under a variety of conditions. In this research, a simple con-
vection heat transfer problem is considered to compare the
change in heat flow for a non-Newtonian fluid if the ther-
mal conductivity is taken as a function of shear rate as deter-
mined by the present experiments. This heat flow is then com-
pared with the heat flow when the thermal conductivity is con-
sidered to be independent of shear rate.

Central to the problem of duct design is the prediction of
pressure drop and heat transfer in the duct passages. In order
to make such predictions for non-Newtonian fluids, it is ne-
cessary to know the relation between the viscous and thermal
properties of the fluid and the wall shear rate. This is done
by assuming constitutive equations which relate the local ap-
parent viscosity and thermal conductivity of the fluid to the
local shear rate. The power-law equation is an often used con-
stitutive equation of viscosity; the constitutive equation of
thermal conductivity will be developed and discussed later in
the analysis section.

An understanding of fully developed laminar flow in ducts
can be acquired by investigating a simple flow situation. It
was discussed previously that the viscous and thermal proper-
ties are a rather strong function of temperature for many power-
law fluids. Therefore, special caution should be made in using
constant property solutions for actual design calculations. None-
theless, the concept of fully developed flow is a useful one for
conceptual purposes and for isolating the significant physical
processes in a duct flow system.

Previous works of heat transfer analysis regarding heat ex-
changer duct flows with shear-rate-dependent thermal conduc-
tivity have not been found to date in the literature. No direct
comparison can be made with literature values because no
reported values of such solutions are available.

The purpose of this study was to measure the viscous prop-
erties of a non-Newtonian fluid such as a CMC solution, a
purely viscous fluid. Also, to be measured were the thermal con-
ductivities of the same fluid under dynamic conditions over
a shear rate range, where the viscous properties change signi-
ficantly with shear rate, in order to examine any effect of the
thermal conductivity in a shear field on the heat transfer of a
typical convective thermal system. If significant shear rate
dependencies for the thermal conductivities are observed, this
would have important implications in the analyses of non-
Newtonian thermal systems.

VISCOUS PROPERTY MEASUREMENTS

1. Description of Pseudoplastic Fluids

By examining the viscous properties of non-Newtonian
fluids, one can obtain some knowledge about the proposed
measurement technique for thermal conductivities. Fig. 1 is
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Fig. 1. Typical flow curve for a pseudoplastic fluid.

a sketch of a flow curve of a typical pseudoplastic fluid. The
ordinate is the logarithm of the apparent viscosity which is
the ratio of the shear stress to the shear rate and the abscis-
sa is the logarithm of the shear rate. For Newtonian fluids, 7
=17 is the constitutive equation with the dynamic viscosity,
N., as the fluid property. Referring to Fig. 1, at low shear
rates the fluid exhibits a Newtonian viscosity which is inde-
pendent of the flow field or the shear rate and is a horizon-
tal line on the flow curve. However, the apparent viscosity
curve decreases in the transition region and becomes log linear
in the power-law region at higher shear rates. Fig. 1 is indica-
tive of the behavior of many purely viscous pseudoplastic
fluids. According to the curve in Fig. 1 it is seen that at low-
er shear rates (region I) the fluid is Newtonian (n,=mn.=con-
stant). The viscosity at zero shear rate is called the zero shear
rate viscosity. At higher shear rates (region II), the apparent
viscosity starts to decrease until it turns into a straight line
(region III). In the lower shear rate range, the fluid is Newto-
nian (7,=7) and in the higher shear rate range the fluid be-
haves as a power-law fluid (n,=Ky" ™).

The purpose of this investigation was to measure the ther-
mal conductivity of non-Newtonian fluids in the power-law re-
gion to determine if this thermal property is a function of shear
rate as is another transport property, the dynamic viscosity.
2. Method of Viscous Property Measurements

The falling needle viscometer (FNV) was used to measure
the apparent viscosities of non-Newtonian fluids. The FNV
consists of a slim hollow needle with hemispherical ends in-
serted into the needle launcher and falling through the test
fluid under the influence of gravity in a cylindrical container.
The longitudinal axes of the needle and the container are par-
allel to the gravitational direction. After the needle velocity
reaches a constant or terminal value, the needle velocity in
the container may be determined either by locating the small
magnet in the downward needle tip and using Hall sensors
on the measurement lines for opaque fluids or by visually meas-
uring the elapsed time, with a stop watch, for the needle to trav-
el between two lines drawn on the outside of the container.
Therefore, the only experimental measurements which are per-
formed to determine any of the rheological properties of the
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experimental fluids are the temperature of the system and
an elapsed time [Park and Irvine, 1988]. These measurements
can then be converted into the final rheological properties such
as the flow index, fluid consistency, zero shear rate viscos-
ity, and apparent viscosity by the appropriate methods as de-
scribed in Park and Irvine [1988] and Park [1984].

To determine flow curves, a graph must be plotted of In(p,
—p;) on the ordinate and InU, on the abscissa. U, denotes the
measured terminal velocity of the falling needle, and p, and
p: denote the density of the falling needle and density of the
fluid, respectively. If the fluid is a Newtonian or power-law
fluid over the operating shear rate range of the needle runs,
the data will form a straight line. The slope of this line will
be the value of the flow index, n and the ordinate intercept
at InU, will yield the flow consistency, K.

The measurements exhibited in Fig. 2 were conducted by
Lee [1995] with a falling needle viscometer by following the
procedures of Park and Irvine [1988]. Fig. 2 indicates the
curves of apparent viscosity plotted against shear rate for the
CMC solutions measured in Lee [1995] and also shows that
if y>100 (1/s), the apparent viscosity is in the power-law
range. A careful investigation of Fig. 2 shows that the power-
law equation is only applicable at high shear rates where the
straight line portion of the curve exists. The rheological prop-
erties of the CMC solutions, using the power-law model as
mentioned above, are presented in Table 1. Having determined
the power-law region for the polymer solutions (CMC 1500,
2500, and 5000 wppm), we then assembled an experiment to
measure the thermal conductivities in these shear rate regions.
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Fig. 2, Apparent viscosity of CMC solutions (1500, 2500, and
5000 wppm) plotted against shear rate.

Table 1. Rheological properties for power-law model

Solutions Power-law model

N 2
(wppm) o (Ns/m) K (Ns/m?)
CMC 1500  0.0329 0.8350 0.0522
CMC 2500  0.0949 0.6941 0.1839
CMC 5000 05116 0.6733 0.6787
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EXPERIMENTAL DEVICE FOR THERMAL
CONDUCTIVITY MEASUREMENTS

1. General Description of Experimental Apparatus and De-
sign Considerations

Thermal conductivities in a shear field were measured over
approximately the same power-law shear rate range as in Fig.
2 where the viscous properties show strong non-Newtonian ef-
fects. For the purpose of performing this, an experimental set-
up such as in Fig. 3 was utilized.

Fig. 3 shows a schematic of a coaxial cylinder system where
the inner cylinder is quiescent and the outer cylinder is rotating.
The experimental fluid is located in the annular gap, which is
1.25 mm. Thus a Couette type flow is built up between the
cylinders if the gap width is small enough compared to the
radius of the inner cylinder. The inner cylinder consists of a
thermal probe containing a heating coil. The dual cylinder as-
sembly was located in a constant temperature bath to keep
the outer cylinder at a known and constant temperature. The
temperature difference across the gap was about 10°C.

The apparatus for the measurements of non-Newtonian ther-
mal conductivities in a shear field is shown in Fig. 4. This
system consists of a constant temperature bath, a rotating out-
er cylinder, stationary inner cylinder, digital multimeter, pow-
er supply, rotating mechanism and calibrated thermocouples,
T, and T, to measure the inner cylinder temperature. The re-
quired measurements are the wall temperature difference be-
tween the inner and the outer cylinder (AT), heat flow rate
(Q), length of the cylinder (J), ratio of the outer cylinder to
the inner cylinder radius (r,/r;), wire resistance (Ry), wire vol-
tage (E), wire current (I), and angular velocity of the outer cyl-
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Fig. 3. Schematic of experimental apparatus for thermal con-
ductivity measurements in a shear field.
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Fig. 4. Schematic of the thermal conductivity cell.

inder (w,).

Possible uncertainty in the shear rate measurements could
be caused by the fact that the apparent viscosity of the fluid
changes across the gap due to the temperature gradient from
the inner to the outer cylinder. This would cause the shear
rate to decrease from the inner to the outer cylinder, which is
opposite in effect to the shear rate change caused by curvature.
This thermal shear rate change is the same order of the mag-
nitude as the curvature change and therefore would tend to
reduce the overall shear rate uncertainty. This cancellation
of errors was not applied, however, and the shear rate present-
ed and considered in the error analysis is the average between
the cylinder considering only the curvature effect.

During an experimental run, the measurements includes
the rotational velocity of the outer cylinder, the temperature
difference between the inner and the outer cylinder, and the
heat input from the power supply {Lee, 1995].

2. Derivation of Working Equations

Many viscous liquids exhibit a significant amount of vis-
cous dissipation that causes an increase in fluid temperatures,
thereby affecting the heat transfer rate at the wall. Normally
the Brinkman number is used as a measure of viscous dissi-
pation and the extent to which viscous heating is important
relative to the heat flow resulting from the temperature dif-
ference (Timer — Tower).- In general, a Brinkman number on the
order of 1 indicates significant viscous dissipation.

The effect of viscous heating in both Newtonian and non-
Newtonian fluids could have a significant effect in the coax-
ial rotating cylinder system used in the present experiment.
Thus it must be determined that the Brinkman number is
much less than unity. Brinkman numbers have been calculat-
ed over the operating region of the present experiment, and

the maximum power-law Brinkman number was 0.024. Thus
no obvious viscous dissipation effects are to be expected in
the operating power-law region.

If free convection could occur between the two vertical cyl-
inders, the thermal conductivity measurements would be in
error. As reported by Eckert and Drake [1972], there is a
critical Rayleigh number of 1000 below which heat transfer
between the two cylinders takes place only by pure conduc-
tion. In the present experiment, the maximum Rayleigh num-
ber occurs for the lowest viscosity fluid, i.e., water. In this wa-
ter case, the maximum Rayleigh number was 261 and there-
fore no free convection effects are to be expected. That this
was the case will be illustrated when the water thermal con-
ductivity measurements are presented below.

In order to specify an energy equation for a flowing fluid,
it is necessary to have a law which describes the heat conduc-
tion in the fluid. If Fourier's law of heat conduction is used, i.e.,

dT
= —K-— 1
q=—k— @

The question to be addressed is whether in Eq. (1) k is a
function of shear rate. Assume the temperature-independent
thermal conductivity of the non-Newtonian fluid is a func-
tion of shear rate only (k(y)) if there is no viscous dissipa-
tion. Using Fourier's law, the heat flow rate will be describ-
ed with the following equation

Q=-k(em < @)
T

where y= r% [%] Integration of Eq. (2) can be written as

follows;
;o e __ %o 28 v
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where the uncertainty of the temperature difference effect (10
°C) on the thermal conductivity is about 2 %, whose value
results in the measurement error compared to the standard lit-
erature value of water.

Since the shear rate in the cylindrical gap is essentially con-
stant in Couette flow, k(y) can be taken out from the integral

in Eq. (3) giving

[rar
k=
LT, -T,
T -T,)
anrr—‘_'
= 2a, -T,) @

Eq. (4) is the working equation for the present apparatus.
The remainder of this section will deal with the correctness
of this working equation.
3. Stability of the Non-Newtonian Fluid Flow

It is well known that under certain circumstances second-
ary flows can occur in rotating Couette flows [Taylor, 1923].

Korean J. Chem. Eng.(Vol. 15, No. 3)
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These flows would increase the measured thermal conductiv-
ities; therefore an investigation was carried out as to the pos-
sibility of their occurrence. At Taylor numbers above a crit-
ical value based on angular velocity of the rotating cylinder,
the average gap radius, and the cylinder gap, a secondary flow
between two concentric cylinders can occur depending upon
which cylinder is rotating. However, when the inner cylinder
is at rest and the outer one is rotating, the motion in a viscous
Newtonian fluid under these circumstances was shown to be al-
ways stable even with very high speeds of the outer cylinder.
The present range of the Taylor numbers over the three
concentrations used (CMC 1500, 2500, and 5000 wppm) was
less than the critical Taylor numbers from the data of gap
width, flow index, fluid density, and fluid consistency as de-
scribed in Sinevic et al. [1986] for CMC solutions and Lar-
son [1989] for Separan solutions. Therefore, the flow of the
fluids in the present experiments is believed to be stable even
though the Ta, number is for a rotating inner cylinder. A
further confirmation of the flow stability can be found in the
work of Park et al. [1990]. In this study the apparent viscos-
ity vs. shear rate was measured for a 2000 wppm water solu-
tion of Separan. For a rotating cylinder viscometer and fall-
ing needle viscometer, the data from the two - instruments
showed excellent agreement even though the falling needle
viscometer is a non-rotating system. In addition, the tempera-
ture gradient direction with respect to the centrifugal force is
such as to result in a stable thermal system [Lee, 1995].

EXPERIMENTAL RESULTS FOR NEWTONIAN
AND NON-NEWTONIAN FLUIDS

A series of measurements were made on distilled water to
calibrate the apparatus before the thermal conductivity meas-
urements of the non-Newtonian fluids were conducted. The
objective of these measurements was to determine that the
apparatus could measure the well documented values of wa-
ter thermal conductivity and to verify that there were no ob-
vious shear rate effects on the water data since water is a New-
tonian fluid, and that no appreciable free convection effects
were present.

Fig. 5 reveals the results of the water measurements. Three
things are apparent in the figure. First, the water thermal con-
ductivity data agree within 2 % of the reported values of Haar
et al. [1984] at shear rates greater than approximately 100 s™*
and thus no free convection effects are apparent. Second,
there is no definite shear rate effect over the shear rate range
of interest. Third, at low shear rates the thermal conductivity
values are low. An investigation of this latter effect indicated
that the reason was a low heat transfer coefficient at the outer
cylinder at low rotational speeds. This caused the outer cylin-
der temperature to be higher than the bath temperature. At-
taching several longitudinal convecting fins to the outer cyl-
inder to increase the convective heat transfer coefficient solv-
ed this problem. This resulted in moving the low thermal con-
ductivity data outside the range of the operating shear rate (60
t0 900 s7%).

Figs. 6-9 show the curves of thermal conductivity vs. shear
rate for CMC 7H4 5000, 2500, and 1500 wppm solutions at
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Fig. 6. Thermal conductivity vs. shear rate for CMC solutions
(5000, 2500, and 1500 wppm) at 20 °C.

temperatures 20, 30, 40 and 50°C, respectively. The thermal
conductivity increased significantly with shear rate on a fixed
temperature unlike the tendency of non-Newtonian viscosity
with shear rate. Figs. 6-9 and Table 2 exhibit an obvious de-
pendence of thermal conductivity on shear rate as similarly
reported in Loulou [1992] and Chaliche et al. [1994]. As
shown in Figs. 6-9, the solid lines are least square curve-fits
at various temperatures, which show good agreements with
the actual experiment data within 2 % differences.

No direct comparisons can be made with literature values
because no reported values of such solutions are available.
Higher concentration solutions of CMC in the range of 30000
-80000 wppm) are available only over a low shear rate range
(0<y<60 s") in Chaliche et al. [1994]. Regarding the gen-
eral trends of the curves in a shear field, both the present meas-
urements and theirs show increasing thermal conductivities
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with shear rate.

Table 2 shows the change of thermal conductivity over the
entire operating shear rate region (100<y<900 s'). Similar
to Newtonian fluids, the thermal conductivity of non-Newto-
nian purely viscous fluids increases with temperature.

ANALYSIS OF HEAT TRANSFER WITH SHEAR-
RATE-DEPENDENT THERMAL CONDUCTIVITY

A reasonable way of expressing the shear-rate-dependent
thermal conductivity and which represents the present exper-

imental data is

k =Ko+ (=) tancx ©)
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Fig. 9. Thermal conductivity vs. shear rate for CMC solutions
(5000, 2500, and 1500 wppm) at 50 °C.

Table 2. Inclination angle of shear rate on shear-rate-depend-
ent thermal conductivity

Solutions o () Temperature ('C) Yy (W/mk)
CMC 7H4 0.0109 20 0.586
5000 wppm  0.0139 30 0.629
0.0207 40 0.648
0.0281 50 0.657
CMC 7H4 0.0162 20 0.578
2500 wppm 0.0232 30 0.621
0.0237 40 0.642
0.0332 50 0.663
CMC 7H4 0.0177 20 0.569
1500 wppm 0.0287 30 0.605
0.0317 40 0.624
0.0345 50 0.652

where k, is zero shear rate thermal conductivity, 7y, is the min-
imum operating shear rate, and ¢ is the inclination angle of
shear rate on shear-rate-dependent thermal conductivity. The
present linear data reduction of non-Newtonian fluids can
be compared with the present experimental data in Figs. 6-9.
This gives a good agreement with the experimental data with
a =2 % difference.

An understanding of fully developed laminar flow in ducts
can be acquired by investigating a simple flow situation. It
was discussed previously that the viscous and thermal proper-
ties are a rather strong function of temperature for many power-
law fluids. Therefore, special caution should be taken in us-
ing constant property solutions for actual design calculations.
Nonetheless, the concept of fully developed flow is a useful
one for conceptual purposes and for isolating the significant
physical processes in a duct flow system.

Consider the flow through two infinite stationary parallel
plates which are a distance 2a apart with steady fluid flow
through the duct. If a shear-rate-variable thermal conductivity

Korean J. Chem. Eng.(Vol. 15, No. 3)
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which is temperature-independent is applied to fully devel-
oped parallel flat plate flow with a view to further understand-
ing the shear rate effect of thermal conductivity on heat trans-
fer, the governing equation on a fluid element, dx —dy, can
be written as follows, where x is the flow direction and y is
normal to flow direction in the parallel plates

0 (p0u)__dp 6
2 (n,, ay] dp ©
g (, oT dT,
2 [k& 1= -5 7
where
3 _ dTy
qw = pCpua .

and C, is specific heat, u is the average velocity in flow di-
rection, and T; is the bulk temperature. The boundary condi-
tions for the above governing equations are

Ju
=0, — =0
y Jy
y=a, u=0

where a is the half width of the parallel duct.
Making the parameters and variables dimensionless, it will
be described with the following:

=l, u+=g
a u
_T-T, _T
Tp—T.’ Nu
1121 gn
k+=£, Reg = pu—"a
ko
ha dp _ puf
Nu=—, — = 8
N k, dx 2a ®)
where
Nooha__ 1
CR—
1J1[Jy+ o2 -
—lolly wrdy*Tdy*
hoa 4 0~0
Nu0=-—=
ko 4

and T, is the wall temperature of the parallel plate, K is the
flow index of the power-law fluid, and Re, is the generalized
Reynolds number (pu’"a"/K) for the power-law fluid, and Nu
is average Nusselt number for a duct at varying shear rate and
Nu, is average Nusselt number for a duct with shear rate in-
dependent thermal conductivity referenced from Bird et al.
[1977].

The dimensionless energy equation for the power-law fluid
can be written by a new formation using Eq. (5)

K= 1+Q¥tana ©)

If y is equal to y,, then k' becomes 1. Letting j*= %,
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then the dimensionless thermal conductivity should be written
as follows;

k'=1+(y" - 79 (10)
By deriving from the momentum Eq. (6) using the dimen-

sionless parameter fRe, from the relation between u and dp

Zd—pa
f=—" with power law, the dimensionless velocity gra-

dient can be derived as

1
()
14 n+l
o= (e )y ey (12)
73=12 13)
i (fRey Y7 L
y=;[ . J 7 (14)

with additional definitions,

-, utano
wr=—— 15
koa 15)
. itance (fReg Y7+ (fRe; )7 et
r= koa 2 y "= 2 y (16)
.. _ utane [ fReg %+l _+( fReg %%
Yo= koa 2 y"r = =y a7
1
w o+l
7- 75=(ﬁ+—ﬁ5)(f1;eg] y'" (18)

where the magnitude of fRe, is cited from Irvine and Karni
[1987], u* is the dimensionless average velocity at the vary-
ing average velocity, and u, is the dimensionless average ve-
locity at the minimum average velocity when u=u,. If u*= u,
then y*— ;=0 and k’=1. The energy Eq. (7) becomes

F i
d . P |
—{1+( - 7% =u'N 19
(e yo)}dyﬂj whu (19)
d fRe, 4l dT

1+ @) | —=& |"y'" =uN
ay +(u u(,)( > y ay utNu (20)

1 1
This means that (G*—(_IJ)( fRzeg ]" = Aﬁ{%&] " is the para-

meter and if Au'=0, there is no dependence of k on 7.
For a power-law fluid, the differential equation becomes
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1
d _(fRe; 7w _+i{ dT+
1 | —£- n =ut 21
& + AU ( > J y i (21)
Boundary conditions are:
T+ =0, yr=1
aT*
=0, +=0 22
oy y (22

From the above equations, the velocity, temperature distribu-
tions, and the heat transfer with non-Newtonian properties can
be obtained by numerical analysis. The results are shown in
the following groups of figures and tables.

RESULTS AND DISCUSSION

Table 2 indicates that for CMC solutions the inclination
angle of the shear rate (o) to the shear-rate-dependent ther-
mal conductivity is a strong function of temperature. As seen
in Table 2, the lower solution concentration has a larger angle
(o) than the higher concentration at a certain temperature,
which illustrates once again that the increase of thermal con-
ductivity with operating shear rate is higher for the lower
concentration solution than that for the higher concentration.
Table 2 does not always show the shear rate dependence up
to the zero concentration limit, but a possible optimal concen-
tration level. The fact that the shear rate dependence is strong-
er in the lower concentration is no longer valid in the region
where the optimal concentration level does not exist. It also
shows that the angle increases as the thermal conductivity at
the minimum operating shear rate increases at certain concen-
trations. For structured liquids such as non-Newtonian fluids,
imposition of a shear field alters the structural state of the lig-
uid and hence its thermal conductivity. As a result, thermal
conductivity becomes shear-rate-dependent. As shear rate in-
creases, the molecular entanglements start to play a domi-
nant role. The rise in the thermal conductivity at higher shear

1.6 [(rTr Ty rrrryrror et
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t4F (nuid temp. 20'0), 7 ]
1af ]
h / ho : ',’l B
t2f 3
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N mRdE
7S B AU R B A RS Y A T
l'&(N) 0.26 0.60 0.76 1.00
Atu*(fRe,/2)'/"

Fig. 10. Dimensionless heat transfer coefficient vs. dimension-
less average velocity difference in the fully developed
parallel plates for CMC solutions (5000, 2500, and
1500 wppm) at 20 °C.

rates is attributable to the formation of rotating units of en-
tangled clusters. The increase in thermal conductivity with shear
rates is suggestive of a different flow mechanism. High poly-
mer liquids will undergo a change in the mechanism of flow
when the elastic energy stored in the random coils becomes
of the same order of magnitude as the amount of viscous heat
generated at the entanglement junctions.

Figs. 10-13 present the data of the dimensionless heat trans-

1
fer coefficient vs. the dimensionless parameter Aﬁ*[fRzeg ]"

in the fully developed parallel flat plates for three solutions
of CMC at temperatures (20, 30, 40, and 50°C). These fig-
ures also indicate that the heat transfer coefficient increases
with average velocity difference for a given fluid with a sim-
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Fig. 11. Dimensionless heat transfer coefficient vs. dimension-
less average velocity difference in the fully developed
parallel plates for CMC solutions (5000, 2500, and
1500 wppm) at 30 °C.
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Fig. 12. Dimensionless heat transfer coefficient vs. dimension-
less average velocity difference in the fully developed
parallel plates for CMC solutions (5000, 2500, and
1500 wppm) at 40 °C.
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Fig. 13. Dimensionless heat transfer coefficient vs. dimension-
less average velocity difference in the fully developed
parallel plates for CMC solutions (5000, 2500, and
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Fig. 14. Dimensionless thermal conductivity vs. dimensionless
duct cross-section locations for CMC solutions (5000
and 1500 wppm) with the maximum and half of the
maximum average velocities.

ilar degrees of increase on the heat transfer in the similar
manner to the Couette flow curves of thermal conductivity
against shear rate as shown in Figs. 6-9 with solid lines. It is
also seen that a low concentration solution transfers more heat
than a higher concentration solution with the same average
velocity according to Figs. 10-13.

Fig. 14 shows curves of the shear-rate-dependent thermal
conductivity at various duct cross-section locations for differ-
ent concentrations of CMC solutions with two different aver-
age velocities, respectively. Thus:

* The thermal conductivity with a large average velocity
is larger than that with a low average velocity at any location
in the cross-section.

* The thermal conductivity with a higher concentration is
smaller than that with a lower concentration at any location
in the cross-section at the same average velocity.

May, 1998

e Similarly the thermal conductivity at a high shear rate
is greater for the lower concentrations than the higher concen-
trations in cylindrical Couette flow as experimentally shown
previously.

» The order of magnitude of increase of the thermal con-
ductivity at the wall is 20 % larger than that of the heat transf-
er coefficient when Figs. 10 and 14 are compared (approxima-
tely an order of 60 % and 40 % increase of thermal conductiv-
ity and heat transfer coefficient, respectively).

Finally, the shear-rate-dependent thermal conductivity, as dis-
cussed above, affects significantly the heat transfer with a sim-
ilar order of increase as the heat transfer coefficient.

CONCLUSIONS

Thermal conductivity measurements were made for non-New-
tonian fluids in a shear field. A non-Newtonian fluid was used
as test fluid, CMC, a purely viscous time-independent fluid.

It was found experimentally that the thermal conductivity
increased with shear rate for CMC (100<y<900 s ') solu-
tions with an order of 20-70 % depending on temperature
(20-50°C). The increase of the thermal conductivity with a
shear rate was greater for lower concentration solutions than
for higher concentration solutions with a difference of 15-30

- % for CMC solutions.

As far as the effect of temperature on the thermal conduc-
tivity vs. shear rate is concerned in particular, the thermal
conductivity of CMC solutions increased with temperature
and shear rate. In order to investigate the effect of the shear
rate dependence of thermal conductivity on convective heat
transfer, a simple parallel plate model with temperature-inde-
pendent properties was considered. The heat transfer increase
was on the order of 30-80% over the entire temperature
range (20-50°C) of the CMC solutions using the shear-rate-
dependent thermal conductivity.
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NOMENCLATURE
a : half duct width [m]
C,  :specific heat [J/kgK]
2g—pa
f : Darcy friction factor, X [-]
pu
h : convective heat transfer coefficient [W/m’K]
K : power-law fluid consistency [Ns"/mz]
k : thermal conductivity for test fluid, k=k(y) [W/mK]
ko : zero shear rate thermal conductivity [W/mK]
k;  :shear-rate-dependent thermal conductivity [W/mK]
K;,. :thermal conductivity at maximum shear rate [W/mK]
k;,.. :thermal conductivity at minimum shear rate [W/mK]
kK : dimensionless thermal conductivity, k;/k, [-]



Shear Rate Dependence of Thermal Conductivity and Its Effect on Heat Transfer 261

l : length of the cylinder [m]

n : power-law flow index [-]

Nu :average Nusselt number for a duct at varying shear rate,
ha/k,

Nu, :average Nusselt number for a duct with shear rate inde-
pendent thermal conductivity, hya/k, [-]

Pr  :Prandtl number, nC/k, [-]

Q : total heat transfer [W]

Quenar - actual heat transfer, Q — Qs [W]

: total heat flux W/m’

q

r : radius [m]

L : radius of outer cylinder [m]

I, : radius of outer cylinder [m]

Re, : generalized Reynolds number, pu’~"a"/K [-]

T : temperature [K or °C]

Ty  :bulk temperature of the duct [K or °C]

T; : temperature of the inner cylinder [K or °C]

T, :temperature of the outer cylinder [K or °C]

T,  :wall temperature of the plate

U, :terminal velocity of the falling needle [m/s]

u : velocity in flow direction [m/s]

u : average velocity in flow direction [m/s]

u, :circumferential velocity [m/s]

u’ : dimensionless average velocity at the varying average
velocity [-]

Uy : dimensionless average velocity at the minimum average
velocity (@u=uy) [-]

w, :angular velocity of the outer cylinder [rad/s]

wppm : parts per million by weight [-]

X : coordinate in flow direction [m]

y : coordinate in transverse direction [m]

Greek Letters

o : inclination angle of shear rate [°]

y : shear rate [1/5]

Yo  :minimum operating shear rate [1/s]

Mo : zero shear rate viscosity [N - s/m’]

N : apparent viscosity, 7/y [N - s/m’]

n : dynamic viscosity [N - s/m’]

v : kinematic viscosity, w/p [m%s]

P : density of the present test fluid [kg/m’]

p :density of the fluid [kg/m’]

Ps : density of the falling needle [kg/m’)

T : shear stress [N/m’]

VAN : difference of quantity [-]

AT :temperature difference between inner and outer cylinder
wall [K or °C]

-+

Au’ : difference of dimensionless average velocity, 1" —ug [-]
Subscripts

0 : refers to the static condition

Y : refers to the varying shear rate

w : refers to the wall

Superscripts

+ : refers to dimensionless quantities

++  :refers to dimensionless quantities

: refers to derivative
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