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Abstract — Mathematical models of reactors for the polymerization of methylmethacrylate (MMA) have been devel-
oped and analyzed to elucidate reactor dynamics and to determine conditions for improved operation. The effects of
mixing and heat transfer in an MMA polymerization reactor system have been explored by the development of an
imperfect mixing model. To model imperfect mixing in polymerization, a reactor configuration using two tanks in
parallel was used. Bifurcation diagrams developed using numerical analysis of the model have been drawn with two
variable parameters, an exchange ratio, o, and a volume ratio, k. We use feed and coolant temperatures as bifurca-
tion parameters. If variable parameters are small, the lower solution branch of the steady state solutions is quite dif-
ferent from that of a simple model that assumes perfect macro-mixing as bifurcation parameters change. If o in-
creases (k=0.1, 0=1.0), the shape of a steady state solution curve differs significantly from that of a simple model as

the feed temperature decreases.
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INTRODUCTION

Mixing of the reaction mixture in the polymerization reac-
tor is very important. Since the polymerization of MMA is
also highly exothermic, some hot spots as well as thermal run-
away may occur if the mixing of the mixture is poor. Poly-
mer properties may also change due to poor mixing. The de-
gree of polymerization in the hot spot may increase signifi-
cantly. However, most researchers [Adebekun et al., 1989; Choi,
1986; Kwalik, 1988; Kiparissides et al., 1990] studying the pro-
cess for the polymerization of methylmethacrylate (MMA)
assumed perfect mixing to derive the equations for mass and
energy balances in the reactor.

The large increase in viscosity with monomer conversion
is one of the important phenomena of polymerization reac-
tions that has a very significant effect on heat and mass trans-
fer in reaction mixtures and on the apparent polymerization
kinetics. The increase in viscosity leads to diffusion limita-
tion of the termination reaction, resulting in an accelerated
polymerization and an increase in heat generation [Moritz,
1989]. If the reaction mixture is not well mixed, some re-
gions in the reactor may have hot spots (with temperature
runaway) or may become dead zones in which the flow and
reaction differ from the rest of the reactor. Thiele [1989] stu-
died the interaction between process design and mechanical
design in mass polymerization reactors. He noted that local
mixing and overall mixing characteristics of the reactor are
related to stirrer construction and choice of mixer speed. He
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compared a perfect micromixing model and a segregation mod-
el, noting that neither is adequate. Tosun [1992] used the se-
gregated mixing model developed by Villermaux [1989] to de-
rive a mathematical model of mixing in a semi-batch polym-
erization reactor. He showed that weight average degree of
polymerization is strongly affected by mixing conditions. Thiele
and Breme [1988] found that a segregation model is appro-
priate for the system at low agitation speeds, and a perfect
micromixing model for high speeds. Chen and Fan [1971] mod-
eled complete segregation by the convolution of the batch
reactor states with the residence time distribution; this is call-
ed the environment model. Villermaux [1986] introduced in-
teraction-by-exchange-with-the-mean (IEM) model by assum-
ing that the reactor fluid consists of many elements in which
a large number of molecules are contained. The model is bas-
ed on a population balance over element properties. Such a
model is called the fluid particle model. A serious drawback
of these two models, however, is that they can be applied
only to isothermal systems. In a study of macromixing in a
CSTR with two inlet streams Kaflas [1992] used a fluid flow
model in which the existence of two mixing zones formed
by the flow patterns is assumed, where mass is exchanged
at a rate which depends on the reaction mixture, the intensi-
ty of mixing, the reactor size, etc. He showed the effect of
recycle ratio and volume ratio on the polydispersity of poly-
mer product and conversion of monomer, but did not study
the reactor dynamics. The models described above contain
several parameters to explain the real mixing phenomena of
polymerization reactors. These parameters depend strongly on
the type of reactor and mixing device.

Here, we assume two mixing zones in a CSTR for polym-
erization of MMA. The two exchange mass and energy. A
schematic diagram of this model is shown in Fig. 1, where
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Fig. 1. Schematic diagram of two-tank-in-parallel reactor sys-
tem.

the reactor vessel was assumed to consist of two zones: a
small zone surrounding the impeller and a large one occupy-
ing the remaining tank volume. Two important parameters,
that is, the volume ratio, k, and the exchange ratio, o, are
used to study the sensitivity of reactor dynamics to operat-
ing parameters. We use feed and coolant temperatures as bi-
furcation parameters.

THE EQUATIONS GOVERNING
THE POLYMERIZATION

To derive material and energy balances for various species
in the two tank-in-parallel shown in Fig. 1, we use the same
assumptions described in the introduction section. The Trom-
msdorf effect included is the Ross-Laurence correlation. The

Table 1. Governing equations of the two-tank-in-parallel model

dM,
Vszquf+qrM2_qu1_qrM1-VlkleA’l

dI
Vthl=QfIf"‘quz‘QfIl“qul‘VlkdIl

ds
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+(-4H,) V;k, M 4, -UA (T, - T,)
d
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v, at =q,M; -q, M, - V,k, M, 2,

dI
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dT.
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dr, 2

V=4 =g L+ VLl bl )

*Subscripts 1 and 2 denote the first tank and the second tank, re-
spectively.
* A and A, denote A, in the first tank and in the second tank, re-
spectively.
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system equations are shown in Table 1. The dimensionless
groups used to restate the governing equations are depicted
in Table 2. Two parameters are included in addition to those
in the modified simple model-the flow exchange ratio, o, and
the reactor volume ratio, k. If o is sufficiently large, the im-
perfect mixing model becomes the modified simple model.
If o is sufficiently small, the mixing in the reactor is poor
and the ideal mixing model may not express the real dynam-
ics of the reactor. If k¥ becomes one, it may show that the
dynamics of the two reactors are linked in parallel. The
volume of each is half the reactor used in the modified sim-
ple model. This imperfect mixing model is used to describe
the effect of macro-mixing on reactor dynamics. Several dif-
ferent methods, such as an environment model and a fluid
particle model, have been used to describe micromixing in a
reactor. Neither model may be readily adapted to nonisother-
mal processes. The calculation or measurement of the tem-
perature and concentration histories of microscale elements is
not a tractable problem. The polymerization of MMA is high-
ly exothermic. Here, we use an imperfect mixing model to
study the effect of mixing on reactor dynamics. The phy-
sical properties of materials and kinetic constants are shown
in Table 3 and 4, respectively. Reactor and reactor medium

Table 2. Dimensionless groups for the two-tank-in parallel

model
Mt g MMy Lok
vV, @86 M, I
S-S T,-T A
X, =2 "™ X,=—1 1 Xe= ——
s T, P T,
M, -M I, -1 T,-T
M -M e 21
=7 < X;=—— =
X6 Mf 7 If X8 Tf *
S;-S E
X, =L X10=Mﬁ b= RT
£ f f
Eq E, Tc =Ty
¥ = %h=— XC= 7
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I
o-:ﬂ'_ =—f Dap =6Mfk oexp(_yp)
9y M; ’

Dy =0k exp(-p %) D,y = 0M, K exp(-% ¥)

Table 3. Physical properties of materials in the polymeriza-

tion of MMA
Py =0.968 — 1.255 X 107°T,) (g/em’)
Pr=pPu(l+8) (g/em’)
£=0.183 +9.0 X 107T,
ps =0.883-9.0X 107*T, (g/em’®)
Cpy =04 (cal/g’C)
Cpp =0.339+9.55x 10T, -25)  (cal/g’C)
Cps =0.535 (cal/g’C)
My, =100.13 (g/mol)
M5 =92.14 (g/mol)
(— AH,) = 13,800 (cal/mol)
*T: T (°C)
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Table 4. Kinetic constants for the MMA polymerization

k, =6.32% 10" exp [— 30.66(kcal/mol) J (——l )

RT min
ky =2.95x 107 exp (_ iﬂ‘%@} (minlmin J
ko =k, -9.48 % 10 exp [_ E-,SS(kR_C;V@l_)J
ks =k, - 1.01x 10° exp (ﬁ%@)
K, =k, -3.956X 10 exp (_ i%;_fr‘/m"ll)

kt = ktc + kkd
Reference: Baillagou and Soong [1985]

Table 5. Isola centers for a modified simple model

X,=0.79391 X,=025971 X,=0.697169  X,=0.667893
X;=1.3615 X=10 X;=1.93488 X=10
X=4.94999% 10~” Model=Simple Xs=6.73771x 10’ Model=Simple
6=0.332036 T=309.619 600942569  T=312.326

Reactor and reactor medium constants
£=0.8, U=135 cal/m’sK, Ar=2.8 m"

Fixed parameters: 1;=0.05, Mg=5.0, S;=4.7, Tc=Tr

constants used to calculate the steady state solutions are shown
in Table 5.

RESULTS AND DISCUSSION

Bifurcation analysis of autonomous systems is used to an-
alyze the reactor dynamics of MMA polymerization. The gov-
erning equations are highly nonlinear and it is not possible
to reduce the set to one equation. Uppal et al. {1974, 1976]
and Balakotaiah and Luss [1982] applied bifurcation theory
in their analysis of the dynamics of chemically reacting sys-
tems. They were able to reduce their equations to a single alge-
braic expression using the Liapunov-Schmidt method. Though
multiple steady states and Hopf bifurcations may be derived
analytically, this method is intractable for systems of large
dimension. Doedel [1986] developed the software package
AUTO by using numerical continuation. AUTO can be used
to trace the steady solution branches, to detect static bifurca-
tion points (multiple steady state solutions), and to compute the
bifurcating branches. It also locates Hopf bifurcation points and
traces periodic solution branches. In this work, we have used
AUTO to analyze the reactor dynamics described by the equa-
tions in Table 4. In order to draw a bifurcation diagram, that
is, a plot of a state of the system versus the main free param-
eter, we must select main parameters among a given param-
eter set. Hamer et al. [1981], Teymour and Ray [1989], and
Adebekun et al. [1989] chose initiator feed concentration and
feed solvent fraction as their main free parameters. Hamer et
al. [1981] plotted the classification parameter space diagram
using a nonlinear constrained optimization. In this diagram,

the space is divided into regions showing different bifurca-
tion behavior. It describes the parametric sensitivity of reactor
dynamics very well. However, some regions, where exotic phe-
nomena such as Hopf bifurcations occur, may not be sig-
nificant. For example, Teymour and Ray [1989] found two dif-
ferent bifurcation diagrams when initiator feed concentration
decreased from 0.01345 (mol/l) to 0.01337 (mol/l). Such a
small concentration difference, 8 X 10™° (mol/J), is hard to con-
trol and impossible to measure.

The control of feed and coolant temperatures is also very
important, since MMA polymerization is highly exothermic
and an increase in reaction temperature may affect polymer
properties. Kwalik et al. [1989] varied the feed temperature
in their construction of bifurcation diagrams for a well-mix-
ed polymerization reactor. Solvent volume fraction was used
as another free parameter. They found multiple isola solution
branches for specific parameter values. In this work, solvent
concentration is used rather than solvent volume fraction as a
fixed parameter. Concentration is more readily measured and
the calculation of volume fraction requires molecular weight,
density and concentration.

¢ = % S;

Residence time, 6, is used as a main parameter. Feed and
coolant temperatures (T; and T,) are changed to construct bi-
furcation diagram for MMA polymerization in an imperfect-
ly mixed CSTR. The values of the fixed parameters used
are the same as those in Kwalik et al. [1989].

AUTO code uses a continuation method in which the com-
putation begins at a known solution point and continues to -
points along a specific branch of solutions. Therefore, it can-
not detect isola type solution branches without knowing a
point on an isola. Several methods have been used to calcu-
late isola solution branches. Kwalik [1988] used a root find-
ing method to find multiple steady state solutions of the non-
linear governing equations for a fixed set of operating con-
ditions. However, it is computation-intensive. Choi [1986] made
use of the criteria developed by Balakotaiah and Luss [1982]
and reduced his governing equations to one equation. His set
of equations did not account for the gel effect. Kubicek and
Marek [1983] developed a numerical algorithm for location
of the point of formation of isola solution branches of non-
linear algebraic equations. It uses a necessary condition for
the existence of a limit point. To detect the isola formation cen-
ter, two free parameters are needed. Given an isola center, a
slightly perturbed value of one of the free parameters is used
to solve the system of governing equations by Newton's meth-
od. AUTO is then used to calculate isola solution branches
by using the solution of nonlinear equations as initial solution
points. Since the dimension of the goveming equations is large,
this algorithm has been adopted here.

1. Modified Simple Model

A modified simple model, which uses the perfect mixing
assumption and excludes QSSA and removes the contribu-
tion of initiator volume fraction in Ross-Laurence empirical
gel model [1976], has been calculated to afford a basis for
comparison with the imperfect mixing model and to show

Korean J. Chem. Eng.(Vol. 15, No. 3)
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Fig. 2. Conversion steady state solution branches for selected feed temperatures for a modified simple model.

the effect of mixing on the reactor dynamics. Two isola cen-
ters shown in Table 5 were detected with varying residence
time, 6, and feed temperature, T, as free parameters. If the
feed temperature is 340 K, the conversion is high at a low
residence time and three steady state solutions exist only in
a narrow range at lower residence times. As the feed tem-
perature is decreased from 340 K to 317 K, the sigmoidal
curve is larger and an isola branch is cleaved from the upper
solution branch of the sigmoidal curve. At a lower feed tem-
perature, a second isola branch is pinched from the curve.
The first isola branch disappears at T=311 K. These phe-
nomena are depicted in Fig. 2. Similar behavior is observed
in temperature profiles (Fig. 3). Two isola solution branches
coexist and the first disappears as feed temperature decreases.
Kwalik [1988] also observed two isola branches. She used the
feed solvent volume fraction as the second free parameter rath-
er than solvent concentration as used here. Consequently, the
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bifurcation diagram in Fig. 3 is slightly different from that
of Kwalik. Adomaitis and Cinar [1987] found multiple isola
solutions in a tubular reactor, where the feedback element in
a proportional control system induces the existence of mul-
tiple isola branches. Here, the nonlinearity arising from both
the gel effect and the Arrhenius-type rate expressions may
induce their existence.

2. Imperfect Mixing Model

2-1.Case 1 (x=0.01, 0=0.01)

The imperfect mixing model contains two additional im-
portant parameters; the volume ratio, x, and the exchange ra-
tio, o. Table 6 shows two isola centers for small values of &
and x. The values of @ and T; differ slightly from those of
the base case, the simple model. The lower branch of steady
state solutions shown in Fig. 4 is perturbed and contains a
sigmoidal curve which increases as the feed temperature de-
creases. In contrast to the simple model, five steady states may
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Fig. 3. Temperature solutions corresponding to the conversion branches in Fig. 2.

Table 6. Isola centers of Case 1 for an imperfect mixing model

X,=0.801654 X,=0.2651
X;=1.591 X=1.0
Xs=1.0255%x10"° X=0.764498
X,=0.517095 X=1.69313
X,=1.0 X10=5.02515x10""
6=0.0994488 T,=313.267

Model=Imperfect

X,=0.79253 X,=0.268923
X,=1.33782 X,=1.0
X5=4.88763x 10" ° X,=0.97831
X,=0.920636 X¢=2.04005
Xy=1.0 X,6=6.96577x 1077
6=0.332017 T=310.349

Model=Imperfect

Fixed parameters: 1;=0.05, M;=5.0, S;=4.7, x=0.01, o= 0.01

exist at lower residence times. The upper solution branch is
not affected by the exchange between the two reactors, since
the second reactor is much smaller and the limited exchange
does not perturb the polymerization in the larger reactor. The
temperature profiles show the same phenomena as depicted
in Fig. 5.

2-2.Case 2 (x=0.01, 0=1.0)

When the exchange ratio is increased, the positions of isola
centers are almost identical to the simple model case (Table
7). The bifurcation diagrams show that the distortion of the
lower branch disappears and the shape of solution branches
is the same as in the simple model. The position and ampli-

Korean J. Chem. Eng.(Vol. 15, No. 3)
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Fig. 4. Conversion steady state solution branches for selected feed temperatures in Case 1 for an imperfect mixing model.

tude of the Hopf bifurcations at the isola branches, however,
are changed (Fig. 6, especially the cases of T;=315 K and 314
K). We may conclude that an increase in exchange ratio does
affect the dynamics of the first reactor, but as the second re-
actor is small, the perturbation is minor. The temperature di-
agrams are shown in Fig. 7 and we observe the same phenom-
ena as in Fig. 6.

2-3.Case 3 (x=0.1, 0=0.1) _

When the volume ratio is increased (x=0.1, 6=0.1), the po-
sitions of the isola centers differ from those in the simple
model (Table 8). Only one isola branch exists at T;=315 for
simple model, but here two isola solutions coexist. The dis-
tortion of the lower branch of steady state solutions becomes
severe with decreasing feed temperature. The region in which
five steady states exist is much broader than at smaller vol-
ume ratios. These phenomena are shown in Fig. 8 and 9 for
conversion and temperature, respectively. A comparison with
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case (2-1) shows that increases in volume ratio and exchange
ratio affect the distortion of the lower solution branch. How-
ever, since the exchange ratio is still not very large, the up-
per solution branch does not change.

2-4.Case 4 (x=0.1, 0=1.0)

In this case, the positions of the isola centers (Table 9) do
not change appreciably as in Case 2. At higher feed temper-
atures (T;=340-323 K), the bifurcation diagrams are identical
to those of the simple model. At lower feed temperatures,
however, the upper branch (especially the unstable steady state
solution) is quite perturbed. Two Hopf bifurcation points
emanate from the upper stable solution branch at T,=313 K.
The first appearing isola branch disappears and the distorted
upper solution branch has three Hopf bifurcations for a fur-
ther one degree decrease in the feed temperature. Another iso-
la solution branch is finally cleaved from the perturbed upper
branch at T;=311 K. The conversion and temperature profiles
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Table 7. Isola centers of Case 2 for an imperfect mixing model
X,=0.793834 X,=0.259641 X,=0.697105 X,=0.667803
X;=1.36142 X,=1.0 X5=1.93471 X,=1.0
X5=4.94644x 107° X=0.80215 X5=6.73308 x 10~ X=0.704405
X;=0.262648 X=1.393 X,=0.675123 X=1.96195
X,=1.0 X0=5.28398%x 107’ Xe=1.0 X,=7.10838x 10"’
6=0.328736 T#=309.609 6=0.093326 TF=312.321

Model=Imperfect

Model=Imperfect

Fixed parameters: I,=0.05, M;=5.0, S;=4.7, x=0.01, 0=1.0

are depicted in Fig. 10 and 11, respectively.
3. Observations

Kim [1985] studied the dynamics of coupled continuous
stirred tank reactors in parallel in which an isothermal auto-
catalytic reaction with a product inhibition term occurs. He
examined the dynamic behavior of coupled reactors for dif-

ferent combinations such as node-focus, oscillation-focus and
oscillation-oscillation. He found that for a node-focus com-
bination, each reactor approaches a different steady state. For
an oscillation-oscillation interaction, single peak oscillations,
quasi-periodic oscillations and steady state operation were found
at specific values of the exchange ratio. In Kim's examination
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Fig. 6. Conversion steady state solution branches for selected feed temperatures in Case 2 for an imperfect mixing model.
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Fig. 7. Temperature solutions corresponding to the conversion branches in Fig. 6.
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Table 8. Isola centers of Case 3 for an imperfect mixing model
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X,=0.787573 X,=0.281514 X;=0.690134 X,=0.673156
X,=1.2883 X,=1.0 X;3=1.8959 X=1.0
Xs=4.74677x 1077 X=0.941838 X5=6.89612x107° X=0.9285
X,=0.409861 Xs=1.86188 X;=0.99457 Xs=2.77624 .
Xo=1.0 X,0=2.12739%x 107’ Xo=1.0 X10=6.54201x 10
6=0.311374 T=312.421 6=0.0847368 Tr=313.97
Model=Imperfect Model=Imperfect
Fixed parameters: I;=0.05, Mp=5.0, Sp=4.7, x=0.1, 0=0.1
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Fig. 8. Conversion steady state solution branches for selected feed temperatures in Case 3 for an imperfect mixing model.

of the dynamic behavior of coupled reactors in different con-
figurations, he assumed that each reactor has the same vol-
ume and all reactors have identical feed composition. Taylor
and Kevrekidis [1993] studied the dynamics of two CSTRs
with individual feed, exit and coolant streams and operating
in parallel. They observed that for the weakly coupled sys-

tem (exchange ratio: very small, volume ratio=1) four solu-
tions exist (an unstable steady state, two saddle-type periodic
solutions and an attracting torus).

Marini and Georgakis [1984] described that imperfect mix-
ing has a stabilizing effect on the dynamics of a reactor for
the production of low density polyethylene. Their assumptions

Korean J. Chem. Eng.(Vol. 15, No. 3)
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Fig. 9. Temperature solutions corresponding to the conversion branches in Fig. 8.

Table 9. Isola centers of Case 4 for an imperfect mixing model

X,=0.769362 X,=0.26885
X,=1.25496 X,=1.0
X,=3.9855%x10"° X,=0.884296
X,=0.382728 X=1.69076
Xy=1.0 X,;=9.31511x 1077
6=0.325907 T,=309.865

Model=Imperfect

X,=0.68399 X,=0.663654
X:=1.8982 X,=1.0
X,=6.14661x10"° X=0.783734
X,=0.811474 X=2.27066
X,=1.0 X,,=1.10585x107°
6=0.0850214 T,=312.245

Model=Imperfect

Fixed parameters: 1;=0.05, Mg=5.0, Sg=4.7, x=0.1, 0=1.0

were (i) that the vessel is divided into two small CSTRs in
series (3-5% of total volume) and one CSTR accounting
for the remaining volume where most of the reaction occurs,
and (ii) that the exchange ratio is large (greater than one).
However, they did not study the dynamics of an imperfect

May, 1998

mixing model. Kim et al. [1991] studied the dynamics of a
cascade of two continuous stirred tank polymerization reac-
tors with a binary initiator mixture. They found, using the
reactor residence time as a bifurcation parameter, that the
second reactor has five steady states.
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Fig. 10. Conversion steady state solution branches for selected feed

In this work, the volume of the second reactor is small (1-
10 % of total reactor volume) and the reactor does not have
feed inflow and product discharge. In case 2, we observed
that the dynamics of the first reactor is slightly destabilized
by the second. The stable steady state region on the isola
branch is reduced in comparison to the case of perfect mix-
ing. In case 4, we found that the upper solution branch is dis-
torted and three Hopf bifurcations occur. Phenomena such as
period-doubling and torus formation are not observed. For
the weakly coupled cases (case 1, 3), five steady states were
found at lower residence times. In summary, for small vol-
ume ratios and exchange ratios, the lower solution branch is
distorted and five steady states exist in a specific region. On
the other hand, for small volume ratios and medium exchange
ratios, the upper branch of steady state solutions differs from

{8R)

0.

0.
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Jaj
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temperatures in Case 4 for an imperfect mixing model.

those for the case of the simple model.

Steady state solutions differ from those in the simple model
because conversion and reaction temperature in the second
reactor (small size) are greater than those in the main tank
(As an example, case 3 is depicted in Fig. 12). Due to the
exchange of mass and energy between both reactors, more
heat may be transferred to the first tank. The unreacted mon-
omer may not travel to the first reactor, since the monomer
is almost completely consumed at very small residence time.
The energy transfer does perturb the dynamics of the first
tank. Such a phenomenon was similarly observed by Man-
kin and Hudson [1986], studying two continuous stirred tank
reactors, each with exothermic chemical reaction, coupled by
heat and mass transfer. Note that the second reactor does not
efficiently transfer heat of reaction to the wall. Since we con-
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Fig. 11. Temperature solutions corresponding to the conversion branches in Fig. 10.

Fig. 12. A comparison of conversion and temperature in two tanks.
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in the second tank (the region near the agitation) are exchang-
ed only with the first tank.
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CONCLUSION

In order to develop a better general understanding of dynam-
ics of MMA polymerization reactors, to better control poly-
mer properties, and to improve productivity, two models have
been developed, one accounting for imperfect mixing and the
second, detailed model involving fewer assumptions. A con-
figuration of two-tanks-in-parallel was used to study the ef-
fect of mixing on the reactor dynamics. The model includes
two parameters, i.e., the exchange ratio, o, and the volume
ratio, x.

1.X two ratios are small (x=0.01, 0=0.01), the lower branch
of steady state solutions is perturbed when compared to a sim-
ple model which assumes perfect mixing. Two sigmoidal cur-
ves of solutions are observed.

2. As o increases further (k=0.01, 0=1.0), the shape of the
solution branches is the same in a simple model, but the po-
sition and amplitude of the Hopf bifurcations at the isola
solution branch were changed.

3. When volume ratio is large (x=0.1, ¢=0.1), the distor-
tion of the lower branch of the steady state solutions becomes
more severe with decreasing feed temperature.

4.If o is also large (x=0.1, 0=1.0), the shape of steady
state solutions is very different from that of a simple model.
The upper solution branches are more perturbed as feed tem-
perature decreases.

NOMENCLATURE
A, :total heat transfer area
C, :heat capacity
D,; :Damkoéhler number, i=I, P, T
E; :activation energy of species i
f  :initiator efficiency factor
(-4H, ) : heat of reaction

: initiation concentration

: rate constant for initiation

: rate constant for chain transfer, i=M, S
: rate constant for propagation

: rate constant for termination

: monomer concentration

q, :exchange flow rate

RATIO : volume ratio (x in Table 2)

S :solvent concentration

SIGMA : flow exchange ratio (o in Table 2)
: reaction temperature

: coolant temperature

: time

: overall heat transfer coefficient

: reactor volume ’

: dimensionless variables defined in Table 2

2rErFES -

Mo~ 3

Greek Letters
: dimensionless variable defined in Table 2
: dimensionless variable defined in Table 2

= ™

: flow exchange ratio
: volume ratio defined in Table 2

A Q

¢; :volume fraction of species i
@  :residence time
7 :dimensionless time
Subscripts
c : coolant
d :initiator
f : feed
p  :polymer
r :recycle
s :solvent
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