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Abstract — In distillation column control, secondary measurements such as temperatures and flows are widely used to
infer product composition. This paper addresses the development of nonlinear static estimators using secondary meas-
urements for estimating product compositions of distillation columns. An open equation-based optimization problem,
which minimizes the differences between the measured outputs and the estimated outputs, has been formulated and
solved by using the nonlinear program (NLP) solver, MINOSS. It is shown that the proposed nonlinear estimator is
robust and more powerful than the conventional PLS (Partial-Least-Squares) estimator.
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INTRODUCTION

A typical production objective in distillation is to deliver prod-
ucts meeting certain composition specifications, which means
that the economics of a distillation process depends heavily
on composition control. However, product quality measurement
has been one of the major difficulties associated with the com-
position control of distillation columns. Although on-line an-
alyzers such as gas chromatographs (GC) have the advantage
of directly measuring the product quality, composition control
by the analyzers has not been preferred because on-line analy-
zers still suffer from large measurement delays, high invest-
ment/maintenance costs and low reliability. One common al-
ternative to the analyzers is to use a single tray temperature.
Although this policy has been most popular in process in-
dustries, it is generally not reliable especially in high purity
columns and multicomponent columns.

For these reasons, many workers [Weber and Brosilow, 1972;
Joseph and Brosilow, 1978; Lee and Kim, 1984; Lee et al.,
1989; Mejdell and Skogestad, 1991; Kresta et al., 1994; Piovoso
and Kosanovich, 1994; Shin et al., 1997, 1998] have studied
the inferential models by using multiple secondary measure-
ments and presented some promising results. However, all this
work has been limited to linear estimators, whose main re-
striction is that they cannot properly handle the nonlinearities
of distillation columns. As a result, linear estimators are gener-
ally valid over a sufficiently small operation range. A different
inferential model should be developed and used for a different
control structure due to the difference between their operating
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range [Kresta et al., 1994]. The use of transformed variables
seems to be a way to incorporate the nonlinearities, but there
is no general guideline of the transformation yet. For example,
the logarithmic transformation of the tray temperatures and the
product compositions [Mejdell and Skogestad, 1991] is res-
tricted to binary distillation columns. Additionally, it is very
hard to find adequate transformation methods for flow variables
such as reflux flowrate and other measurable outputs (e.g. the
heat duty of the reboiler). The restriction of the linear esti-
mators becomes more severe in the case of the feed composi-
tion estimation. Estimation of the feed compositions is crucial
for feedforward control and on-line optimization of distillation
columns. The relationship between the feed composition and
tray temperature can often be neither described as a linear form
nor as even a simple non-linear form [Shin et al., 1998].

Sometimes, no fundamental model is available, and in that
case the estimator must be designed empirically by an analysis
of process data. However, in the case of distillation columns,
the fundamental model and parameters are usually well known.
Furthermore, current optimization techniques make it possible to
solve large and complex optimization problems quickly and re-
liably enough for real-time purposes. These motivate us to at-
tack the design of the nonlinear estimator more directly by con-
verting the estimation problems to nonlinear optimization prob-
lems.

In this work, we formulate and solve the nonlinear optimi-
zation problem in order to estimate the product and feed com-
positions of distillation columns. The formulated problem in-
cludes the fundamental mathematical model of the distillation
column in the form of an open equation. The problem has been
solved by using an NLP solver, MINOSS. The estimation per-
formance of the nonlinear estimator is presented by compar-
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ing it with that of the linear PLS estimator with a binary col-
umn case study ; finally conclusions are drawn.

MODELING AND OPTIMIZATION
USING OPEN EQUATIONS

With the large, fast computers of today, “open” equation-bas-
ed models are more efficient than the traditional internally con-
verged models for simulation and optimization of chemical pro-
cesses. The technique is suitable for modeling many forms of
systems, and the models can be used for solving a variety of
design, control and logistics problems [Gallun et al., 1992]. In
the open equation approach, all of the model equations are writ-
ten in the form

Fx)=0 ey

where F is an m dimensional vector of the equations and x
an n dimensional vector of the variables. In the case where m
is less than n, optimization is performed. If m equals », instead
of optimization the entire system equations are solved simul-
taneously. This approach, which is also called as “equation-
oriented” approach, has many advantages for modeling and
optimization, such as flexibility in the formulation and solving
[Biegler, 1989]. There exist different types of problems for Eq.
(1): If we know the values of the parameters (e.g. heat transfer
coefficients of a heat exchanger), then with a set of given in-
puts we can calculate the response of the model. This is a
simulation problem. On the other hand, sometimes we know
the parameters and the responses and we may wish to estimate
the inputs. This is known as data reconciliation, which some-
times also includes the reconciliation of some of the response
measurements. Sometimes we may know the response and the
inputs, and we may wish to determine the values of the para-
meters. This operation is usually termed regression or parameter
estimation. Finally, the values of the parameters may be known
and it may be desirable to find the values for the manipulated
variables, which in some way optimizes the operation. All of
these different modes of analysis can be accommodated very
naturally in the open equation approach of F(x) =0.

The estimation of the product compositions can be classifi-
ed into the data reconciliation case. In estimating the product
compositions of distillation columns, process responses such
as tray temperatures and various flow rates, so called second-
ary measurements, are known and we want to estimate the prod-
uct compositions using the secondary measurements.

PROBLEM FORMULATION AND
SOLUTION METHOD

1. Formulation

The following nonlinear optimization problem (NLP) is for-
mulated in order to estimate the product compositions and the
feed compositions. The set of fundamental equations of the
distillation column are well known as MESH equations in Eq.
(2) and are considered as the equality constraints of the for-
mulation. All available measurements such as flows, pressures
and the heat duties of the condenser and the reboiler as well
as the tray temperatures can be included in the objective func-
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tion, but for the sake of convenience, only the tray temperatures
are used.

Note that the resulting estimator is totally independent of
the operation range and the operation mode (e.g. manual, cas-
cade and so on). Furthermore, since the estimator by the above
approach estimates not only the product composition but also
all other variables (e.g. the compositions, temperatures, and flow
rates of all internal streams, and so on) simultaneously, it can
be also applied to monitoring the column status. For example,
we monitor flooding condition of the column with the estimat-
ed values of internal traffic.

Min @ = E, (T, - T, ¥)

subject to
Mass Balance Equations
L Xij +viyij L X, -Vi4 Yi-1,j =0 for i=12,A,N(i+N;)
Lix; +V,y; ~Li X1 — Vi Via j—Fzp ;=0 for i=Ng

(Ly +D)xp ; —Vy 1 yy.1,; =0 for condenser

Bxp ; +Vyyy; —Lx, ;=0 for reboiler

Equilibrium Relationships

y;; —Ki;x; =0 for i=1,2,AN
Summation Equations

3y, —1=0 for i=1,2,AN
Y%, -1=0 for i=1,2,AN

Heat Balance Equations

L +V,H -L, h,, -V, H_ =0 for i=1,2ANG{#N;)

Lih; +V;H, —Li,; by -V H;; ~FHp =0 for i=Ng

(Ly +D)hy —Vy_1Hy_; —Qc =0 for condenser

Bh;+VH; -Lh,—Qz =0 for reboiler

2. Solution Method

The optimization problem in Eq. (2) can be classified as a
nonlinear constrained optimization problem. The MESH equa-
tions in Eq. (2) are treated as the equality constraints and the
bounds of the variables are also specified by their physically
meaningful values. In this (e.g. 0<x;<1, 0<y;<1, and T <
T,<T5) work we solved the problem by using the nonlinear
optimization solver MINOSS in the modeling language GAMS
[Brooke et al., 1992].
3. Example

In this section, the estimation performance of the propos-
ed nonlinear estimator will be compared to that of the conven-
tional PLS estimator for the binary column. More details of
the PLS method are available in many articles [Geladi and
Kowalski, 1986; Lorber et al., 1987].
4. Process Description

A rigorous steady state simulation for the binary column of
normal-hexane and cyclo-hexane with 40 theoretical stages (in-
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Table 1. Simulation conditions for the binary distillation column

Variation in steady
state reference set

Base case conditions

F 1000.0 kmol/hr Constant
Tr 3473 K Constant
Zr 0.5 0.4--0.6
P 1 atm Constant
Vo 0.98 0.97-0.9997
Xg 0.02 0.0003-0.03

cluding reboiler) is performed. The feed stream enters the col-
umn at stage 20 as saturated liquid. The nominal operation con-
ditions and the variation of the inputs of the binary column are
given in Table 1. It is assumed that the phase equilibrium of
the system is ideal. Rault's law is used for the phase equilib-
rium relationships in Eq. (2).
5.Evaluation Criteria

For the PLS estimator, a cross validation procedure is adopt-
ed by splitting the data into two parts: the calibration data and
the prediction data. The calibration data are used to build the re-
gression model, and the prediction data are then used to evalu-
ate the predictive ability of the model. The Prediction Error
Sum of Squares (PRESS) [Montgomery, 1992] is used to evalu-
ate the absolute performance. For the estimation of the distillate
composition, the PRESS can be calculated by

M
PRESS = ,Z.](Ym — Yo )2 (3)

where M is the number of data sets (here, M=64).

In the same way, we can check the estimation performance
for the bottom composition x; and the feed composition zy.
The PRESS value of the nonlinear estimator is calculated and
compared with that of the PLS estimator.

RESULTS

For our binary column example, the design of the PLS es-
timator was based on the guidelines suggested by Shin et al.
[1997]: (1) the number of factors used in the PLS estimator
is three (the system dimensionality of our binary column is
three); (2) only the tray temperatures are used as the secondary
measurements ; (3) the transformations Ly;=In {(T,—T;)/(T;-
T)} and Yp=In{yp/(1-ys)} are adopted for estimating the top
and bottom product compositions [Mejdell and Skogestad, 1991]
and no transformation for the feed composition. Additionally,
the performance of the PLS estimator with no transformation
is also compared. In order to check the sensitivity of the esti-
mators, random noise is added to the tray temperatures.

The PRESS values of various estimators for the distillate
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Fig. 1. Comparison of the performance of the proposed non-
linear estimator and the linear PLS estimator.

composition are listed in Table 2. As shown in Table 2, the
proposed nonlinear estimator yields far better results than the
PLS estimator both in the noise-free case and the noise-corrupt-
ed cases. Similar results were obtained for the case of the bot-
tom product composition (not seen here). Fig. 1 compares the
estimation performances of the two estimators when the noise
level is 0.2°C. It should be noted that the proposed nonlinear
estimator especially yields very accurate estimates for the es-
timation of the feed composition, while the PLS estimator gives
meaningless results (the PRESS value is about 0.182 in all

Table 2. PRESS values of various estimators for distillate composition y,

Estimation methods

Noise level (°C)

0.0 0.1 0.2

Nonlinear estimator 0.248x10°° 0.210x 107’ 0.817x1077
PLS (with Ly, and Yp) 0.554x107* 0.516x10°* 0.907x107*
PLS without transformation 0.343x10°° 0.345x10°° 0.351x107°
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cases). The PRESS values of the nonlinear estimator are 5.632
x107°, 3.886x 107, and 5.663x 10" for the noise levels 0.0,
0.1, and 0.2°C, respectively. Considering the fact that several
important applications such as feedforward control, on-line op-
timization, and monitoring in the distillation area have been
mainly restricted by difficulty in measuring or estimating the
feed composition, the result has very important meaning in
practice.

CONCLUSIONS

For distillation columns the main difficulty in using linear
estimators is the nonlinearity in the process. In order to over-
come this problem, the nonlinear static estimator using open
equation-based nonlinear programming has been proposed. The
estimation problem can be converted to a nonlinear optimization
problem by proper formulation. The formulated problem is solv-
ed by using an NLP solver, MINOSS. It is fast and reliable
enough for real-time purposes. The proposed nonlinear esti-
mator shows much better prediction performance and robust-
ness than the linear PLS estimator. In addition, the propos-
ed estimator can also be used for other important applications
such as process monitoring, feedforward control, and on-line
optimization. Finally, the proposed approach is theoretically
sound because it includes the fundamental mathematical model
of the distillation systems. The proposed approach to the esti-
mator design can be directly extended to other systems as long
as their fundamental models are available.
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NOMENCLATURE
h  :specific enthalpy of liquid mixture
H : specific enthalpy of vapor mixture
K :K factor (or value)
L  :liquid flow rate
R :reflux ratio
Qg : heat duty of reboiler
T  :temperature
V  :vapor flow rate
x  :liquid composition
Xz :bottom product composition
y  :vapor composition

yp : distillate composition
Y, :logarithmic distillate composition
zr :feed composition

Greek Letter
@ : objective function
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Superscripts
b  :boiling point pure component
3 :estimated variable

Subscripts

i : tray number

j : index for component
H :heavy component

L  :light component
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