Korean J. Chem. Eng., 16(1), 40-44 (1999)

BARIUM TITANATE THIN FILMS PREPARED ON MgO (100)
SUBSTRATES BY COATING-PYROLYSIS PROCESS

Seungwon Kim' and Oh-Yun Kwon

Department of Chemical Engineering, Yosu National University, Yosu 550-749, Korea
(Received 19 March « accepted 26 August 1998)

Abstract — Barium titanate (BaTiO;) thin films were prepared on MgO (100) substrates using metal naphthenate
solution by a coating-pyrolysis process. Amorphous films pyrolyzed at 470°C were crystallized to BaTiO; phase
by heat treatment at higher temperatures. The crystallinity and alignment of the films depended on temperature and
on atmosphere during heat treatment. Epitaxial BaTiO; film having (100)-orientation was obtained by heat treat-
ment at 900 °C under oxygen partial pressure of 2X 10™* atm. The epitaxial BaTiO; film had a lattice constant of
0.401, nm and displayed a smooth surface with some pores dispersed on the surface. By heat treatment in air,
amorphous BaTiO; film was obtained at 900 °C or below, and textured film with less strong (100) orientation was
obtained at 1,200 °C and consisted of grains with diameter about 0.3 Wm.
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INTRODUCTION

Bulk semiconducting doped-BaTiO; possesses positive tem-
perature coefficients of resistivity (PTCR) characteristics and
is applied to electrical devices such as degaussers in color TV
and self-regulated heaters and sensors [Moulson and Herbert,
1990]. BaTiO; thin films are promising materials for electronic
device applications because of their useful ferroelectricity, high
dielectric constant and large electro-optic coefficients [Glass.
1987]. Thin films such as BaTiO;, Pb(Zr, Ti)O; and TiO, were
prepared by various processing techniques such as metal-organ-
ic chemical vapor deposition (MOCVD) [Chung et al., 1997;
Lee et al., 1997; Kaiser et al., 1995; Willis et al., 1992), laser
ablation [Nose et al., 1994], radio-frequency sputtering [Kim et
al., 1995; Fujimoto et al., 1989], pulsed laser deposition [Kim
and Kwok, 1995; Srikant et al., 1995; Norton et al., 1992] and
reactive evaporation [Yano et al, 1994). In particular, epitaxial
BaTiO; thin films having a smooth surface are required for elec-
tro-optical applications because of their low propagation loss.
Various substrates such as MgO (100), LaAlO; (100), SrTiO;
(100), MgO/GaAs (100) and Pt/MgO (100) were used for pre-
paration of the epitaxial BaTiO; thin films. Among these
various substrates, MgO can facilitate a waveguiding in BaTiO,
thin films because the refractive index of MgO (n=1.7 at 0.6
um) is lower than that of BaTiO; (n=2.4 at 0.6 um). The lattice
constant of MgO (NaCl-type structure) is 0.4213 nm, while
tetragonal BaTiO; (perovskite structure) has lattice constants
of 2=0.3994 nm and ¢=0.4038 nm. The lattice misfit between
MgO and tetragonal BaTiO; is 5.2% and 4.3 % along the a-
and c-axes, respectively. These misfit values are larger than that
between BaTiO, and StTiO;: 2.3% and 3.4 % along the a- and
c-axes, respectively. So it is considered to be more difficult to
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prepare epitaxial BaTiO; films on MgO than on SiTiO;.

Actually, so far as we know, there have been no reports a-
bout the preparation of epitaxial BaTiO, films on MgO sub-
strates by a chemical solution process. A number of papers
have been reported about polycrystalline BaTiO; thin films
prepared by sol-gel [Kamalasanan et al., 1993] and a chem-
ical solution process [Benomar et al., 1994]. Chemical solu-
tion processes such as coating-pyrolysis (CP) or sol-gel pro-
cess have the following advantages : they are simple and low-
cost chemical processes that are easily applicable to the sub-
strates of any shape and size.

Crystallinity and orientation of BaTiO; thin films greatly
depend on the preparation methods, preparation conditions
and substrate materials. In case of the orientation of BaTiO,
thin films on MgO (100), a-axis-oriented thin films were pre-
pared by MOCVD [Kaiser et al., 1995] and by pulsed laser
deposition using ArF excimer laser [Kim and Kwok, 1995].
Whereas, c-axis-oriented thin films were prepared by RF-sputter-
ing [Kim et al., 1995; Fujimoto et al., 1989] and by pulsed
laser deposition using Nd: YAG laser [Srikant et al., 1995].
Recently, we succeeded in fabricating epitaxial BaTiO; thin
films on SrTiO; substrates by CP process [Kim et al., 1996,
1997]. The epitaxial BaTiO; thin films were pseudo-cubic with
a tetragonality of 1.003.

In this paper, BaTiO; thin films on MgO (100) substrates
were prepared by CP process using mixed metal-naphthenate
solution. By heat treatment under low oxygen partial pressure
or in air, the crystallinity, in-plane alignment and surface mor-
phology of BaTiO,; thin films were investigated.

EXPERIMENTAL
Commercial barium- and titanium-naphthenates were mix-

ed for preparing a coating solution, in which the molar ratio
of Ba/Ti was set as 1.0. This solution was diluted with to-
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luene to adjust a concentration and viscosity for spin coat-
ing. The metal concentration of the coating solution was about
0.2 mmol/g. The solution was spin-coated on cleaved MgO
(100) substrates at 2,000 pm for 5 sec. The coated films were
pyrolyzed at 470°C for 10 min in air to eliminate organic com-
ponents. The coating and pyrolysis condition was the same as
that for the preparation of the epitaxial BaTiO; films on SrTiO;
in our previous paper [Kim et al., 1996, 1997]. The pyrolyz-
ed films were heat treated in a tube furnace at 800°C and 900
°C for 2 h in air and under a gas mixture of argon and oxy-
gen with oxygen partial pressure ((O,)) of 2 10™* atm, respec-
tively. The flow rate of the gas mixture was set as 300 ml/min.
The p(O,) was checked by zirconia-type oxygen analyzer at an
outlet of a tube furnace. In addition, some of the pyrolyzed
films were heat treated at higher temperatures of 1,000 °C and
1,200°C for 2 h in air using a LaCrO;-type. high-temperature
furnace.

Thermogravimetric and differential thermal analyses (TG/
DTA) were carried out to determine the decomposition behav-
iors of barium naphthenate, titanium naphthenate and the mix-
ed coating solution. The samples for TG/DTA were dried at
110°C for 12 h to remove the toluene. Thermal analyses were
performed to a temperature up to 600°C with a heating rate of
10°C/min and a flow rate of air of 300 ml/min. The thickness
of the final films was about 0.3 um, confirmed by weight gain
and by observation of a cross section of the films with a scan-
ning electron microscope. Crystallinity and alignment of the
films were examined by x-ray diffraction (XRD) 6/2 0 scans and
x-ray pole figures using Cu Kot radiation with a graphite bent
crystal monochromator. Surface morphologies of the BaTiO,
thin films were observed by scanning electron microscope (SEM).

RESULTS AND DISCUSSION

Fig. 1 shows TG/DTA plots of the barium and titanium
naphthenates and the mixed coating solution. Weight losses
corresponding to decompositions of barium and titanium na-
phthenates began around 200 °C and completed at about 490
°C, whereas that of the mixed coating solution completed at
about 460 °C, which was slightly lower than the decomposi-
tion temperatures for the metal naphthenates. The decomposi-
tion products of barium and titanium naphthenates were BaCO;
and TiO,, respectively, as confirmed by XRD 6/2 0 scans. The
decomposition from barium naphthenate to BaCO, proceeded in
two steps with a small exothermic peak at 350°C and a large
exothermic peak at 480 °C as shown in Fig. 1(b). For titanium
naphthenate, two steps with exothermic peaks at 360 °C and 440
°C were observed. The decomposition from the coating solution
<0 a mixture of BaCO; and TiO, was pseudo-one step having
the exothermic peak at 440°C. These decomposition behaviors
are thought to be related to the specific structure and a parti-
cular interaction of the organic metal components.

The spin-coated films on MgO substrates were pyrolyzed
at 470°C based on the results of TG/DTA. The pyrolyzed
films were amorphous according to the XRD 6/2 0 scan re-
sults not shown here, similar to the pyrolyzed films prepar-
ed on SrTiO; substrates. In the case of the BaTiO; films on
SiTiO;, the amorphous pyrolyzed films were crystallized show-

@)
0

Weight loss(wt%)
& n
o o

o2}
o

80

A A A A A A A r A A A A A
0 15.30 300 450 600
Temperature(C)

(b)

—> Exo

o
°
| =4
ui
0 15 300 450 600
Temperature("C)
Fig. 1. TG/DTA plots of barium naphthenate (- - - -), titanium
naphthenate (--++--) and mixed coating solution (------ ).

ing highly oriented peaks of BaTiO; after heat treatment at 800
°C and higher temperatures in air [Kim et al, 1996, 1997].
XRD 6/2 6 scans of the films heat-treated under low-p(O,) at
800° and 900°C are shown in Fig. 2. The films heat-treated at
800°C were still amorphous as shown in Fig. 2 (a). The film
heat-treated at 900°C under low-p(0;) showed strong (h00) re-
flections together with much weaker (101) and (111) reflections.
This suggests that the film consisted of mainly (h00) oriented
BaTiO; grains; while the film heat-treated in air at 900°C was
still amorphous, which was similar to the film heat-treated at
800°C as shown in Fig. 3 (a). When the film was heat treated
at higher than 1,000°C and 1,200°C, the peaks of BaTiO; ap-
peared at 1,000°C and increased with the temperature. However,
the film heat treated at 1,200°C showed strong BaTiO, (101)
and (111) reflections together with BaTiO; (h00) reflections, sug-
gesting that the film was mostly polycrystalline with less strong
(100)-preferred orientation.

Using substrate MgO (200) peak as an internal calibration
standard, we estimated the lattice constants for the films heat-
treated under low-p(0,) at 900°C and in air at 1,200°C to be
0.401s, 0.402, nm, respectively. These values are between a-
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Fig.2. XRD 0/2 0 scans of BaTiO; films heat treated under
low-p(Q;) at (a) 800°C and (b) 900 °C.
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Fig.3. XRD 6/2 0 scans of BaTiO; films heat treated in air at
(a) 900°C, (b) 1,000°C and (c) 1,200°C.

and c-axis values of the bulk tetragonal BaTiO; and closer to
the a-axis value of the bulk cubic BaTiO;. These values are
larger than that (0.399, nm) of the BaTiO; films on SrTiO,
substrates [Kim et al., 1997). It is difficult to judge using the
lattice constant alone whether the films prepared have a tetra-
gonal phase or cubic. In this paper, BaTiO; is regarded as a
cubic phase because of no peak splitting to 200 and 002, or
101 and 110 reflections [Shintani et al., 1970; Ljima et al., 1990],
and reflective indexes in the XRD 6/2 @ scans were denot-
ed according to cubic BaTiO,. Full width at half maximum
(FWHM) values of BaTiO; (200) reflection in the XRD 6/2 0
scans were measured to evaluate the crystallinity of BaTiO,
phase in the films. FWHMs for the films heat treated under
low-p(0,) at 900°C and in air at 1,200 °C were estimated to be
0.80 and 0.63°, respectively. This suggests that crystallinity of
BaTiO; is improved by adopting higher annealing temperature.

Next, texture coefficient (TC) values were calculated to evalu-
ate the preferred orientation of these BaTiO; films according to
the following equation [Yoon et al., 1987],

IRy K)
) = R s Tkt y kD) W

where, TC (hkl) is the texture coefficient of the plane (hkl),
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Table 1. Texture coefficient (TC) values

. (ki)
Heat-treatment conditions (100) (101) ain
900 °C under low-p(0,) 2.8 0.1 0.1
1,200°C in air 2.3 0.4 04

and I(7kl) and 1, (hkl) are measured and standard [JCPDS cards
No. 31-174] X-ray intensity of the plane (hkl), respectively. N
is the number of reflections. When TC (#kl) is more than 1,
the (hkl) plane is said to be preferably oriented. TC (hkl) values
calculated from the films heat treated under low-p(O,) at 900°C
and in air 1,200°C were given in Table 1. TC (100) values of
these films are larger than 1.0, suggesting that the films showed
stronger (/00) orientation than non-oriented BaTiO..

In-plane alignment of the films was investigated by XRD
pole-figure analysis using the Schulz reflection method of Ba-
TiO; (101)/(110) reflections, having high intensity and separ-
ability from the MgO substrate reflections. The film was rotat-
ed from B=0° to 360° at a tilted angles between 0=30° and
60°. As shown in Fig. 4(a), the film heat treated under low-
P(0,) at 900°C exhibits four sharp spots at every 90°. The S
angles of these spots were 45 *-rotated to MgO (111) reflec-
tions. This resulf indicates that most of (h00)-oriented BaTiO,
grains in the film were epitaxially grown on MgO substrates
and the relationship between BaTiO; and MgO was BaTiO;
(100)//MgO (100) and BaTiO; [001]//MgO [001]. On the oth-
er hand, the film heat treated in air at 1,200 °C showed only
traces of distinct spots beyond noise level in the pole- as
shown in Fig. 4(b). The results of pole-figure analysis with
TC (100) values mentioned above indicate that the film heat-
treated under low-p(0;) at 900°C had larger TC (100) value
and showed a good in-plane alignment. On the other hand, the
film heat treated in air at 1,200°C showed much poorer in-
plane alignment than the film heat treated under low-p(0;)
at 900°C, although the film showed larger TC (100) value and
higher crystallinity. The good epitaxial quality of the film heat
treated under low-p(0,) is thought to originate from the enhanc-
ed oxygen vacancy concentration, which is similar to that ob-
tained from the preparation of YBa,Cu,0;., films [Mclntyre et
al,, 1992; Hou et al., 1994].

Fig. 5 shows scanning electron micrographs of free surfaces
for the films. The film heat treated under low-p(O,) at 900°C
displayed a smooth surface with some pores dispersed on the
surface, and the contour of grains was not recognized clearly
in this magnification (X 15,000). The film heat treated at 1,200
°C in air consisted of textured grains with diameter about 0.3
um and gaps were recognized between each grain. This textur-
ed morphology of the film is similar to that of BaTiO, films
prepared by MOCVD on LaAlO; substrates [Willis et al., 1992].

Compared to the preparation of the epitaxial BaTiO; films on
SrTiO; substrates [Kim et al., 1996, 1997], higher annealing
temperature and more precisely controlled atmosphere are re-
quired to obtain epitaxial BaTiO; films on MgO substrates.
Higher annealing temperature and less strong orientation for
the epitaxial BaTiO; films on MgO might be owing to larger
lattice misfits between BaTiO, and MgO than those between
BaTiO; and SrTiO,.
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Fig. 4. Pole-figures of BaTiO; (101)/(110) reflections for the films
heat treated (a) under low-p(0,) at 900°C and (b) in air
at 1,200°C.

Fig. 5. Scanning electron micrographs of the free surfaces for
the BaTiO,; films heat treated (a) under low-p(0,) at 900
°C and (b) in air at 1,200 °C.

CONCLUSIONS

BaTiO; thin films were prepared on MgO (100) substrates
by CP process using metal naphthenate solution. The amor-

phous films pyrolyzed at 470 °C were crystallized to BaTiOs
phase by heat treatment at higher temperatures, and crystallini-
ty and in-plane alignment of the films depended on tempera-
ture and on atmosphere during heat treatment. By heat treat-
ment at 900 °C under oxygen partial pressure of 2X 10 atm,
(100)-oriented epitaxial BaTiO; film was obtained and the film
displayed a smooth surface with some pores dispersed on the
surface. On the other hand, amorphous BaTiO; film was ob-
tained by heat treatment at 900°C in air, and textured BaTiO,
film with less strong (100) orientation was obtained at 1,200
°C and consisted of grains with diameter about 0.3 pum.
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