Korean J. Chem. Eng., 16(4), 407-426 (1999)
FEATURED REVIEW

Mathematical Programming Approaches to
the Synthesis of Chemical Process Systems

Ignacio E. Grossmann', Jose Antonio Caballero and Hector Yeomans

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract—This paper presents a review of advances that have taken place in the mathematical programming
approach to process design and synthesis. A review is first presented on the algorithms that are available for
solving MINLP problems, and its most recent variant, Generalized Disjunctive Programming models. The formu-
lation of superstructures, models and solution strategies is also discussed for the effective solution of the corre-
sponding optimization problems. The rest of the paper is devoted to reviewing recent mathematical programming
models for the synthesis of reactor networks, distillation sequences, heat exchanger networks, mass exchanger
networks, utility plants, and total flowsheets. As will be seen from this review, the progress that has been achiev-

ed in this area over the last decade is very significant.
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INTRODUCTION

The mathematical programming approach to design and inte-
gration problems, or more generally synthesis problems, con-
sists of three major steps. The first is the development of a repre-
sentation of alternatives from which the optimum solution is
selected. The second is the formulation of a mathematical pro-
gram that generally involves discrete and continuous variables
for the selection of the configuration and operating levels, re-
spectively. The third is the solution of the optimization model
from which the optimal solution is determined. As will be shown
in this paper, significant advances have taken place with this
methodology, which offers the possibility of developing auto-
mated tools to support the exploration of alternatives and optimi-
zation of chemical processes by design engineers.

Over the last decade there have been considerable advances
in mathematical programming techniques. For instance, the solu-
tion of mixed-integer nonlinear programming problems and
the rigorous global optimization of nonlinear programs has be-
come a reality. Furthermore, there have been great advances in the
capability of solving very large problems, particularly for linear
and mixed-integer linear programming techniques. There has
also been recently a trend towards new logic-based formula-
tions that can facilitate the modeling and solution of these prob-
lems. Finally, the availability of modeling systems that can fa-
cilitate the formulation of optimization problems has also made
great progress, as well as the development of several solution
strategies.

It is the objective of this paper to present an overview of the
major advances in mathematical programming techniques and
strategies for the modeling and solution of design and synthesis
problems. The paper is organized as follows. We first present an
overview of methods for mixed-integer linear and nonlinear prob-
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lems, and their more recent formulation as generalized disjunctive
programming problems. We also give a brief review of methods
for global optimization. We next discuss several ideas that have
emerged for the development of superstructure representations,
and models at various levels of abstraction, ranging from aggre-
gated to detailed models. Finally we provide a review of recent
methods that have been published based on mathematical pro-
gramming for process synthesis. It should be noted that this
paper does not cover a review of mathematical programming
models for batch and scheduling problems. Recent reviews in
these areas can be found in Reklaitis [1990], Pinto and Gross-
mann [1998] and Shah [1998].

MATHEMATICAL PROGRAMMING

Design and synthesis problems give rise to discrete/continu-
ous optimization problems, which when represented in alge-
braic form, correspond to mixed-integer optimization problems
that have the following form:

min Z=f(x, y)
st h(x,y)=0
2(x, y)<0
xOX, yO{o, 1} (MIP)

where (X, y) is the objective function (e.g. cost), h(x, y)=0 are
the equations that describe the performance of the system (mass
and heat balances, design equations), and g(x, y)<0 are inequali-
ties that define the specifications or constraints for feasible
choices. The variables x are continuous and generally corre-
spond to the state or design variables, while y are the discrete
variables, which generally are restricted to take 0-1 values to de-
fine the selection of an item or an action. Problem (MIP) corre-
sponds to a mixed-integer nonlinear program (MINLP) when
any of the functions involved are nonlinear. If all functions are
linear it corresponds to a mixed-integer linear program (MILP). If
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there are no 0-1 variables, the problem (MIP) reduces to a nonlin-
ear program (NLP) or linear program (LP) depending on whether
or not the functions are linear.

The formulation and solution of major types of mathematical
programming problems can be effectively performed with mod-
eling systems such as GAMS [Brooke et al., 1992], and AMPL
[Fourer et al., 1992]. While these require that the model be ex-
pressed explicitly in algebraic form, they have the advantage that
they automatically interface with codes for solving the various
types of problems. They also perform automatic differentiation
and allow the use of indexed equations, with which large scale
models can be readily generated. It should also be noted that
these modeling systems now run mostly on desktop and PC com-
puters, making their use and application widely available.

The solution of LP problems relies largely on the simplex algo-
rithm [Chvatal, 1983; Saigal, 1995], although lately interior-point
methods [Marsten et al., 1990; Larsen et al., 1994] have receiv-
ed increased attention for solving very large problems because of
their polynomial complexity. MILP methods rely largely on sim-
plex LP-based branch and bound methods [Nemhauser and Wol-
sey, 1988] that consists of a tree enumeration in which LP sub-
problems are solved at each node, and eliminated based on bound-
ing properties. These methods are being improved through cut-
ting plane techniques [Balas et al., 1993], which produce tighter
lower bounds for the optimum. LP and MILP codes are widely
available. The best known include CPLEX, OSL and XPRESS,
all which have achieved impressive improvements in their capa-
bilities for solving problems. It is worth noting that since MILP
problems are NP-complete it is always possible to run into time
limitations when solving problems with large number of 0-1 vari-
ables, especially if the integrality gap is large.

The solution of NLP problems [Fletcher, 1987; Bazaara et
al., 1994, relies either on the successive quadratic programming
algorithm (SQP) [Han, 1976; Powell, 1978; Schittowski, 1981],
or on the reduced gradient method [Murtagh and Saunders, 1978,
1982]. Major codes include MINOS and CONOPT for the reduc-
ed gradient method, and OPT [Vasantharajan et al., 1990] for the
SQP algorithm. These NLP methods are guaranteed to find the
global optimum if the problem is convex (i.e. convex objective
function and constraints). When the NLP is nonconvex a global
optimum cannot be guaranteed. One option is to try to convexi-
fy the problem, usually through exponential transformations,
although the number of cases where this is possible is rather
small. Alternatively, one could use rigorous global optimization
methods, which over the last few years have made significant
advances. These methods assume that special structures are
present in the problem, such as bilinear, linear fractional and
concave separable functions. Although this may appear to be
quite restrictive, Smith and Pantelides [1996] have shown that
algebraic models are always reducible to these structures, pro-
vided they do not involve trigonometric functions. For a general
review on global optimization see Horst and Tuy [1993], Horst
and Pardalos [1995] ; recent developments in chemical engineer-
ing can be found in Grossmann [1996]. Computer codes for glo-
bal optimization still remain in the academic domain, and the
best known are BARON by Sahinidis and Ryoo [1995], and a-
BB by Floudas et al. [1996]. It should also be noted that non-
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rigorous techniques such as simulated annealing [Kirkpatrick
et al,, 1983] and genetic algorithms [Goldberg, 1989], which have
also become popular, do not make any assumptions on the func-
tions, but then they cannot guarantee rigorous solutions, at least
in finite amount of time. Also, these methods do not formulate
the problem as a mathematical program since they involve proce-
dural search techniques that in turn require some type of discreti-
zation. Furthermore, violation of constraints is handled through
ad-hoc penalty functions.

Major methods for MINLP problems include first Branch and
Bound (BB) [Gupta and Ravindran, 1985; Nabar and Schrage,
1991; Borchers and Mitchell, 1992; Stubbs and Mehrotra, 1996],
which is a direct extension of the linear case, except that NLP sub-
problems are solved at each node. Generalized Benders Decompo-
sition (GBD) [Benders, 1962; Geoffrion, 1972], and Outer-Approxi-
mation (OA) [Duran and Grossmann, 1986; Yuan et al., 1988;
Fletcher and Leyffer, 1994; Ding-Mai and Sargent, 1992], are iter-
ative methods that solve a sequence of alternate NLP subproblems
with all the 0-1 variables fixed, and MILP master problems that
predict lower bounds and new values for the 0-1 variables. The dif-
ference between the GBD and OA methods lies in the definition of
the MILP master problem; the OA method uses accumulated lin-
earizations of the functions, while GBD uses accumulated La-
grangian functions parametric in the 0-1 variables. The LP/NLP
based branch and bound by Quesada and Grossmann [1992]
essentially integrates both subproblems within one tree search,
while the Extended Cutting Plane Method (ECP) [Westerlund and
Pettersson, 1992] does not solve the NLP subproblems, and relies
exclusively on successive linearizations. All these methods as-
sume convexity to guarantee convergence to the global opti-
mum. Nonrigorous methods for handling nonconvexities include
the equality relaxation algorithm by Kocis and Grossmann [1987]
and the augmented penalty version of it [Viswanathan and Gross-
mann, 1990]. A review on these methods and how they relate to
each other can be found in Grossmann and Kravanja [1997]. The
only commercial code for MINLP is DICOPT (OA-GAMS), al-
though there are a number of academic versions (MINOPT by
Floudas and coworkers, a-ECP by Westerlund and coworkers).

In recent years a new trend that has emerged in the formula-
tion and solution of discrete/continuous optimization problems
through a model that is known as Generalized Disjunctive Pro-
gramming (GDP) [Raman and Grossmann, 1994]. The basic
idea in GDP models is to use boolean and continuous vari-
ables, and formulate the problem with an objective function,
and subject to three types of constraints: (a) global inequalities
that are independent of discrete decisions; (b) disjunctions that
are conditional constraints involving an OR operator; (c) pure
logic constraints that involve only the boolean variables. More
specifically, the problem is given as follows :

min Z=Y ¢,+f(x)

kOK

s.t. g(x)<0

Y,
03, e (9) < O kOIK

Cr =Y

(GDP)
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Q(Y)=True
xOX, Y,O{True, False}

where x are continuous variables and y are the boolean vari-
ables. The objective function involves the term f(x) for the con-
tinuous variables (e.g. operating cost) and the charges c, that
depend on the discrete choices. The equalities/inequalities g(x)<
0 must hold regardless of the discrete conditions, and h;,(x)<0
are conditional equations that must be satisfied when the corre-
sponding boolean variable Y, is True for the j'th term of the
k'th disjunction. The set I, represents the number of choices for
each disjunction defined in the set K. Also, the fixed charge ¢,
is assigned the value y, for that same variable. Finally, the con-
straints Q(Y) involve logic propositions in terms of boolean
variables.

Problem (GDP) represents an extension of disjunctive pro-
gramming [Balas, 1985], which in the past has been used as a
framework for deriving cutting planes for the algebraic prob-
lem (MIP). It is interesting to note that any GDP problem can
be reformulated as a MIP problem, and vice-versa. It is more
natural, however, to start with a GDP model, and reformulate it
as a MIP problem. This is accomplished by reformulating the
disjunctions using the convex hull transformation [Turkay and
Grossmann, 1996b] or with “big-M” constraints. The proposi-
tional logic statements are reformulated as linear inequalities
[Raman and Grossmann, 1991, 1994]. For the linear case of prob-
lem GDP, and when no logic constraints are involved, Beaumont
[1991] proposed a branch and bound method that does not rely
on 0-1 variables and branches directly on the equations of the
disjunctions. This method was shown to outperform the solu-
tion of the alternative algebraic MILP models. Raman and
Grossmann [1994] developed a branch and bound method for
solving problem GDP in hybrid form; i.e. with disjunctions and
mixed-integer constraints. For this they introduced the notion
of “w-MIP representability” to denote those disjunctive con-
straints that can be transformed into mixed-integer form with-
out loss in the quality of the relaxation. Hooker and Osorio
[1996] developed a different branch and bound method which
in a way is a generalization of Beaumont’s method in that it
does not introduce 0-1 variables, and addresses problems di-
rectly in the form of the GDP problem.

For the nonlinear case of problem (GDP), and for the case of
process networks, Tiirkay and Grossmann [1996] proposed a
logic-based Outer-Approximation algorithm. This algorithm is
based on the idea of extending the Outer-Approximation algo-
rithm by solving NLP subproblems in reduced space, in which
constraints that do not apply in the disjunctions are disre-
garded, with which both the efficiency and robustness can be
improved. In this method the MILP master problems corre-
spond to the convex hull of the linearization of the nonlinear
inequalities. Also, several NLP subproblems must be solved to
initialize the master problem in order to cover all the terms in
the disjunctions. Penalties can also be added to handle the
effect of nonconvexities as in the method by Viswanathan and
Grossmann [1990]. This method has been implemented in the
computer prototype LOGMIP, a GAMS-based computer code

developed by Vecchietti and Grossmann [1997]. Finally, it should
be noted that a new method for solving GDP problems has re-
cently been reported by Lee and Grossmann [1999]. These au-
thors have developed reformulations and algorithms that rely
on the convex hull of nonlinear convex inequalities. Also, their
method is not restricted to process networks.

From the above review, it should be clear that LP and MILP
codes have become quite powerful. NLP methods are being
advanced by rigorous global optimization algorithms, which,
however, can still be relatively expensive to apply. Finally, as
for MINLP methods the new exciting direction is logic based
optimization methods, such as Generalized Disjunctive Pro-
gramming, which promise to facilitate problem formulation
and improve the solution efficiency and robustness.

SUPERSTRUCTURES

In the application of mathematical programming techniques to
design and synthesis problems it is always necessary to postulate
a superstructure of alternatives. This is true whether one uses a
high level aggregated model, or a fairly detailed model. Most
of the previous work has relied on representing the superstruc-
ture for each particular problem at hand, but without following
some general principles. There are two major issues that arise in
postulating a superstructure. The first is, given a set of alterna-
tives that are to be analyzed, what are the major types of repre-
sentations that can be used, and what are the implications for
the modeling. The second is, for a given representation that is
selected, what are all the feasible alternatives that must be
included to guarantee that the global optimum is not over-
looked.

As for types of superstructures, Yeomans and Grossmann
[1999a] have characterized two major types of representations.
The first is the State-Task Network (STN) which is motivated by
the work in scheduling by Kondili, Pantelides and Sargent
[1994]. The basic idea here is that the representation makes use
of two types of nodes: states and tasks (see Fig. 1a). The as-
signment of equipment is dealt implicitly through the model.
Both the cases of one-task one-equipment (OTOE) or variable
task equipment assignment (VTE) can be considered. The sec-
ond representation is the State Equipment Network (SEN)
which is motivated by recent work of Smith and Pantelides
[1995], and where the basic idea is to work with two types of
nodes : states and equipment (see Fig. 1b). The tasks in this case
are treated implicitly through the model. This representation
considers the case of variable task equipment assignment (VTE).
Yeomans and Grossmann [1999a] have developed GDP mod-
els for each of the two different types of representations. These
can then be used for solution with a GDP algorithm, or they
can be used for reformulation as MILP or MINLP problems.

As for the issue on how to systematically generate the super-
structure that includes all the alternatives of interest, Friedler et
al. [1993] have proposed a novel graph theoretic approach that
has polynomial complexity to find all the interconnections in pro-
cess networks, given that nodes for processes and chemicals are
specified. This procedure has been succesfully applied for synthe-
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Fig. 1. Alternative representations for distillation of four com-
ponents.

sizing process networks for waste minimization [Friedler et al.,
1995]. These authors have also used these ideas to perform more
efficiently the search in the optimization [Friedler et al., 1996].

MODELS

Closely related to the selection of the superstructure, is the
selection of level of detail of the optimization model. A com-
mon misconception about the mathematical programming ap-
proach is that models are always detailed and require a great
deal of information. This, however, is not necessarily true. In
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general mathematical programming models can be classified
into three main classes.
1. Aggregated Models

These refer to high level representations in which the design
or synthesis problem is greatly simplified by an aspect or objec-
tive that tends to dominate the problem at hand. Examples of
aggregated models include the transshipment model for pre-
dicting minimum utility and minimum number of units in heat
exchanger networks [Papoulias and Grossmann, 1983] and mass
exchanger networks [El-Halwagi and Maniousiouthakis, 1989a],
the set of heat integration constraints based on the pinch location
method [Duran and Grossmann, 1986; Grossmann et al., 1998],
distillation models for minimizing cost of utilities [Caballero
and Grossmann, 1999], reactor network models for maximizing
yield [Balakrishna and Biegler, 1992a]. All these models are spe-
cific to the corresponding problem at hand. Daichendt and Gross-
mann [1987] have outlined a theoretical framework for deriving
aggregated models, which however, must be adapted to each par-
ticular application.

2. Short Cut Models

These refer to fairly detailed superstructures that involve cost
optimization (investment and operating costs), but in which the
performance of the units is predicted with relatively simple
nonlinear modes in order to reduce the computational cost,
and/or for exploiting the algebraic structure of the equations,
especially for global optimization. Examples of such models
include synthesis models for heat exchanger networks [Yee et
al., 1990; Ciric and Floudas, 1991], distillation sequences [Ag-
grawal and Floudas, 1990; Yeomans and Grossmann, 1998b],
and process flowsheets [Kocis and Grossmann, 1989; Tiirkay
and Grossmann, 1996].

3. Rigorous Models

These also rely on detailed superstructures, but involve rig-
orous and complex models for predicting the performance of
the units. The area of synthesis of distillation sequences (ideal
and non-ideal) is perhaps the one that has received the most
attention for developing rigorous models. Examples are the
work by Bauer and Stichlmair [1996, 1998] and Smith and
Pantelides [1995].

It should be noted that aggregated models give rise to sim-
pler types of optimization models. They are often LP, NLP or
MILP models of modest size, that are simpler to solve than
larger MINLP models. In contrast, both short cut and detailed
models give rise almost exclusively to MINLP problems,
which as mentioned above, can also be formulated as GDP
problems. The important point to realize here is that mathemat-
ical programming can accommodate models of various degree
of complexity.

SYNTHESIS STRATEGIES

There are several solution strategies that can be used in the
optimization of mathematical programming models for design
and synthesis. The two major strategies are simultaneous optimi-
zation, and the sequential optimization. In the simultaneous strat-
egy a single model is optimized at once. The optimization is
rigorous because all the trade-offs are taken simultaneously into
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account. Also, the simultaneous models are commonly of one
type, but hybrids are possible. For example one can perform
simultaneous optimization of a flowsheet in which the reaction,
separation and heat integration are each represented by aggre-
gated models. Alternatively, simultaneous optimization can be
applied to the synthesis of subsystems, for example heat ex-
changer networks, or heat integrated distillation units. In the lat-
ter example, one might use detailed models for the distillation
and heat integration, or detailed for distillation and aggregated
for heat integration.

The sequential optimization strategy consists of solving a
sequence of subproblems, normally at an increasing level of
detail. The major motivation is to solve simpler problems to
avoid solving a large single problem (normally MINLP). A
good example is the procedure implemented in MAGNETS
[Floudas et al., 1986] in which an LP is solved first to target the
utility cost, next an MILP to determine the identity of the few-
est number of matches, and finally an NLP superstructure in
which interconnection of exchanger with the predicted matches
are determined. Another example is the hierarchical decomposi-
tion procedure by Douglas [1988] in which the flowsheet is
sequentially optimized through various levels, from a simple
input-output model to the detailed structure.

While the simultaneous and sequential strategies have been
used for a long time, there are several new variants that have
been proposed. These include combining mathematical pro-
gramming with physical insights [Gundersen and Grossmann,
1990], the state-space approach by Bagajewicz and Maniousiuo-
thakis [1992], and the combined Hierarchical Decomposition
and MINLP optimization by Daichendt and Grossmann [1998].
These are discussed later in the paper. What is important to re-
alize is that mathematical programming models can be applied
through a variety of strategies, that in turn make use of models
at various levels of complexity. For instance, in sequential de-
composition one can use aggregated, short-cut and detailed mod-
els. In simultaneous optimization one can use a model of a single
type, or a mix of several types. Finally, it is possible to use mathe-
matical programming in combination with other approaches,
most notably, physical insights.

REVIEW OF SYNTHESIS MODELS BASED ON
MATHEMATICAL PROGRAMMING

After providing a general overview of general developments in
mathematical programming techniques for process synthesis, we
present in the remainder of this paper a review of models that
have been proposed for subsystems (reactor networks, distillation
sequences, heat exchanger networks, mass exchange networks,
utility systems) and of process flowsheets. As will be seen, the
amount of published papers in this area has been very substan-
tial over the last decade or so.

1. Reactor Networks

Synthesis of reactor networks poses a difficult modeling
problem as these are usually described by differential-algebraic
equations. Compared, however, to heat exchanger networks, dis-
tillation systems or utility systems, the combinatorial part in re-
actor networks tends to be smaller.

Two significant mathematical programming strategies for syn-
thesis of reactor networks are superstructure optimization and
targeting. The superstructure approach can be suboptimal since
the solution obtained is only rich as the initial superstructure
chosen and it is difficult to ensure that all the possible networks
are included in the initial superstructure. In targeting, the objec-
tive is to find an achievable bound to a performance index of
the system independently of the actual reactor configuration.
Although these two approaches appear independently, the con-
cepts developed in the targeting approach are being used to
generate superstructures that can ensure that the optimal solu-
tion is included.

In superstructure optimization Chitra and Govind [1981, 1985]
studied PFR systems with a recycle stream from an intermedi-
ate point along the reactor, and optimized the recycle ratio as
well as the point of recycle. The objective function was based
on the yield of the reactions. Achenie and Biegler [1986, 1988]
postulated a series parallel combination of axial dispersion reac-
tors (ADR). The advantage of the ADR is that more general
reactor networks can be generated. Kokossis and Floudas [1989,
1990, 1991] postulated a large superstructure of isothermal net-
works of PFR’s and CSTR’s. They modeled the PFRs by series
of CSTR’s of equal size. Thus their MINLP formulations had
not differential equations. Kokossis and Floudas [1994] ex-
tended their previous formulation to handle stability of reactor
networks and integration with recycle streams, and the noniso-
thermal case [Kokossis and Floudas, 1994b], that includes op-
tions for pure adiabatic operation, options for perfectly con-
trolled units and directly and indirectly intercooled or inter-
heated reactors. Markoulaki and Kokossis [1996], used stochastic
optimization (simulated annealing) to solve the complex MI-
NLP associated with the formulation of the reactor network in
an attempt of minimizing the effect of the nonconvexities. Smith
and Pantelides [1995] proposed a synthesis technique for reac-
tion and separation networks using detailed unit operations
models. Complete connectivity among the units, both forward
and recycle, was assumed in the superstructure chosen. In all
these methods the optimal solution is as good as the superstruc-
ture, but there is no guarantee that the best solution is included
in the formulation of the superstructure.

The targeting reaction network synthesis is based in the con-
cept of “attainable region” which was first suggested by Horn
[1964]. The attainable region is the convex hull of concentra-
tions that can be achieved starting from the feed point by reac-
tion and mixing. Glasser et al. [1987] and Hildebrandt et al.
[1990] developed the geometrical concepts that allow to obtain
the entire region in the concentration space that is attainable for a
given feed concentration through reaction and mixing. Although
the graphical representation of the attainable region is constrained
to two or three dimensions, Feinberg and Hildelbrandt [1992]
show that the geometric insights gained from this representation
can be useful in problems with higher dimensions. In this work
some of the characteristics of the attainable region were point-
ed out and formally established in the recent work of Feinberg
and Hildebrandt [1997]. In particular they showed that the
boundary of the attainable region is made up of PFR trajecto-
ries and straight line segments. As a result, all points of this
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boundary can be found by a combination of PFRs, CTRs, and
differential side streams reactors (DSRs). Due to the convex
nature of the attainable region it is possible to formulate super-
structures formed only by combination of these three reactors
that will ensure the inclusion of the optimal solution with respect
to a target objective. However, constructive procedures for high-
er dimensional attainable regions that incorporate these proper-
ties still need to be developed. Omtveit and Lien [1993] extended
the representation of the attainable region to account for recy-
cles in flowsheets. Glasser et al. [1994] compared the conversion
obtained with segregated and maximum mixed reactors with
the bounds given by the attainable region. These authors show-
ed that, in general, these reactors do not bound the attainable
region.

Balakrishna and Biegler [1992a, b] and Lakshmanan and
Biegler [1996a] formulated the geometric technique for target-
ing as a mathematical programming model. They proposed a
general targeting procedure based on optimization flows between
regions of segregation (PFR) and maximum mixedness as a
mixed integer dynamic optimization problem. Since this is an
optimization based procedure, it overcomes the dimensionality
problem of the geometric technique and can be extended to
nonisothermal systems where the temperature profile is an addi-
tional control profile. Lakshmanan and Biegler [1996b] ex-
tended the model to deal with the problem of simultaneous
chemical reaction and mass integration. Balakrishna and Bie-
gler [1993] also developed a targeting model for reaction separa-
tion and energy management.

Bikic and Glavic [1995] addressed the problem in which the
reactor network has multiple feeds. The problem is solved in
two stages. In the first, candidate reactors that satisfy at least the
necessary conditions for the optimum reactor network are gen-
erated and then, in the second stage, the optimal flowsheet is
extracted by optimizing the process that comprises all the candi-
date reactors. The method is restricted to 2 and 3 dimensional
reaction schemes. Later, Bikic and Glavic [1996] extended the
model to more complicated cases, when reactions take place in
non-isothermal systems with external heat sources and sinks.
Hopley et al. [1996] extended the attainable region for the case of
reversible reactions with complex kinetics, and used the attain-
able region to obtain the optimal structure.

2. Distillation Sequencing

Distillation has been, after heat exchanger networks, the most
studied of all the subsystems in process synthesis. Although
distillation is an expensive operation in terms of capital and
operating costs, it continues to be the most important separa-
tion technique, even for nonideal and azeotropic mixtures. A
general review of distillation synthesis can be found in Wester-
berg [1985], Floquet et al. [1988, 1994], Gert-Jan et al. [1994],
Juergen et al. [1995], and Westerberg and Wahnschaftt [1996].
Several approaches have been proposed for the design of effi-
cient separation systems: heuristic methods [Seader and West-
erberg, 1977], evolutionary techniques [Stephanopoulos and
Westerberg, 1976], mean-end analysis [Siirola and Rudd, 1971],
hierarchical decomposition [Douglas, 1988], implicit enumera-
tion [Johns and Romero, 1979], dynamic programming [Fraga
and McKinnon, 1995; Fraga, 1996], stochastic methods [Fraga
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and Matias, 1996], phenomenon based design [Laroche et al.,
1992; Rooks et al., 1998; Hauan and Lien, 1998] and super-
structure optimization, which will be treated extensively in the
following paragraphs.

One of the pioneering works in superstructure optimization is
due to Sargent and Gaminibandara [1976]. These authors propos-
ed a superstructure of linked columns that includes not only sim-
ple sharp splits, but also complex columns such as the Petlyuk
configuration [Petlyuk et al., 1965]. A nonlinear programming
model was used to solve this model that consists of tray by tray
mass balance equations and vapor-liquid equilibrium assuming
constant K values. Andrecovich and Westerberg [1985] pre-
sented a network superstructure for the separation of near ideal
mixtures into pure components. The model considered only
sharp splits and is based in short cut methods, but its major
contribution was the formulation of a MILP problem associ-
ated with the superstructure representation. The model is suit-
able for the design of heat integrated distillation sequences, and
uses a network representation instead of a tree representation
[Hendry and Hughes, 1972].

The model of Kakhu and Flower [1988] is possibly the first
model capable of describing complex column configurations
explicitly, such as side strippers, side rectifiers and Petlyuk
configurations. It is worth noting that the model of Sargent and
Gaminibandara [1976] can also be rearranged to tackle these
configurations. Floudas and Paules [1988] proposed a MINLP
model for the design of heat integrated distillation processes
for the separation of ideal boiling multicomponent mixtures that
extended the Andrecovich and Westerberg model, by allowing
the use of nonlinear cost functions. The model is restricted to
sharp splits and constant reflux ratio. In the work of Floudas
and Anastasiadis [1988] and Aggarwal and Floudas [1990] the
model is extended to processes with multiple feeds and non-
sharp splits. These nonlinear models used simulation results to
construct approximate models of mass and energy balances,
and cost correlations. Paules and Floudas [1992] solve the prob-
lem of finding the optimal process for a non-constant feed
composition. Floudas [1987] also addressed the problem of
separating a multicomponent feed stream into several specified
multicomponent product streams.

Novak et al. [1996] considered the synthesis of distillation
sequences simultaneously with the synthesis of other process
subsystems with heat integration. They proposed to use a
smaller and more compact superstructure for the distillation
sequence rather than the tree or network representation. In par-
ticular, for non-azeotropic mixtures of N components they used
a superstructure with N-1 columns in which each column per-
forms one specific cut between adjacent components.

All the previous models rely on short cut methods or other
simplifications, and the phase equilibrium is often described by
assuming constant relative volatilities. The first general MINLP
model for a rigorous distillation column design was presented by
Viswanathan and Grossmann [1993a, b]. They applied the MESH
equations in a rigorous tray by tray calculation. The model
allows the optimization of the number of stages, the optimal
feed tray location, even for multiple feeds, and the optimal
reflux. In their work the objective functions considered were
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the optimization of a combination of the number of trays and
reflux, or the simplified function of Lucia and Kumar [1988].
However, the model was not applied for the synthesis of distil-
lation sequences. Smith [1996] proposed a superstructure rep-
resentation, with a reduced number of columns, similar to that
of Novak et al. [1996], with full connectivity among them, using
the Viswanathan and Grossmann model. He used an enumera-
tion procedure and a global optimization method for the NLPs.
Recently Bauer and Stichlmair [1996, 1998] used the Viswana-
than and Grossmann model with a superstructure for zeotropic
and azeotropic distillation sequences based on the concept of
preferred separation. Also, Dunnebier and Pantelides [1999]
have tackled the problem for design of thermally coupled dis-
tillation columns that allow the separation of multicomponent
mixtures into pure components using complex column config-
urations. In their work, Dunnebier and Pantelides propose a
superstructure for individual columns that allows multiple side-
draws and feeds, as well as a superstructure for interconnecting
columns in a sequence similar to the one proposed by Smith
[1996], as well. The models these authors derive are based on
the Viswanathan and Grossmann model for single distillation
columns.

It is not until recently that greater attention has been paid to
the systematic generation of superstructures and the interaction
of superstructures and modeling for distillation systems. Baga-
jewicz and Manousiuothakis [1992] introduced the concept of
state space representation for separation networks design. These
authors claimed that this approach allows for a specific number
of process operators and all possible interconnections among
them, providing a framework for network design with minimal
assumptions on process structure. In particular, they applied the
methodology to distillation columns treated as a combination
of heat and mass exchange networks through a pinch operator.
Papalexandri and Pistikopoulos [1996] proposed a general frame-
work for the synthesis of distillation sequences based on mass
and heat exchange building blocks for constructing superstruc-
tures. This representation allows the construction of flexible
superstructures with many alternatives for task operations. Sar-
gent [1998] proposed recently a superstructure representation
for the synthesis of both zeotropic and azeotropic systems,
which is based on a state task network representation. He pro-
posed a representation that is able to include all possible separa-
tions, derived from a known equilibrium system, but a solution
algorithm was not presented for solving the corresponding opti-
mization problem. Yeomans and Grossmann [1999a, b] pro-
posed a systematic modeling framework based on the State
Task Network (STN) and the State Equipment Network (SEN)
representations, and modeled these problems as GDP prob-
lems. For the linear case they used the convex hull formulation
to translate the problem into MILP models. For nonlinear short-
cut models they used an extension of the logic-based Outer-
Approximation algorithm by Turkay and Grossmann [1996].
Caballero and Grossmann [1999] have developed aggregated
models with heat integration for the STN and SEN superstruc-
tures as well.

For the particular case of thermally linked columns to separate
near ideal multicomponent mixtures, Agrawal [1996] showed

that some of the superstructures proposed do not take into
account some possible configurations for mixtures with more
than three components (in particular that proposed by Sargent
and Gaminibandara [1976]. However he did not propose a
superstructure to overcome that problem. Caballero and Gross-
mann [1999] showed how that superstructure could be gener-
ated in the context of the general framework presented by
Yeomans and Grossmann [1999a].

Recently there has also been an increased interest in reactive
distillation. This technology has the potential of improving
processes by one or more of the following routes [Okasinski
and Doherty, 1998]: increasing their economic potential th-
rough reduced capital investment and improve raw material
usage; reducing byproduct formation and overcoming chemi-
cal equilibrium limitations; improving energy integration by
directly using the heat of reaction for the purpose of separation
and potentially reducing flowsheet complexity. Although a
great effort has been devoted to the synthesis and design of
reactive distillation columns [i.e. Barbosa and Doherty, 1988a,
b; Ung and Doherty 1995a, b; Okasinski and Doherty, 1998;
Bessling et al., 1997; Venimadhavan et al., 1994; Hauan and
Lien, 1998] very few papers has appeared in the context of
mathematical programming. Papalexandri and Pistikopoulos
[1996] applied their general framework to the synthesis of
reactive distillation columns. Probably the most representative
work in combining mathematical programming and reactive
distillation is due to Ciric and Gu [1994] who developed a
MINLP model for the optimum design of a reactive distillation
column. The model explicitly incorporates reaction kinetics,
heats of reaction, and liquid holdup volumes, and optimizes the
number of trays, the feed tray locations, and the internal com-
position and temperature profiles within a reactive distillation
column.

3. Heat-Exchanger Network Synthesis

Heat Exchanger Network Synthesis (HENS) is by far the
most developed technique for which many methods and soft-
ware packages are available. The last extensive review was
given by Gundersen and Naess [1988]. The discovery of the
heat recovery pinch [Umeda et al., 1979; Linnhoff et al., 1979],
that is derived through thermodynamic analysis, provided the
basis for advancing synthesis techniques for HENS. The most
widely used method, commonly known as “pinch technology”
[Linnhoff and Hindmarsh, 1983] relies on the use of targets
(energy, number units, area) and is based on a user driven
approach. SUPER-TARGET and ADVENT are two major
pieces of software implementing this approach. It should also
be noted that ideas of pinch analysis are being expanded
beyond HENSs to total sites and to assessment of environmental
problems (see Linnhoff, 1993 for a review).

As for mathematical programming methods, there has been a
gradual evolution from LP/MILP/NLP methods that are based
on targets [Cerda and Westerberg, 1983; Papoulias and Gross-
mann, 1983; Floudas et al., 1986; Colberg and Morari, 1990;
Gundersen and Grossmann, 1990] to simultaneous MINLP
models in which networks are automatically synthesized and
energy, area and number of units optimized simultaneously
(see Yee and Grossmann, 1990; Ciric and Floudas, 1991). Ex-
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amples of software for this purpose include MAGNETS for the
target-based methods and SYNHEAT for the simultaneous
MINLP. As a recent example of the former approach, Galli and
Cerda [1998] have proposed an MILP model for a heat ex-
changer network structure that explicitly accounts for relative
location of heat transfer units, splitters and mixers. This se-
quential MILP model allows the designer to explicitly account
for desired topology features.

The MINLP models that have been proposed to solve the
HENS problem are large nonlinear and nonconvex models,
and therefore may get trapped in sub-optimal solutions. Recent
efforts have been aimed at addressing these limitations. Dai-
chendt and Grossmann [1994b] proposed a preliminary screening
procedure for heat exchanger networks. The strategy is based
on convex aggregate models and thermodynamic insight to re-
duce the superstructure while preserving the optimality of the
solution. Quesada and Grossmann [1993] developed a global
optimization method for networks with fixed structure, and
assuming linear cost and arithmetic mean driving force. Zamora
and Grossmann [1998] proposed a global MINLP optimization
algorithm for the synthesis of HENS, using the superstructure rep-
resentation of Yee and Grossmann [1990]. The algorithm is based
on two new sets of convex underestimators for the heat transfer
area, the first one is based on thermodynamic analysis and the
second is a relaxation of the heat transport equation. The mod-
els developed are solved with a hybrid branch and bound/outer-
approximation search method. Yee and Grossmann [1991] ex-
panded their staged representation MINLP method to retrofit
design problems, where they considered the reconnection of
existing equipment, the expansion of the available areas, and the
inclusion of new heat exchangers in the superstructure. They also
proposed a prescreening procedure to reduce the complexity of
the MINLP model that is generated.

Several attempts have been made to integrate both the math-
ematical programming and pinch analysis approaches, in order
to reduce the computational difficulties of the former and to
improve the detailed synthesis of the latter. Duran and Gross-
mann [1986a] proposed an aggregated MINLP model that uses
a pinch location method to calculate the minimum utility con-
sumption of a process. This model has the advantage of being
easy to embed in any mathematical programming synthesis mod-
el, to perform simultaneous flowsheet synthesis and heat integra-
tion. Recently, Grossmann et al. [1998] developed further the
Duran and Grossmann model to rigorously account for isother-
mal streams. The proposed model is based on the big-M repre-
sentation of a Generalized Disjunctive Programming (GDP)
model, and was applied to the synthesis of heat integrated distil-
lation sequences. Gundersen et al. [1996] extended the Vertical
MILP model for heat exchanger network synthesis originally
developed by Gundersen and Grossmann [1990]. This vertical
MILP model was based on the idea of selecting matches that
transfer heat vertically between composite curves. The extended
vertical MILP model accounts for curve shifting effects and
stream pairing, by means of a penalty term in the objective func-
tion that is derived from film coefficient data. Also along the
lines of an integrated mathematical programming/pinch analysis
approach, Zhu [1997] proposed an automated design method for
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heat exchanger networks using block decomposition and heu-
ristic rules. The basic idea is to simplify a design problem by
decomposing it into a number of blocks (i.e. stages in Yee and
Grossmann, 1990), where special properties are exploited th-
rough decomposition [Zhu et al., 1995]. After decomposition,
design is carried out with a simple MINLP model aided with
heuristic rules. Briones and Kokossis [1996] proposed a rigor-
ous and systematic method for retrofit design of heat exchanger
networks. The approach uses both mathematical programming
and pinch analysis techniques in three steps: (1) targeting of area
and modifications, (2) structural optimization and (3) network
optimization.

Other efforts have concentrated on increasing the robustness
of the designs predicted by the MINLP models. Papalexandri
and Pistikopoulos [1994a, b] developed a systematic frame-
work for the synthesis and retrofit of heat exchanger networks,
where issues of flexibility and controllability are addressed. The
algorithm is based on a multiperiod hyperstructure network rep-
resentation, where explicit structural controllability criteria are
developed and included in a MINLP model. The outcome of the
model is an economically optimal design that is able to operate
within a specified range of uncertainty in flows, temperatures
and heat transfer coefficients. They also address the identifica-
tion of control variables and the selection of a control structure
to implement. Konukman et al. [1995] have presented a similar
approach for the design of controllable heat exchanger net-
works. The authors solve an optimization problem that consid-
ers the exchanger model equations and constraints simultane-
ously for all possible predefined disturbance directions. Re-
garding stochastic optimization approaches, Nielsen et al. [1996]
proposed a modeling framework that describes each of the
potential heat exchangers in terms of their functional behavior,
in an object-oriented representation. The proposed network is
solved with Simulated Annealing to find the best process alter-
native. Also, Floquet et al. [1997] developed a similar Simu-
lated Annealing procedure for HEN synthesis.

1. Mass Exchange Networks

Motivated by applications in waste recovery systems, El-Ha-
lwagi and Manousiouthakis [1989a, b, 1990a] considered the
problem of synthesizing mass exchange networks. For the sim-
pler case when concentration targets are specified for single
components, interesting analogies can be drawn with the heat
exchanger network problem. Usually implicit in the formula-
tion of the problem is the assumption that there are no tempera-
ture changes within the MEN. Finding the minimum utility con-
sumption for a fixed target MEN synthesis task, is formulated
as a linear program. The solution of the LP determines the min-
imum cost and pinch points that limit the mass exchange
between rich and lean streams [El-Halwagi and Manousiou-
thakis, 1990a]. In a second stage, a MILP transshipment prob-
lem is solved to identify the minimum number of mass ex-
change units, in a similar manner than the MILP formulation
for fixed target HEN synthesis [Papoulias and Grossmann,
1983]. El-Halwagi et al. [1992] applied this approach to the
specific problem of phenol treatment in petroleum refinery
wastewater. The minimum utility cost problem becomes a MI-
NLP for mass exchange networks that include regeneration
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[El-Halwagi and Manousiouthakis 1990b; Garrison et al., 1995].
Papalexandri et al. [1994] have considered simultaneous opti-
mization models in contrast to the sequential design strategies
used by other authors. Lee and Park [1995] propose an alterna-
tive method for MEN synthesis, using the P-graph theory and a
NLP formulation to find the optimal mass exchange network.
Papalexandri and Pistikopoulos [1995, 1996] proposed a general
process synthesis framework based on the representation of
synthesis alternatives via mass and heat transfer mechanisms.
They introduced a multipurpose mass/heat exchange module to
represent the building block for any process operation involving
mass/heat exchange between two previously defined streams.

The problem with multiple component targets was address-
ed by El-Halwagi and Manousiuthakis [1989b], Gupta and
Manousiouthakis [1994] and Wilson and Manousiouthakis [1998].
Gupta and Manousiouthakis [1993] presented an approach
where supply and target compositions of the rich and lean
streams are allowed to vary within upper and lower bounds.
The problem is solved as a MINLP in which the global optimum
can be ensured. Later, Gupta and Manousiouthakis [1996] pro-
posed a new formulation of the problem that leads to a linear
program that yields the same solution that the previous MINLP
formulation. The reduction in complexity of the new formulation
allows to deal with larger problems. Wang and Smith [1994a]
and Kuo and Smith [1997] approached the general problem for
the design of the final disposal wastewater network using a
graphical representation for the superstructure of design alterna-
tives. Wang and Smith [1994b, 1995] also treated the problem
of multiple contaminants, regeneration reuse, regeneration recy-
cling, and flowrate constraints. Alva-Argaez et al. [1998] pro-
posed a solution approach based on a recursive MILP to opti-
mize the Wang and Smith [1994a] model. With this approach
optimality is not guaranteed. Galan and Grossmann [1998]
have presented a global optimization strategy based on NLP
and MINLP models to address the nonconvexities that arise in
the mass balances of the superstructures presented by Wang
and Smith [1994a].

El-Halgawi et al. [1996] proposed an approach that removes
the pollutants from in-plant streams instead of dealing with the
pollutants in the terminal waste streams. It also provided a
framework for the simultaneous consideration of gas and liquid
pollutants. The problem was formulated as a MINLP in which
the objective was to determine the optimum interception loca-
tions, extents and separating agents through the plant. Chang
and Hwang [1996] developed a multiobjetive programming
approach for cost minimization and global emissions minimiza-
tion objectives, in the synthesis of utility systems of chemical pro-
cesses. The problem of simultaneous design and control of
MEN is presented in Huang and Edgar [1995] and Huang and
Fan [1995] and the flexible performance was addressed by
Papalexandri and Pistikopoulos [1994] and Zhu and El-Halwagi
[1994, 1995].

El-Halwagi and Srinivas [1992] introduced the problem of
synthesizing reactive mass exchange networks (REAMENS).
The main objective of synthesizing REAMENS is to preferen-
tially transfer certain species from a set of rich streams to a set
of reactive mass separating agents (MSAs), whereby the unde-

sirable species may be converted into other chemical forms. In
this work the problem was restricted to linear or convex equilib-
rium relations. The problem of synthesizing REAMENSs with gen-
eral equilibrium relations was presented by Srinivas and El-
Halwagi [1994a]. This work used a sequential approach, in
which first the minimum cost of the MSAs is identified without
any commitment to the final network structure. The second
stage is aimed at minimizing the number of mass exchangers
while realizing the minimum cost of MSAs. Lakshmanan and
Biegler [1995] developed reaction-network targeting strategies
for waste minimization using multi-objective optimization.

The problem of simultaneous waste reduction and energy
integration was studied by Srivinas and El-Halwagi [1994b].
These authors introduced the combined heat and reactive mass
exchange network (CHARMEN). Systematic design techniques
have also been devised for other separation systems that can be
used in recycle/reuse networks. These include the design of heat-
induced separation networks (HISENS) in which the removal of
the pollutants is accomplished via heating/cooling so as to affect
aphase change [Dye et al., 1995; Rinchburg and El-Halwagi, 1995;
El-Halwagi et al., 1995; Dunn et al,, 1995] and pressure driven
membrane separation [Srivinas and El-Halwagi, 1993; El-Hal-
wagi, 1992]. Finally, Dantus and High [1996] used an approach
that combines the MINLP techniques with the capabilities of
simulators (in particular ASPEN PLUS) for the retrofit of
chemical processes through waste minimization and process
integration. A good compendium of mass exchange networks
and their applications can be found in the book of El-Halwagi
[1997].

2. Utility Systems

The objective of a utility plant is to supply energy demands
to industrial process plants in form of electrical, mechanical and
steam demands. The first papers that used mathematical pro-
gramming were based in LP models such as that of Petroulas
and Reklaitis [1984]. Papoulias and Grossmann [1983], intro-
duced the MILP formulation for the structural and parametric
optimization of utility systems under fixed steam and power
demands. Fixing the operating conditions such as pressures
and temperatures, yields linear energy balance equations. The
MILP approach of Papoulias and Grossmann has been recently
used for the multiperiod optimization of utility plants by Hui
and Natori [1996], and Iyer and Grossmann [1997], and in
multi-objective approaches for waste minimization in utility
plants [Chang and Hwang, 1996].

Colmenares and Seider [1989] proposed an NLP model for
the design of a utility plant integrated with a chemical process. It
was based on the temperature interval method and the develop-
ment of a superstructure of Rankine cycles. However, due to the
nature of the NLP model there is no possibility of choosing
among different turbine configurations, or for selecting electric
motors for mechanical power demand. Kaliventzeff [1991], and
Diaz and Bandoni [1996] used MINLP techniques to optimize the
operation of the plant, but their models are not applicable to the
synthesis of new utility plants.

Marechal and Kaliventzeff [1991] proposed a MILP formu-
lation that allows to tackle the optimal integration of the utili-
ties to satisfy the energy requirement of the process at min-
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imum cost. Later these authors [Marechal and Kaliventzeft,
1996, 1997a] proposed a sequential approach for integrating
utility systems. The procedure is divided in three steps. In the
first one, pinch analysis concepts are used to determine the
possible utilities to be used. In the second one the MILP formu-
lation is used to select the optimal configuration of the utility
system that minimize the cost of energy. In the third step they
try to convert the numerical results into practical solutions. In a
more recent paper, these authors propose a slightly different
approach to the selection of the optimal utility systems [Mare-
chal and Kalitventzeff, 1998] using a sequential procedure con-
sisting of three steps. In the first one a generic utility system
superstructure is used to identify what are the technology
requirements of the process. The model of the superstructure is
based on the Effect Modeling and Optimization [Marechal and
Kalitventzeft, 1997b] concepts that use linear models of the
technologies, and then integrate these models in a MILP meth-
od to identify the best solutions. The second step an expert sys-
tem is used to identify the available technologies able to satisfy
the requirements of step 1. The objective of the third step is to
target the optimal process configuration.

Mavromatis and Kokossis [1998a, b] proposed a methodol-
ogy that combines the target objectives with the optimization.
They proposed a procedure at various levels. They introduce
the turbine hardware model (THM) that accounts for the varia-
tion of efficiency with the turbine size. The procedure is appli-
cable to any type of units and can provide accurate estimates of
its performance over the entire operation range. It can be used
for realistic targets at the early stages of design as well as for
selecting the steam levels that maximize the potential of power
cogeneration. They divide the synthesis procedure into three
stages. The first one is the development of the design compo-
nents to be used for the synthesis structure. The second stage is
the optimization of the previous structure in order to minimize
the losses due to the variation in operation. The optimum
model is a result of the application of the THM model formu-
lated as an MILP. And finally the analysis and synthesis of
complex turbines as the results of the optimization stage can be
further processed to systematically reveal compact utility net-
works that facilitate the objectives and analyze the results for
competitive alternatives.

Bruno et al. [1998], proposed a rigorous MINLP for the syn-
thesis and operation of utility systems, that can be implemented
in actual industrial problems. The optimal solution is selected
from a superstructure similar to the one proposed by Papoulias
and Grossmann [1983], containing conventional utility plant
equipment specified by the designer for each demand. The ret-
rofit of alternatives is addressed by fixing some of the options
available in the model to match the equipment options considered.
The resultant MINLP model has been implemented in the inter-
active computer program STEAM that automatically generates
the model. Maia et al. [1995] also proposed an approach in
which a superstructure very similar to that proposed by Papoul-
ias and Grossmann is optimized. The main difference with pre-
vious approaches is that the authors consider only the equip-
ment available in standard capacities, by handling discrete
variables and discontinuous cost functions. In this work the
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authors used simulated annealing instead a deterministic tech-
nique to solve the mathematical programming problem. Maia
and Qassim [1997] extended the previous formulation to sys-
tems with time-varying utility demands. Wilkendorf et al.
[1998], also using simulated annealing for the automatic syn-
thesis of a complete utility system. Their approach is also
based in a superstructure similar to the originally proposed by
Papoulias and Grossmann [1983], but in this case the authors
extend the formulation to time dependent processes.

3. Process Flowsheet Synthesis

The current state of flowsheet synthesis is represented by
two major approaches : (1) hierarchical decomposition [Dou-
glas, 1985, 1988, 1990] and its computer implementation PIP
(Process Invention Procedure, Kirkwood et al., 1988); (2) ma-
thematical programming [Grossmann, 1985, 1990a, b] and its
initial computer implementation in PROSYN-MINLP (PRO-
cess SYNthesizer, Kravanja and Grossmann, 1990). These ap-
proaches can be regarded as complementary to each other
[Rippin, 1990].

The hierarchical decomposition technique breaks the synthe-
sis procedure into five decision levels : (1) Batch versus Con-
tinuous, (2) Input-Output Structure of Flowsheet, (3) Recycle
Structure and Reactor Considerations, (4) Separation Systems
and (5) Heat Exchanger Network. At each decision level be-
yond the first, the economic potential of the project is evaluated
and a decision is made whether or not further work on the
project is justified. This method utilizes heuristics, shortcut
design procedures, and physical insight to develop an initial
base-case design. The approach is motivated by Douglas's
claim that only 1% of all designs are ever implemented in
practice, and thus this screening procedure avoids detailed
evaluation of most alternatives. Relying on heuristics, this
approach cannot rigorously produce an optimal design, and,
although heuristics often lead to good designs, they are fallible
[see Papoulias and Grossmann, 1983; Colmenares and Seider,
1987; Fony6 and Mizsey, 1990]. Furthermore, due to the se-
quential nature of the flowsheet synthesis, interactions among
the design variables at the various decision levels may not be
properly accounted for, as it is necessary to solve for them si-
multaneously. For instance, Duran and Grossmann [1986a] and
later Lang et al. [1988] have shown that simultaneous optimi-
zation and heat integration of flowsheets generally produces
significant improvements in the profit compared to the sequen-
tial approach. Despite these shortcomings, hierarchical decom-
position provides a useful approach for generating an initial
flowsheet and alternatives (i.c., a basecase design and super-
structure). It also provides a framework, when coupled with the
concept of simultaneous synthesis of the complete flowsheet,
for decomposing the synthesis problem into a hierarchy of
detailed and aggregated models, that is then simpler to solve
than the entire flowsheet, while still reflecting the presence of
downstream tasks.

Other attempts that have been made to implement the hierar-
chical decomposition include the software package PROSYN
[Schembecker et al., 1994]. It employs heuristic rules to derive
flowsheet configurations and uses detailed analysis of different
unit operations. The heuristic rules are available in the form of
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expert systems for particular types of flowsheet elements. Also
along the lines of Artificial Intelligence, Bieszczad et al. [1998]
have developed MODEL.LA, a phenomena-based modeling lan-
guage for process systems engineering. This language is fully
declarative, and allows model development at the level of chem-
ical engineering knowledge (i.e., a phenomena-based mechanistic
description), not mathematical equations. Another tool that can
aid the process synthesis approach based on hierarchical design
is ICAS (Integrated Computer Aided System), which was de-
veloped by Gani et al. [1998]. It is based on process simulation
with an equation-oriented approach. ICAS is composed of a
model generator, a simulator, a problem definition interface
and toolboxes for tackling particular problems.

The mathematical programming approach utilizes optimiza-
tion techniques to select the configuration and parameters of
the processing system [Grossmann, 1985, 1990a, b, 1996]. A
superstructure containing alternative processing units and in-
terconnections are modeled as discrete, binary variables (0-1)
to denote the existence (1) or nonexistence (0) of that unit. An
Outer-Approximation (OA) algorithm for solving MINLP prob-
lems has been developed and successively refined [Duran and
Grossmann, 1986b; Kocis and Grossmann, 1987, 1989a, b; Vis-
wanathan and Grossmann, 1990] and made widely available in
the program DICOPT++ within the modeling system GAMS
[Brooke et al., 1988]. This algorithm partitions the problem
into two parts : (1) an NLP subproblem, where initially the con-
tinuous variables for a single flow-sheet configuration are opti-
mized and the remaining alternative substructures are then
suboptimized for the given flows, and (2) linearization of the
nonlinear equations, through which an MILP master problem is
obtained, that then determines a new optimal flowsheet config-
uration (i.e., new set of binary variables) for the next NLP sub-
problem. The Outer Approximation algorithm is guaranteed to
obtain the global optimal solution for convex problems, but it
does not guarantee global optimality for non-convex problems,
and can get trapped in poor, local solutions [Daichendt and
Grossmann, 1994a, b]. This problem is to a large extent due to
“disappearing” units whose variables become undefined when
the corresponding streams take zero values for their flows.

In order to address the MINLP optimization of process flow-
sheets more effectively, Kocis and Grossmann [1989b] devel-
oped the Modeling/Decomposition (M/D) strategy in which the
basic objective is to solve NLP subproblems pertaining only to
the existing part of the superstructure. This not only avoids the
solution of NLP problems of larger dimensionality, but reduces
numerical difficulties such as singularities that arise in the case
of non-existing units which have zero flows. The M/D strategy,
which was successfully illustrated with the synthesis of the
HDA flowsheet problem by Douglas [1988], has been imple-
mented in PROSYN-MINLP and extended in various ways by
Kravanja and Grossmann [1994]. Because simulators are widely
used to model a process, Kravanja and Grossmann [1996] pro-
posed some modifications to the original M/D strategy to sub-
stitute the use of the equation-based solvers (i.e. GAMS) with a
simulator for solving the non-linear synthesis subproblems.
Diwekar et al. [1992] also proposed an implementation of the
M/D strategy in ASPEN, and Reneaume et al. [1995] devel-

oped a new formulation of a MINLP optimization problem that
handles equations in a modular environment. The formulation of
Reneaume et al. introduces the concepts of pseudo torn streams
and pseudo variables, to link the information provided by the
simulator ProSim with a MINLP optimization algorithm. Ban-
doni et al. [1996, 1997] have solved large scale chemical plants
synthesis problems by applying the Outer Approximation algo-
rithm using a process simulator in the solution of the NLP sub-
problems.

As for methods that combine different approaches for flow-
sheet synthesis, Bagajewicz and Manousiouthakis [1992] intro-
duced the state-space representation of synthesis alternatives,
where a superstructure of alternatives is constructed with two
blocks : a stream mixing/splitting block and a process unit
block. The units in the unit block are modeled either by a super-
structure operator (unit operation) or a pinch analysis operator.
Kovac and Glavic [1995] addressed the optimal design for com-
plex and energy intensive processes by combining thermody-
namic (pinch) methods and MINLP techniques. The approach
consists of two steps: (1) eliminate unpromising structures
from a superstructure by studying an Extended Grand Com-
posite Curve. The superstructure obtained is then optimized
with MINLP techniques. Daichendt and Grossmann [1998] de-
veloped a combined hierarchical decomposition method with
MINLP optimization. The basic idea in this method is to rely
on “black box” aggregated models for reaction, separation and
heat integration that are optimized within a tree enumeration to
avoid solving a single large-scale MINLP model. Kravanja and
Grossmann [1997] also explored an alternative search procedure
in which the tree enumeration is avoided by iteratively solving
MINLP problems at various levels using integer cuts. Both these
methods were successfully applied to the syntheis of the HDA
flowsheet problem.

In terms of exploring new representations for flowsheet syn-
thesis, Papalexandri and Pistikopoulos [1996] proposed a gene-
ralized modeling framework for process synthesis based on fun-
damental mass/heat-transfer principles. They introduced a mass/
heat-transfer module as the building block of the framework,
and developed block-superstructure rules to represent conven-
tional and unconventional flowsheets. With this strategy, it is
possible to formulate an MINLP model. Because this algo-
rithm describes the problem in terms of tasks rather than unit
operations, it is an aggregated representation of the synthesis
problem. Following a more conventional approach to represent
a synthesis problem, Smith and Pantelides [1995] proposed a
state-equipment representation, where they have stream proper-
ties and unit operations as the superstructure building blocks.
Their major goal was to avoid the combinatorial complexity of
the synthesis problem by allowing full connectivity of all the
unit operations in the superstructure. The model generated
from this representation was then solved with global optimiza-
tion techniques. The major drawback of this approach is the
introduction of zero flows in most of the streams of the repre-
sentation, which lead to singularities. Recently, Yeomans and
Grossmann [1999a] proposed a systematic modeling framework
for process synthesis problems that relies on two different
types of superstructure representations : State Task Network
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(STN) and State Equipment Network (SEN). To understand the
close relationship between modeling and these representations,
GDP models were developed in order to analyze their structure.
Interestingly, numerical results have shown that neither represen-
tation is superior over the other. Friedler and coworkers [1993,
1995] have concentrated their research efforts in the automatic
generation of superstructures for linear process networks. They
proposed a graph-based algorithm that automatically generates
structures suitable for synthesis with a guarantee that the search
space is sufficient to include the optimal solution. The pro-
posed method is polynomial in time.

Perhaps one of the major recent advances in the modeling
and solution of flowsheet synthesis problems are the logic-based
techniques. Raman and Grossmann [1994] have proposed the
Generalized Disjunctive Programming (GDP) model for the ma-
thematical formulation of flowsheet synthesis problems. For the
linear case these problems can be effectively tackled with bran-
ch and bound methods that symbolically integrate logic to
greatly reduce the enumeration of the nodes in the tree [Raman
and Grossmann, 1993]. For flowsheets with linear models the
Logic Based Outer Approximation Algorithm was developed
by Tiirkay and Grossmann [1996a]. This algorithm extends the
original Outer Approximation Algorithm of Duran and Gross-
mann [1986b] for the GDP model, and also represents a for-
malization of the M/D strategy by Kocis and Grossmann
[1989b]. The NLP subproblems of the algorithm are construct-
ed with the equations and constraints of disjunctions that corre-
spond to equipment units that are selected at each iteration of
the algorithm. The Master problem of the Logic-Based OA al-
gorithm, which predicts these choices, is constructed by the
application of the convex hull of disjunctions to the linearlized
disjunctive model. Tiirkay and Grossmann [1996b, 1998] fur-
ther extended the application of the Logic Based OA algorithm
to the design of equipment with discontinuous cost functions,
and illustrated its application with the synthesis of a vinyl chlo-
ride plant.

CONCLUDING REMARKS

From the review presented in this paper, it should be clear
that mathematical programming has become a major method-
ology in the area of process synthesis. Advances in algorithms
and modeling systems for solving various types of optimization
problems, better understanding of issues related to superstruc-
tures, models and solution strategies have greatly helped to ad-
vance this field. From the review it should also be clear that
over the last decade there has been extensive development of
mathematical programming models for subsystems such as
reactor networks, distillation systems, heat and mass exchange
networks, utility plants, and total process flowsheets. All these
models have the feature that they can be used as a basis for
developing automated design tools that can effectively help to
support design engineers. Also, they can be combined with
approaches that are based on physical insights, such as pinch
analysis, and attainable regions. In terms of future research
directions, we can expect that new advances in global optimiza-
tion and generalized disjunctive programming will have a great
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impact for improving the capability of optimizing synthesis mod-
els. This should also help to promote the development of syn-
thesis models that are based on rigorous performance models,
and to expand their scope for handling issues related to opera-
bility and uncertainty.

Finally, although there has been significant progress, an-
other important challenge that remains is for engineers in in-
dustry to become more knowledgeable and proficient about
mathematical programming techniques and their application in
process design and operation. Availability of tools and modeling
systems is no longer an issue. The major issue is the skill for
formulating problems. A recent textbook that includes this
topic for undergraduate and graduate courses is the book “Sys-
tematic Methods for Chemical Process Design” by Biegler et al.
[1997]. 1t is hoped that more books like these will promote a
modern approach to process design and synthesis. We are con-
fident that engineers in the 21st century will no longer have to
question the value of mathematical programming because they
do not understand it.
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