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Abstract-The effects of elastic property on the deformation and breakup of an uncharged drop in a uniform
electric field are investigated theoretically using the second-order fluid model as a constitutive equation. Two
dimensionless numbers, the electric capillary number (C) and the Deborah number (De), the dimensionless param-
meters governing the problem. The asymptotic analytic solution of the nonlinear free boundary problem is deter-
mined by utilizing the method of domain perturbation in the limit of small mathcal C and small De. The as-
ymptotic solution provides the limiting point of C above which no steady-state drop shape exists. The linear sta-
bility theory shows that the elastic property of fluids give either stabilizing or destabilizing effect on the drop,
depending on the deformation mode.
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INTRODUCTION of studies have considered the underlying physics and process-
ing of polymer blend to elucidate the relationship between mor-
Recently, the dispersion of two immiscible phases has beephology and properties of the blend, and at the same time to
the subject of intense investigation from both an experimentabbtain the desired morphology by applying an external field.
and a theoretical point of view. Common industrial processesElectric field, among other external fields which are used in
involve dispersion of one fluid phase into another, either toorder to evolve the morphology of the polymer blend, has a
form an emulsion, or to increase the interfacial area betweerfew unique advantages including easy manipulation of the field
the two phases for more efficient heat and mass transfer. In thidirection and intensity. The dispersed phase of the polymer
paper, we are concerned with one aspect of this general prolislend can be easily aligned and stretched to the desired direc
lem; namely, deformation of the interface and linear stability of tion by applying the electric field externally.
a single droplet immersed in a continuous phase under the During the past decade, a few studies concerning the mor-
action of a uniform electric field at small Reynolds numbers.  phology evolution in an immiscible two-phase polymer blend
When an uncharged drop is suspended in a dielectric liquicby an external electric field have been reported [see, for exam-
in an external electric field, there is a discontinuity in the stressple, Moriya et al., 1986; Venugopal and Krause 1992; Xi and
field at the drop interface. Thus, the interface is deformed fromKrause 1998]. However, most of these studies utilized theory
its initial spherical shape due to the mismatch of the normaldeveloped for Newtonian fluids in order to predict the drop de-
component of the electric stress [Garton and Krasucki 1964formation. In spite of the non-Newtonian nature of the polymer
Taylor 1964; Basaran and Scriven 1989]. In addition, if the solutions used, the experimental results did not deviate largely
conductivities of both phases cannot be neglected, that is, whefiom the predicted theory in the limit of small deformation.
the two phases are leaky dielectric materials, free charges apdowever, it has not been confirmed that the stability is not
pear at the drop interface. The action of an electric field oninfluenced by the viscoelasticity. Unlike the Newtonian fluids,
these charges sets the fluids in motion and forming toroidalthere have been relatively few theoretical investigations rele-
circulation patterns inside and outside the droplet, which isvant to the electrohydrodynamic deformation and stability of
otherwise quiescent. However, the charge on the two heminon-Newtonian fluids. This is most likely a result of the antici-
spheres of a drop in a uniform electric field is antisymmetric in pated uncertainties in selecting of an appropriate constitutive
such a way that the net surface charge is zero [Taylor 1966model for non-Newtonian fluids, as well as the obvious diffi-
Melcher and Taylor 1971; Torza et al., 1971; Arp et al., 1980;culty in solving the equations of motion after the choice has
Miksis, 1981; Vizika and Saville, 1992; Ha and Yang, 1995; been made. In our opinion, however, it is sufficient to consider
Saville, 1997; Ha and Yang, 1998; Ha and Yang, 19993, b].  the influence of small instantaneous departures from Newto-
One of the potential technological applications where thesenian fluid behavior acting over a large time for this type of
effects are prevalent is the processing of a two-phase polymegproblem, at least, from a qualitative point of view.
blend. In this case, the morphology of the dispersed phase, It is worthwhile to note that the appropriate constitutive model
which determines generally the mechanical and other physicalor non-Newtonian fluids which exhibit a slight departure from
properties of the polymer blend, is a crucial factor. A numberNewtonian behavior is well-known to be the Rivlin-Ericksen
fluid, provided that the motion of fluids are both weak and

To whom correspondence should be addressed. slow in a rheological sense. This model may be obtained, via
E-mail : smyang@cais.kaist.ac.kr the socalled ‘retarded-motion’ expansion, from almost all of the
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currently popular nonlinear constitutive models [Bird et al., ;E°°

1987]. Successive terms in the expansion systematically ac ﬁ

count for the deviation from Newtonianbehavior associated L

with elastic effectsA great deal of phy-sical insight about

elastic effectxan be gained by solving flow problems using L,

ordered-fluid models, even though the ordered-fluids accu-

rately describe neither the dependence of viscosity on the she L

rate nor the full range of the time-dependent behavior. Further

more, the second-order fluid can be prepared experimentally b ,

conventional ‘Boger’ fluid formation technique [Mackay and

Boger, 1987; Tam and Tiu, 1989].. . Ay Ly €
In the present study, we consider theoretically the relatec

problem of the deformation and linear stability of a neutrally

—>
buoyant drop in a uniform electric field in otherwise quiescentFig_ 1. Spherical co-ordinate system (B, p) of the drop in a
fluid. The suspending fluid and the fluid inside the drop are uniform electric field. '

assumed to be adequately modeled as second-order fluids. Lil

most problems, it is impossible to find exact analytical solu-

tions for the deformation and stability of a drop; thus, we turn dielectric-fluid assumption. In addition, we adopt a co-ordinate
to a perturbation technique that can be used to develop solueference system with a fixed origin O at the centre of the drop
tions to flow problems for the retarded-motion expansion atas illustrated in Fig. 1. In the absence of an electric field, the
small Deborah numbers. It is noteworthy that since the re-fluids are quiescent and the drop remains spherical owing to
tarded-motion expansion is itself restricted to a small Deborahinterfacial tension.

number, no significant additional limitations are imposed by The model selected to represent the electric-field part of the
the use of the perturbation procedure. However, even when thproblem is deduced from Maxwell's equation by ignoring mag-
retarded-motion expansion is used correctly, it is important tonetic effects which are assumed to be insignificant in this study.
note that retaining more terms than the second-order terms iA further simplification is that the relaxation time for free charges
the perturbation solutions often results in series with ‘diminish-in liquids is short. By ignoring the rates of accumulation and
ing return’. This clearly indicates that while retention of sec- convection of charges and by considering isotropic fluids where-
ond-order terms gives both a qualitative and a quantitative dein linear relations prevail between the appropriate vector quan-
scription of the deviations from Newtonian behavior, the inclu- tities (e.g. current and electric field), the electric fields can be
sion of third- and higher-order terms provides only minor im- calculated from a steady-state model of electrostatic phenom-
provements to the solution. As a matter of fact, the secondena. In this case, the governing equations for the electrostatic
order terms can be determined usually with a moderate analytipotentialsV and V inside and outside the drop are the quasi-
cal effort, but higher-order terms require increasingly tedioussteady Laplace’s equations:

and lengthy algebraic developments. Due to these restrictions, V=0 (/=0 )

the retarded motion expansion is used just through second- ' '
order terms for the present analytical investigations on theln addition, the appropriate boundary conditions are as follows:

deviation from Newtonian behavior. The primary thrust of our \/ _ ;.o as r. , )
research is a systematic assessment of the coexisting role of ~
electric field and the elasticity on the drop deformation and VS bounded at= 0 &)
stability. E@=E@ at r=1+f, 4)
1 1~ _
THE PROBLEM STATEMENT xED=gED at =1+t ©®)

We begin by considering the steady deformation and IinearHere, (2) and (3) describe a uniform electrostatic potential far

stability of a neutrally buoyant drop suspended in an infinite from the drop and a finite potential at the drop centre, respec-
N : y Y P Susp tively. In the above formulation, the drop interface is defined
immiscible fluid under a uniform electric field of strengtfi.E

The two fluids are assumed to be both incompressible anér)‘ gtglt;felzewgﬁgr; Eotr:\]esuEI;rr}giwn ?g:%i;ﬁgﬁ?onof tnai d:r;_
Rivlin-Ericksen fluids, with zero shear viscositigs for the P phericity. ty of tang

suspending phase afid  for the fluid inside the drop. Fu rther:"al component of the electric fields at the interface and of the

more, a fluid drop is assumed to be a sphere of radinghe conduction current normal to the interface are expressed in (4)

absence of the electric field. The electrical resistivity of the and (5). In the latter two equatiofisandE  denote the elec-
. ~ ' e tric fields developed in both fluid phases and can be related to
drop phase is denoted s , and the permittivity as . Corres; ) . B ~
. . . ; the electrostatic potentials B5—0V andE=-0V . It should be
ponding properties of the ambient fluid afeande, respec-

tively, while the interfacial tension between the drop and themted that the above gqgatlon§ are nondimensionalized with
! . ; = respect to the characteristic variables such as

continuous phase ig As referred to previouslyl  andare

not infinite even if they may be very large under the leaky I=a V.~=E’a, E=E" . (6)
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Since the electric field is not uniform due to the presence of aw, denote the dimensional normal stress coefficients, respec-
fluid drop, electric traction is exerted on the interface. Thetively. The Deborah number De is effectively the ratio of an
electric traction can be expressed in terms of the electric stresstrinsic relaxation time scale for the fluid to the convective
tensor, which is the so-called Maxwell’s stress tensor, definedime scale of the fluid motion. As indicated in (7), De is small
as and the second-order fluid model is applicable to the present
. 3oyl case in which non-Newtonian contributions to the fluid motion
T —%]VDV_E IBVF (7)  are assumed to be small. On the other hanid, of the order

In the above definition, the stress is nondimensionalized byumt}/' . e .
the characteristic valugE”)’.  The role of the electric stress in Similarly for the fluid inside the drop, we obtain

the drop deformation can be seen conveniently by decompos- OT"=0, O@i=0, (C)]
ing the electric traction into normal and tangential components, oo

to the interface. Due to the normal stress imbalance, the drop '

cannot remain spherical and must be deformed in order to T"=—Pl +7,+De[T, [y +@.1 )]

eliminate this imbalance. Further, the discontinuity of the tan- . .
gential stresses is responsible for the boundary-driven flow +DETP(T ) Tw) T+ Po T+ @u(Tw F+ T Hw)] +O(DE)),
which cancels exactly the tangential stress mismatch produced . - ) . .
by the electric field. Since the normal components of the hy-Wlth T defined anal~ogously m(”_) ’ bUt_ using mstead.of_ .
drodynamic stresses induced by the boundary-driven flow arén th|_s _caseDe and are defined using the same quantities
also discontinuous at the interface, we must solve the flowPertaining to the drop phase. The exact relationship between

problem coupled with the electrostatic one simultaneously toPeand De' n _thls situation will be.conS|dered in the subse-

analyze the drop deformation in an electric field. guent sections; for now, we shall simply assume that they are
To formulate the problem for a velocity field generated by ofEh? san:r? order o_f dma?:nubde. q diti for the fi

the electric stress, the fluid motions are assumed to be domi- —c- Us then consider the boundary conditions for the flow

nated by viscous and pressure effects, and the inertial terms fields induced by the electric field. For the present case, the

the equations of motion can be neglected entirely so that thé;ontinuity of tangential velocities and the kinematic condition
fluid motion can be described by the quasi-steady Stokes equa?—n the surface of deformed drop are

tion plus the continuity equation. In order to write the govern-  u@={i{, (10)

ing differential equations and boundary conditions in a nondi-

. . . - . ulh=Gm=0. 11
mensionalized form, we defined the characteristic velogity u . (11)
and characteristic pressure (or stresssffollows In addition, the tangential and normal stress balances at the
e interface are, respectively,
_€ — (Y2 - -
Uc-—a(g)ﬂ p=¢(E")" . (TE=ST"):nt+(T"-AT"):nt=0, (12)
The choices of the characteristic variables for the flow field (TE—S‘T'E):nn+(T“—)\'I~'H):nn:%(EIIIh). (13)

are based on the fact that the flow is generated due to the
imbalance of the tangential stress associated with the electritlere A is a zero-shear-rate viscosity ratio whereas S is the
field. permittivity ratio of drop to continuous phase. In addition, the

With these conventions and assumptions, the equation ofuperscript E and H stand for the electric stress and hydrody-
motion and the continuity equation for the suspending fluid cannamic stress, respectively. The electric capillary number C is a
be written in a familiar form dimensionless ratio between electric forces and restoring inter-
facial tension and is given b§=ca(E")7?y . Therefore, De can
be related to C as follows; B&C, whered=w,y/a,. In fact,
where, De is linearly proportional to C.

In general, the problem formulated above is nonlinear, in
, spite of the fact that the governing equations are linear. The
+DE{ @10 T) T+ T+ @u(Tw T+ T Hw)} nonlinearity comes solely from the boundary conditions. An-
+O(D€), other difficulty inherent in this problem arises from the fact that
the interface location where the boundary conditions are ap-
plied isa priori unknown and must be determined as a part of
the solution. Thus, for arbitrary C, where the deformation may
be quite significant, the problem can only be solved numeri-
cally. In the present work, instead, we restrict our attention to
the case of small deformations from the spherical shape, with
the spheroidal shape being preserved by interfacial tension.

The Deborah number De aggdare dimensionless parame-  Hence we can employ a purely analytical approach by con-
ters, defined as Be(E")’wy/l, and@, w,/w, in whichw, and sidering the asymptotic limit C<<1. As a result, the magnitude

Oo'=0, Om=0. (8)

TH: —PI +T(1)+De['[(1) ﬁ(l) +(plT(2)]

andt, are the Rivlin-Ericksen tensors given by
Tu=(0u)+(0u)’;

0 .
To= 5T UlTn Ty [Q0u) +0uE;

0
T(3):5tT(2)+u Mty [Q0u) +0u .

I o
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of deviation from sphericity is expected to be O(C) and ap-order drop subjected to a uniform electric field. In the next
proximate analytic solution can be obtained. The basic idea isection, the governing equations and boundary conditions for
that the drop shape is only slightly nonspherical, and the boundboth the electric fields and the flow fields at each order are
ary conditions at the drop interface can be linearlized about theolved by collecting the terms with the same order in C and
boundary conditions for an exactly spherical drop. This ap-De.
proach is an example of a general technique known as the
method of domain perturbation. In the perturbation expansion SMALL DEFORMATION THEORY
which follows, we trace the general procedures outlined by
Leal [1992], in which the velocity, kinematic and shear stress The asymptotic expansion procedure for the deformation of a
conditions are satisfied at each order of perturbation, and th&lewtonian fluid drop in an electric field is already known, and
deformation of the drop is then calculated using the normalthus, it is not necessary to repeat the procedure here [Ajayi,
stress balance. 1978; Ha and Yang, 1995].

We now proceed formally to the solution of our problem, via  The velocity fields, which is correct up to O(C), are given by
a double asymptotic expansion in C and De. Thus, in terms of stream functions inside and outside the drop, that is,

1>>C, De>>C, CDe, Dé---. WO=(AP-APT)Q () +CI(A7+Br)Q:(n)

We may also write down formal expansions for the velocity, +(A<C>r—2+B<C> r)Qu(n)]+0(CY) (19)
pressure and stress fields. For the suspending phase, these are g, 07O @5 ~©3
(A —APr)Qy(N)+CA: 1*+B, 1) Qy(n)

+HADTHBI)QiN)]+O(C) (20)

0) De) C .
P=P+DeF™+CP"--. Here, the set of constants, A, An and I§n must be deter-
T=T+DeT*+CT--: mined from the appropriate boundary conditions. In (18) and
Here,u® is the velocity of a Newtonian, spherical drop in a (19). Q(n), stands for the Gegenbauer polynomials defined by
Newtonian fluid under the action of electric field, whereas
u® represents the non-Newtonian contribution to the velocity ~ Q+(N) I P(n)dn ,

of a spherical drop, and so on. We can obtain similar expres-
sions for the fluid inside of the drop, in terms of the Legendre polynomial(f) of order n with
n=cop.

u=u?+Deu®+Cu--;

(14)

i o o

u=0+Det®+ca- -

E After obtaining the electrostatic fields, and then, applying
P=P‘°’+De|i"e’+c|:>‘°)---; 0 (15) boundary conditions (9), (10), and (11), the following non-zero
T 704 DeT® 4T O, % coefficients which specify the stream functions can be found.
The drop shape should also be considered in the context of A‘;J):—L_ZSR-, (21)
the expansions for the velocity, pressure and stress fields for 5(2R+ 1°(1+A)
the suspending phase and the fluid inside of the drop. Since the A= g2 1=R 11-A OA0: AO=AO_SEIAO;
Newtonian velocity field alone is sufficient to cause deforma- [B1+2R 351+A 727 E

tion of a Newtonian drop at O(C), it is obvious that the O(De) BO=_A©_480p 0.
——Mh2 —Z7M2 2

_ arog . _ BO=_AC4SFOA0, O
non-Newtonian velocity field will cause deformation at O(CDe), A

and so on. Hence, on the drop surface, © 42161‘>F(c) AQ; A= gF@ N .
F=r—1—f M—f N 2 g (22)
=r-1-Cf9-CDef-C?f “)--..=0, (16) BO=— 82F<c>A<o> =64 SN
21 )

where 19, € andf denote the deformations at O(C), O
(CDe), and O(), respectively. The deviation from sphericity Finally, by applying the normal stress balance at the inter-
is contained in the shape functiof)f(The outer unit normal  face, the correction for the shape function which is accurate up
n and the principal radii of curvatufe  are now easily ex- to O(C) is obtained. The result is

pressed in terms of the shape functions as fO=CEOP,(n)+CES+ESOP, () +ESP,(N)] (23)
n=0F/|0F=e~COf where
—CDeEIf(CDe)—CZ[Df(°2)+%(lilf(c) [ujf(q)e}—--- ; 17 Fo-__ 3 [(1 +R_2SR)+R(1— SF{)3(2+ 3>\)}
* 4(2R+ D 5(1+2) J

and thus, the mean curvature of the drop surface is,
Om=2-C([2f7+ 0% “]-CDe[ 22+ ")
_C2fC)_ofOC) f 2C_
C[2f—-2fOF 9+ %) (18) o 1[ 9Fo
(2R+1)

5 1
=2 (R,

B roosr)E IR 20200y

This completes the formulation of problem for a second- B1+2R 70 7
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AP 2+ 3)\)—1F‘2°)A§°)(—8+ 13\) } for the creeping flows can be reduced to a homogeneous differen-
Fo 7 tial equation for the stream functions as noted from (18) and
- 1724_9F, 1+R—2SR +:"’)—6—(|:(°))2 (29) of the O(1) problem. However, in the presence of the non-

° 71835 i ARG - o
(2R+1) Newtonian contribution of the extra stress tensor, the stream
—§2§F‘2C)A‘2°)(88 +113)) } ;unctions of O(De) satisfy an inhomogeneous equation of the

orm
The constanF" is included in (22) to ensure that the drop EWO=7(r. 6) 29)
P - ’ y

volume remains constant through the deformation.

We consider in this subsection the O(De) problem which re-in Which the function Z(1f) can be easily shown to be
presents a first viscoelasticity correction to a drop suspended in 3 - B 1 _
a uniform electric field. The electrostatic potentials are also go- Z(T, 9):{5—9(D R UG ra)e]}sme ,
verned by Laplace’s equations subject to the boundary condi- o _ ~ o0
tions (2)-(5). It can be easily seen from (1) and boundary con@nd a similar expression for the stream function for the
ditions that the electrostatic potentials outside and inside thélfop phase can be obtained in terms of the non-Newtonian
drop are zero in O(De). This is due to the fact that the elecEXtra stress tensor.
trostatic potentials are obviously independent of the rheological The particular solutions of the above equations can be deter-
properties of the fluids including the viscoelasticity. Hence, the Mined with the aids of the O(1) solutions and the results are
O(De) problem is reduced to a purely hydrodynamic one in- 1

o NP 1.0 -
duced by an electric field. WI=2(-4r +2r)(1+g) (AD) Po(n) +5(18r +12r7)
For the suspending phase, the equations of motion at O(De) (On2
plus the continuity equation are (1+@)(A)P),
~ (De)
DI:FH(DS)IO, Dml(De):O, (24) LIJp =0. (30)
in which The solutions oth)he homogeneous parts
TH(De):_P(De)I +TE:EL>)e)+Textra1 EALPEDS):O, E4th =0 (31)
and have the same forms as those of the Newtonian fluid case
o (O . O which appear in (18) and (19). The unknown coefficients con-
T =t Bn+oTe). tained in the O(De) stream function can be determined from

The corresponding equations for the fluid inside the drop are(24), (25), and (26), with the leading order results. The stream
of course, completely analogous to the expressions (23) fofunctions ¥®? and¥ ™ can be expressed as (18) and (19)
the outside phase, and can be simply expressed by adding tieth the nonzero coefficien&™ B A;”  adf” =gn

tide mark to the variables. The continuity of the tangential 4), which are given below :

velocity and the kinematic condition atlrare

(De)_~ (De)
uyo=ugy? , (25)
~moeg 1 (02
2

ufDe)zaEDe):O . (26) B(zDe):_Az +?(l+(P1)(A

ALI=AL UL+ ) ALY,

The stress balances can be expressed in terms of the electric~ o, - g
and hydrodynamic stressest at O(De) as shown in O(1) prob- B =-A.
lem. The balances for the normal and tangential stresses are

~ E(De) ~(De)

(De)_”‘(De)_S (042
E(DY (09 (D8) =(0) © As =R (LH@)(A)
Te —STre  +T(yre—ATw) 6t (T T0)et@iT(2), 0

27

~ ~ (De)__ x(@e)_<&f (0)\2
BIE T+ BT d=0, 27) B=-AT-S (1+@)(A)’,
TIrEr(De)_S:l‘-:Er(De)_FgDe)+}\|3(De>+18§)”_)\f§10f’”+(Tg ﬁgg)”+(pl'[§g; N éiDe):_AiDe) ,
_B[(f% ETET;)N +(’b1fg rr] :_Zf(DE)_DZ_f(DE)~ (28) A(O) 2 -
: - A=Az )_139(1+6)+308(1+ )]
The parametep which appears in (26) and (27) represents the 35(1+A) '
ratio of Deborah numbers of the two fluids, i.e., ~ s (AQ) -
AY ’:éﬁ[g(lmﬁm 1+B)-100(@,+B,)] - (32

B=(De'DeA=0o/00;,
From the normal stress balance (27), we can determine the

and is thus independent of the zero-shear-rate viscositj\ratio ¢orrection for the drop shape induced by non-Newtonian con-
Consequently, for moderate values\pboth the fluid motions  tiputions. The result is

inside and outside the drop contribute to the drop deformation o oo cos oo
at O(De) ifp is of O(1). Ifp approaches zero or infinity, one  © =CDef*=CDe E™**P,(n)+F*Pi(n).] (33)
of the fluids may be considered Newtonian, and therefore prowhere

duces no direct contribution at O(De) to the drop deformation. .,y 2+3\x 9

1773 N
In the case of the Newtonian fluid, the momentum equation " ? AT (1_B)+55(%_B¢1)}(A2 )

Korean J. Chem. Eng.(Vol. 16, No. 5)
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the solution curve, as shown in Fig. 2. The critical electric

o__4+5\~pe, 2 ~
Fr0= =g A 437 22(1-B) 52— B)] capillary number, which occurs whedC/dZ=0,  can thus be
(AD)? estimated as
(AD) 5 (1+).

ce—tr G .
AR+ BFS+ 3RS
It can be easily shown that the stability of the solution branch

is exchanged at the critical point estimated above.

Y In a rigorous linear stability analysis, we must consider an

arbitrarily small three-dimensional disturbance to a steady-state
f=f+fM=CfO+CDef+CF. (34)  shape and examine whether the drop will return to the steady-

The most important feature of the present solution is that itSt&t® shape or continue to either deform or break up, by solv-

exhibits multiple steady-state solutions for electric capillary num-ing the corresponding unsteady problem for the disturbance.

bers below a critical value, but no steady-state solution beyond N Steéady-state drop shape can be always expressed in terms

the critical value. Kang and Leal [1988] and Yang et al. [1993],of spherical sur_face harmonics. Hoyvever, for an axisymmetric

and more recently, Ha and Yang [1995] have shown that in th&3S€: the spherpal surface harmonics can be rela_tted to the Le-

small deformation limit, the critical electric capillary number 9endre polynomials, ,tn). Thus, the present solution for the

which separates the stable and unstable steady-state solutiGeady-State drop shape is given by (22), and (32) in terms of

branches, can be determined without solving the unsteady dig>-(n)- The unsteady problem in quasi-steady Stokes flow for

turbance problem. According to their perturbation theory, anthe three-dimensional disturbance of O(C) to the steady shape

estimation of the critical electric capillary number can be car-¢&n be constructed by considering the kinematic condition

ried out by transforming the C-perturbation into gp&tur- . of,..

bation, in which the small parameter is the magnitude of the UWN=UnN=Cad.—5", (38)

P,(n) mode of deformation

@37)
LINEAR STABILITY OF THE STEADY-STATE SHAPE

In the preceding sections, we have determined the stead
state shape function f up to GC

in which g=x/r (r=(xx))"?. The corresponding unsteady prob-
7= f fP,n)dn , (35) lem was fo_rmulat_ed by Barthes-BieseI and Acrivos [1973]. For
-1 the three-dimensional disturbances of O(G¥f £, f,.=f,=-1

instead of C. Then, the electric capillary number as a function? fz» @nd fs=f3;=f:,~f2,, due to the axisymmetry of the problem

of L is given by about the yxaxis. Thus, we have to consider three simulta-
neous unsteady problems fgy f,,, and f;
C=c,{+c,C, (36)
in which cZih,(C, De, FE, FE™, B, FO, B, FOY,, (39)
c?) (CDe)
> _25[ R +3F, . in which the detailed formula for the parameteraF each

=5, G

CoRT T 4R’ order is given in the previous section. The unsteady solutions
The expansion in terms gfis equivalent to interchanging the Will decay and the steady drop shape is stable only if all of the
dependent and independent variables flprand C, respec-  coefficient functions f, h, and h; are always negative. It
tively, to C andZ. By the transformation, the limit point, which can be shown straightforwardly that the stability condition is
appears as a singular point on the stable solution branch at satisfied only when
critical electric capillary number Cis converted to a regular F©
point. Thus, we can determine the electric capillary number C C<C= :
as a function of for both the unstable and stable branches of

4[ F<Zcz) + 6F(Zcoe)] ! (40)
which is identical to the critical electric capillary number for
the stability of i(n) mode. Consequently, up to the O(C) dis-
turbance to the steady-state shape which is correct t€),O(C
the stability condition can be determined by estimating the
limit point for the existence of the steady state ippd?turba-
tions.
Although instability may be manifested by the amplification
e of nonaxisymmetric as well as axisymmetric deformations, there
is a region in which only the axisymmetric instability modes
are observed in a uniform electric field [Saville, 1970]. Thus,
the present study can afford insights into the phenomena of elec-
trohydrodynamic stability in the region of validity. For exam-

(b)

¢ ple, experiments reported by Taylor [1969] showed that the
Fig. 2. Representation of stability exchange. stability and instability phenomena in an axisymmetric mode
(@) Cin terms of; (b)  in terms of C have been observed with field strengths in the range 0-6kVcm
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while at somewhat higher field strengths instability is mani- and drop phases stabilizes or destabilizes the drop. To do so,
fested in a nonaxisymmetric form. Of course, the result out-among various parameters we will concentrate on the r@le of
lined above also may not be valid for a large deformationthe ratio of the normal stress coefficients of two phases, and the
problem in which there are significant nonlinear interactions.  Deborah number of the continuous phase.
Prior to analysis of the deformation and stability of the drop,
DISCUSSION we have to estimate the material paramegerand ¢, of the
two fluids. The second normal stress coefficient is not nearly as
In the previous sections, we obtained the asymptotic solutiorwell studied experimentally as the shear viscosity and first nor-
correct up to O(& for the steady-state shape of a drop sub- mal stress coefficient. However, the most important point to
jected to a uniform electric field. In addition, we also consid- note about the second normal stress coefficient is that its mag-
ered the linear stability of the drop by transforming the C- nitude is much smaller than that of the first normal stress co-
perturbation into the fperturbation. Since the continuous and efficient. Although there are some disputes on the magnitude of
dispersed fluids are assumed to be non-Newtonian, specificalljthe second normal stress coefficient and even on the sign of its
second-order fluids, it is expected that the drop behaviors wouldralue, it is generally accepted that the magnitude of the se-
be different from those of a Newtonian fluid. In this section, cond normal stress coefficient ranges frtfh and20% of that
we will discuss the results given by the small deformation of the first normal stress coefficient. Therefore, in general, it is
theory and linear stability analysis. The main purpose of thisbelieved thatp, and g, should always lie betweef.5 and-0.6,
section is to determine whether the elasticity of the continuousas verified experimentally by Leal [1975]. It is also known that
although our knowledge about the second normal stress coeffi-
cient is still incomplete, the first normal stress coefficient is
(a) 40 sufficient to provide general behaviors of a non-Newtonian
drop, especially when the fluids are weakly non-Newtonian. In
the present study, we thus fixed both valueg,and ¢, as

%6 T~ -0.50 to avoid complexity caused by the nondeterministic pa-
N rameter.
C. b \\ The estimated critical electric capillary number, obtained from
L \ (36) as a function of the zero-shear-rate viscosity hatis re-
TS presented in Fig. 3(a) and 3(b) for a prolate and for an oblate
28 I- AN spheroid, respectively. Also displayed in these figures is that

== W\ the critical electric capillary number influenced by the ratio of
24 N the normal stress differencss compared to that of a Newto-
| nian pair in which other parameters, such as the permittivity

ratio S and the resistivity ratio R are the same. It can be noted
skl that the effect of non-Newtonian elasticity is diminished as the
100 10° 102 , . g
viscosity ratio increases. However, when both the phases are non-

(b) 1.0 Newtonian, elasticity of the drop phase make the drop either
stable or not, depending upon the type of deformation. For
4 example, as the ratio of the normal stress difference [atio
increases the drop becomes more stable for the prolate-type
i deformation, whereas the trend is reversed for the oblate-type
C 3 g deformation. In addition, for the prolate-type deformation, com-
parison with the Newtonian pair shows that a non-Newtonian
A S / fluid drop in a non-Newtonian fluid is slightly less stable when
/ / B is less than unity, and becomes more stable Bhecreases
/! above unity. In the polymer blending technology, it is a well-
4+ 7 known rule of thumb that the drop phase elasticity is expected
e Y, to reduce the deformation and increase the critical shear rate
I _7 for the drop breakup, while the matrix elasticity should in-
N R R crease the deformation and decrease the critical shear rates [El-
101 100 10! 102 mendorp and Maalcke, 1985].

A These somewhat complicated results can be understood by
Fig. 3. Critical electric cqpillary num.ber C. as a function of the simply considering="™® which is the largest, first contribution

zero-shear-rate Viscosity ratio. from the non-Newtonian property and appears in (32). For a

Filled circles denote (of a Newtonian drop and continu- . ; -
ous phases with the same electrical properties. ---- moment, let us restrict our attention to the stability of a prolate

20 vl vl
0% 102 10"

2 NIRRT B
103 102

B=0.01;, —, B=1, — B=10; —_, B=20. (a) S1, R=  Spheroid. WherF™ is positive, the drop deforms into a pro-
0.1, 51, and@=@ =-0.50. (b) $1, R=100, 5=0.1 and late spheroid at O(CDe) causing the critical electric capillary
@=@ =-0.50. number Cto decrease. Since we have fixed the valug ahd
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@, in the present analysis, the signFf>? is determined by thediagram is depicted in Fig. 5, in which the corltoursFé?f’e) =
viscosity ratio and3. However, the sign is independent of the 0 are plotted for various combinations@fand ¢, . Above a
electrical properties of the fluids. The velocity field, and conse-given contour line,Fs°® <0 the non-Newtonian contribution
quently the deformation of the drop are considerably influ- makes the drop stable. On the other hand, below the contour
enced by the electrical properties at O(1). However, at O(CDe)line, the viscoelasticity acts in the opposite way and the drop
the behavior of drop is determined solely by the non-Newto-becomes less stable.

nian rheological properties of the fluids. In Fig. 4, the effect of The Deborah number De of a continuous phase is also an
A andp on the sign ofF Y™ is reproduced. From this figure, it important parameter for the stability of a non-Newtonian drop.
can be seen why the drop is stabilize@ ascreases and less As discussed previously, De is linearly proportional to the elec-
stable wherf3 is smaller than unity. It can be also noticed from tric capillary number and the proportionality consi@iig de-

this figure that the non-Newtonian contribution is vanished, termined by the rheological properties of the fluid. &\gor

and thus, no deformation occurs at O(CDe) for a certain comequivalently, De) increases, the drop becomes more stable in
bination off3 andA. In this special case, the drop behaves like athe prolate-type deformation, which is illustrated in Fig. 6. The
Newtonian drop although the drop possesses non-Newtoniastability of an oblate spheroid can be explained by a similar
properties, i.e., non-zero normal stress difference. This stabilityconsideration oFs > in terms d and De.

Finally, the effect of the resistivity ratio R on the stability of

4 a drop is shown in Fig. 7 in which both the viscosity and per-
mittivity ratios are fixed at 0.001 and at unity, respectively. Due
2+ to the fact that the permittivity ratio S is unity, the drop remains
o | S » always stable if the resistivity ratio R is unity. The effect of
é 2L (a) -30
U_N
-4+
~—
-6 h ~ Cc
-8 ool v vl uld .-‘ :.:
10° 102 10 100 10° 102
A
Fig. 4. FS*/(A)? in terms of the zero-shear-rate viscosity ra-
tio, A.
®=¢ =-050. - ---,=0.01; —, B=0.1; —, B=1.
20 v el v d i
103 102 101 100 10° 102
4 A
(b) 1.0
(CDe)
F, <0
3E T T —— 8
~N
N
\
P \ C. s
2+ ' \
\
\
\ 4
A\
1 “A\
\
N 2
N
0.0 bl vl Nl 0.0 Ll v il il
102 0% 0t o100 10T 0% 0% 102 107 100 100 A2
A A

Fig. 5. Contours of F°®=0 representing the non-Newtonian con-
tribution to the drop stability.
----, =@, =—0.5,—, @=@, =—0.55;——, ¢=-0.5, and

Fig. 6. Effect of Deborah number on G
(@ $1, R=0.1, =1 and@=¢ =-0.50, (b) $1, R=100,

L =1 and @=¢,=-050: ----, =01, —, 6=1, ——, &=
% =—0.55,——, @=—-0.55 and@, =—0.50. EB. A=
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