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Deformation and Breakup of a Second-Order Fluid Droplet in an Electric Field
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Abstract−The effects of elastic property on the deformation and breakup of an uncharged drop in a uniform
electric field are investigated theoretically using the second-order fluid model as a constitutive equation. Two
dimensionless numbers, the electric capillary number (C) and the Deborah number (De), the dimensionless param-
meters governing the problem. The asymptotic analytic solution of the nonlinear free boundary problem is deter-
mined by utilizing the method of domain perturbation in the limit of small mathcal C and small De. The as-
ymptotic solution provides the limiting point of C above which no steady-state drop shape exists. The linear sta-
bility theory shows that the elastic property of fluids give either stabilizing or destabilizing effect on the drop,
depending on the deformation mode.
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INTRODUCTION

Recently, the dispersion of two immiscible phases has been
the subject of intense investigation from both an experimental
and a theoretical point of view. Common industrial processes
involve dispersion of one fluid phase into another, either to
form an emulsion, or to increase the interfacial area between
the two phases for more efficient heat and mass transfer. In this
paper, we are concerned with one aspect of this general prob-
lem; namely, deformation of the interface and linear stability of
a single droplet immersed in a continuous phase under the
action of a uniform electric field at small Reynolds numbers.

When an uncharged drop is suspended in a dielectric liquid
in an external electric field, there is a discontinuity in the stress
field at the drop interface. Thus, the interface is deformed from
its initial spherical shape due to the mismatch of the normal
component of the electric stress [Garton and Krasucki 1964;
Taylor 1964; Basaran and Scriven 1989]. In addition, if the
conductivities of both phases cannot be neglected, that is, when
the two phases are leaky dielectric materials, free charges ap-
pear at the drop interface. The action of an electric field on
these charges sets the fluids in motion and forming toroidal
circulation patterns inside and outside the droplet, which is
otherwise quiescent. However, the charge on the two hemi-
spheres of a drop in a uniform electric field is antisymmetric in
such a way that the net surface charge is zero [Taylor 1966;
Melcher and Taylor 1971; Torza et al., 1971; Arp et al., 1980;
Miksis, 1981; Vizika and Saville, 1992; Ha and Yang, 1995;
Saville, 1997; Ha and Yang, 1998; Ha and Yang, 1999a, b]. 

One of the potential technological applications where these
effects are prevalent is the processing of a two-phase polymer
blend. In this case, the morphology of the dispersed phase,
which determines generally the mechanical and other physical
properties of the polymer blend, is a crucial factor. A number

of studies have considered the underlying physics and proc
ing of polymer blend to elucidate the relationship between m
phology and properties of the blend, and at the same tim
obtain the desired morphology by applying an external fie
Electric field, among other external fields which are used
order to evolve the morphology of the polymer blend, has
few unique advantages including easy manipulation of the fi
direction and intensity. The dispersed phase of the polym
blend can be easily aligned and stretched to the desired d
tion by applying the electric field externally.

During the past decade, a few studies concerning the m
phology evolution in an immiscible two-phase polymer blen
by an external electric field have been reported [see, for ex
ple, Moriya et al., 1986; Venugopal and Krause 1992; Xi a
Krause 1998]. However, most of these studies utilized the
developed for Newtonian fluids in order to predict the drop d
formation. In spite of the non-Newtonian nature of the polym
solutions used, the experimental results did not deviate larg
from the predicted theory in the limit of small deformatio
However, it has not been confirmed that the stability is n
influenced by the viscoelasticity. Unlike the Newtonian fluid
there have been relatively few theoretical investigations re
vant to the electrohydrodynamic deformation and stability 
non-Newtonian fluids. This is most likely a result of the antic
pated uncertainties in selecting of an appropriate constitu
model for non-Newtonian fluids, as well as the obvious dif
culty in solving the equations of motion after the choice h
been made. In our opinion, however, it is sufficient to consid
the influence of small instantaneous departures from New
nian fluid behavior acting over a large time for this type 
problem, at least, from a qualitative point of view.

It is worthwhile to note that the appropriate constitutive mod
for non-Newtonian fluids which exhibit a slight departure fro
Newtonian behavior is well-known to be the Rivlin-Erickse
fluid, provided that the motion of fluids are both weak an
slow in a rheological sense. This model may be obtained,
the socalled ‘retarded-motion’ expansion, from almost all of t
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currently popular nonlinear constitutive models [Bird et al.,
1987]. Successive terms in the expansion systematically ac-
count for the deviation from Newtonianbehavior associated
with elastic effects. A great deal of phy-sical insight about
elastic effects can be gained by solving flow problems using
ordered-fluid models, even though the ordered-fluids accu-
rately describe neither the dependence of viscosity on the shear
rate nor the full range of the time-dependent behavior. Further-
more, the second-order fluid can be prepared experimentally by
conventional ‘Boger’ fluid formation technique [Mackay and
Boger, 1987; Tam and Tiu, 1989].

In the present study, we consider theoretically the related
problem of the deformation and linear stability of a neutrally
buoyant drop in a uniform electric field in otherwise quiescent
fluid. The suspending fluid and the fluid inside the drop are
assumed to be adequately modeled as second-order fluids. Like
most problems, it is impossible to find exact analytical solu-
tions for the deformation and stability of a drop; thus, we turn
to a perturbation technique that can be used to develop solu-
tions to flow problems for the retarded-motion expansion at
small Deborah numbers. It is noteworthy that since the re-
tarded-motion expansion is itself restricted to a small Deborah
number, no significant additional limitations are imposed by
the use of the perturbation procedure. However, even when the
retarded-motion expansion is used correctly, it is important to
note that retaining more terms than the second-order terms in
the perturbation solutions often results in series with ‘diminish-
ing return’. This clearly indicates that while retention of sec-
ond-order terms gives both a qualitative and a quantitative de-
scription of the deviations from Newtonian behavior, the inclu-
sion of third- and higher-order terms provides only minor im-
provements to the solution. As a matter of fact, the second-
order terms can be determined usually with a moderate analyti-
cal effort, but higher-order terms require increasingly tedious
and lengthy algebraic developments. Due to these restrictions,
the retarded motion expansion is used just through second-
order terms for the present analytical investigations on the
deviation from Newtonian behavior. The primary thrust of our
research is a systematic assessment of the coexisting role of
electric field and the elasticity on the drop deformation and
stability.

THE PROBLEM STATEMENT

We begin by considering the steady deformation and linear
stability of a neutrally buoyant drop suspended in an infinite
immiscible fluid under a uniform electric field of strength E� .
The two fluids are assumed to be both incompressible and
Rivlin-Ericksen fluids, with zero shear viscosities µ0 for the
suspending phase and  for the fluid inside the drop. Further-
more, a fluid drop is assumed to be a sphere of radius α in the
absence of the electric field. The electrical resistivity of the
drop phase is denoted as , and the permittivity as . Corres-
ponding properties of the ambient fluid are χ and ε, respec-
tively, while the interfacial tension between the drop and the
continuous phase is γ. As referred to previously,  and χ are
not infinite even if they may be very large under the leaky

dielectric-fluid assumption. In addition, we adopt a co-ordina
reference system with a fixed origin O at the centre of the d
as illustrated in Fig. 1. In the absence of an electric field, 
fluids are quiescent and the drop remains spherical owing
interfacial tension.

The model selected to represent the electric-field part of 
problem is deduced from Maxwell’s equation by ignoring ma
netic effects which are assumed to be insignificant in this stu
A further simplification is that the relaxation time for free charg
in liquids is short. By ignoring the rates of accumulation a
convection of charges and by considering isotropic fluids whe
in linear relations prevail between the appropriate vector qu
tities (e.g. current and electric field), the electric fields can 
calculated from a steady-state model of electrostatic phen
ena. In this case, the governing equations for the electros
potentials  and V inside and outside the drop are the qu
steady Laplace’s equations:

. (1)

In addition, the appropriate boundary conditions are as follow

, (2)

, (3)

, (4)

. (5)

Here, (2) and (3) describe a uniform electrostatic potential 
from the drop and a finite potential at the drop centre, resp
tively. In the above formulation, the drop interface is defin
by r=1+f in which f is the unknown shape function and d
notes the departure from sphericity. The continuity of tang
tial component of the electric fields at the interface and of 
conduction current normal to the interface are expressed in
and (5). In the latter two equations, E and denote the elec-
tric fields developed in both fluid phases and can be relate
the electrostatic potentials as E and . It should be
noted that the above equations are nondimensionalized 
respect to the characteristic variables such as

. (6)

µ̃0

χ̃ ε̃

χ̃

Ṽ

∇2V=0��∇2
Ṽ=0

V r cosθ as r ∞→ →

Ṽ is bounded at r 0=

E t⋅ =Ẽ t⋅ at r=1 f+
1
χ
---E n⋅ =1

χ̃
---Ẽ n⋅ at r 1 f+=

Ẽ

=−∇V Ẽ= ∇Ṽ–

lc=a, Vc=E∞a, Ec=E∞

Fig. 1. Spherical co-ordinate system (r, θθθθ, , , , ρρρρ)))) of the drop in a
uniform electric field.
September, 1999
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Since the electric field is not uniform due to the presence of a
fluid drop, electric traction is exerted on the interface. The
electric traction can be expressed in terms of the electric stress
tensor, which is the so-called Maxwell’s stress tensor, defined
as

. (7)

In the above definition, the stress is nondimensionalized by
the characteristic value The role of the electric stress in
the drop deformation can be seen conveniently by decompos-
ing the electric traction into normal and tangential components
to the interface. Due to the normal stress imbalance, the drop
cannot remain spherical and must be deformed in order to
eliminate this imbalance. Further, the discontinuity of the tan-
gential stresses is responsible for the boundary-driven flow
which cancels exactly the tangential stress mismatch produced
by the electric field. Since the normal components of the hy-
drodynamic stresses induced by the boundary-driven flow are
also discontinuous at the interface, we must solve the flow
problem coupled with the electrostatic one simultaneously to
analyze the drop deformation in an electric field.

To formulate the problem for a velocity field generated by
the electric stress, the fluid motions are assumed to be domi-
nated by viscous and pressure effects, and the inertial terms in
the equations of motion can be neglected entirely so that the
fluid motion can be described by the quasi-steady Stokes equa-
tion plus the continuity equation. In order to write the govern-
ing differential equations and boundary conditions in a nondi-
mensionalized form, we defined the characteristic velocity uc

and characteristic pressure (or stress) pc as follows

.

The choices of the characteristic variables for the flow field
are based on the fact that the flow is generated due to the
imbalance of the tangential stress associated with the electric
field.

With these conventions and assumptions, the equation of
motion and the continuity equation for the suspending fluid can
be written in a familiar form

. (8)

where,

and τ(n) are the Rivlin-Ericksen tensors given by

The Deborah number De and φ1 are dimensionless parame-
ters, defined as De=ε( )2ω3/µ0 and φ1 ω2/ω3, in which ω2 and

ω3 denote the dimensional normal stress coefficients, resp
tively. The Deborah number De is effectively the ratio of a
intrinsic relaxation time scale for the fluid to the convectiv
time scale of the fluid motion. As indicated in (7), De is sm
and the second-order fluid model is applicable to the pres
case in which non-Newtonian contributions to the fluid motio
are assumed to be small. On the other hand, φ1 is of the order
unity.

Similarly for the fluid inside the drop, we obtain

(9)

where,

with defined analogously to , but using  instead of u.
In this case, and are defined using the same quant
pertaining to the drop phase. The exact relationship betw

and  in this situation will be considered in the subs
quent sections; for now, we shall simply assume that they 
of the same order of magnitude.

Let us then consider the boundary conditions for the flo
fields induced by the electric field. For the present case, 
continuity of tangential velocities and the kinematic conditio
on the surface of deformed drop are

, (10)

. (11)

In addition, the tangential and normal stress balances at
interface are, respectively,

, (12)

. (13)

Here λ is a zero-shear-rate viscosity ratio whereas S is 
permittivity ratio of drop to continuous phase. In addition, th
superscript E and H stand for the electric stress and hydro
namic stress, respectively. The electric capillary number C 
dimensionless ratio between electric forces and restoring in
facial tension and is given by . Therefore, De ca
be related to C as follows; De=δC, where δ=ω3γ/αµ0. In fact,
De is linearly proportional to C.

In general, the problem formulated above is nonlinear,
spite of the fact that the governing equations are linear. T
nonlinearity comes solely from the boundary conditions. A
other difficulty inherent in this problem arises from the fact th
the interface location where the boundary conditions are 
plied is a priori unknown and must be determined as a part
the solution. Thus, for arbitrary C, where the deformation m
be quite significant, the problem can only be solved nume
cally. In the present work, instead, we restrict our attention
the case of small deformations from the spherical shape, w
the spheroidal shape being preserved by interfacial tension.

Hence we can employ a purely analytical approach by c
sidering the asymptotic limit C<<1. As a result, the magnitu

TE= ∇V∇V 1
2
---– I ∇V 2

 
 

ε E∞( )2
�

uc=
εa E∞( )2

µ0

-----------------, pc=ε E∞( )2

∇ TH⋅ =0, ∇ u⋅ =0

TH= PI– +τ 1( )+De τ 1( ) τ 1( ) φ1τ 2( )+⋅[ ]

+De2 φ2 τ 1( ):τ 1( )( )τ 1( )+φ3τ 3( )+φ4 τ 1( ) τ 2( )⋅ +τ 2( ) τ 1( )⋅( ){ }

+O De3( ),

τ 1( )= ∇u( ) ∇u( )T;+

τ 2( )=
∂
∂t
----τ 1( )+u ∇τ 1( )⋅ +τ 1( ) ∇u( )T ∇u τ 1( )⋅+⋅ ;









τ 3( )=
∂
∂t
----τ 2( )+u ∇τ 2( )⋅ +τ 2( ) ∇u( )T ∇u τ 2( )⋅+⋅ �

E∞

∇ T̃
H⋅ =0 �∇ ũ=0,⋅,

T̃
H
= P̃I τ̃ 1( )+– D̃e τ̃ 1( ) τ̃ 1( ) φ1τ̃ 2( )+⋅[ ]+

+D̃e
2 φ̃2 τ̃ 1( );τ̃ 1( )( )τ̃ 1( ) φ̃ 3( )+ τ̃ 3( )+φ̃4 τ̃ 1( ) τ̃ 2( ) τ̃ 2( ) τ̃ 1( )⋅+⋅( )[ ] O D̃e

3( ),+

τ̃ n( ) τ n( ) ũ
D̃e φ̃1

De D̃e

u t=ũ t⋅ ⋅

u n=ũ n=0⋅ ⋅

TE ST̃
E

–( )�nt+ TH λT̃
H

–( )�nt=0

TE ST̃
E

–( )�nn+ TH λT̃
H

–( )�nn=1
C
---- ∇ n⋅( )

C=εa E∞( )2 γ⁄
Korean J. Chem. Eng.(Vol. 16, No. 5)
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of deviation from sphericity is expected to be O(C) and ap-
proximate analytic solution can be obtained. The basic idea is
that the drop shape is only slightly nonspherical, and the bound-
ary conditions at the drop interface can be linearlized about the
boundary conditions for an exactly spherical drop. This ap-
proach is an example of a general technique known as the
method of domain perturbation. In the perturbation expansion
which follows, we trace the general procedures outlined by
Leal [1992], in which the velocity, kinematic and shear stress
conditions are satisfied at each order of perturbation, and the
deformation of the drop is then calculated using the normal
stress balance.

We now proceed formally to the solution of our problem, via
a double asymptotic expansion in C and De. Thus,

1>>C, De>>C2, CDe, De2 .

We may also write down formal expansions for the velocity,
pressure and stress fields. For the suspending phase, these are

(14)

Here, u(0) is the velocity of a Newtonian, spherical drop in a
Newtonian fluid under the action of electric field, whereas
u(De) represents the non-Newtonian contribution to the velocity
of a spherical drop, and so on. We can obtain similar expres-
sions for the fluid inside of the drop,

(15)

The drop shape should also be considered in the context of
the expansions for the velocity, pressure and stress fields for
the suspending phase and the fluid inside of the drop. Since the
Newtonian velocity field alone is sufficient to cause deforma-
tion of a Newtonian drop at O(C), it is obvious that the O(De)
non-Newtonian velocity field will cause deformation at O(CDe),
and so on. Hence, on the drop surface,

F=r−1−f (N)−f (NN)

=r−1−Cf(C)−CDef (CDe)−C2 , (16)

where f(C), f (CDe), and denote the deformations at O(C), O
(CDe), and O(C2), respectively. The deviation from sphericity
is contained in the shape function f(θ). The outer unit normal
n and the principal radii of curvature are now easily ex-
pressed in terms of the shape functions as

, (17)

and thus, the mean curvature of the drop surface is, 

. (18)

This completes the formulation of problem for a second-

order drop subjected to a uniform electric field. In the ne
section, the governing equations and boundary conditions
both the electric fields and the flow fields at each order 
solved by collecting the terms with the same order in C a
De.

SMALL DEFORMATION THEORY

The asymptotic expansion procedure for the deformation o
Newtonian fluid drop in an electric field is already known, an
thus, it is not necessary to repeat the procedure here [A
1978; Ha and Yang, 1995].

The velocity fields, which is correct up to O(C), are given b
in terms of stream functions inside and outside the drop, tha

, (19)

, (20)

Here, the set of constants An, Bn, and must be deter-
mined from the appropriate boundary conditions. In (18) a
(19), Qn(η), stands for the Gegenbauer polynomials defined 

,

in terms of the Legendre polynomial Pn(η) of order n with
η=cosθ.

After obtaining the electrostatic fields, and then, applyin
boundary conditions (9), (10), and (11), the following non-ze
coefficients which specify the stream functions can be found

. (21)

   

 
     

                                               (22

Finally, by applying the normal stress balance at the int
face, the correction for the shape function which is accurate
to O(C2) is obtained. The result is

 (23)

where

…

u=u 0( ) Deu De( ) Cu C( )…;+ +

P=P0( ) DePDe( ) CPC( )…;+ +







T====T 0( ) DeT De( ) CT C( )…�+ +

ũ=ũ 0( ) Deũ De( ) Cũ C( )…;+ +

P̃=P̃
0( )

DeP̃
De( )

CP̃
C( )…;+ +







T̃=T̃
0( )

DeT̃
De( )

CT̃
C( )…�+ +

f C2( )−…=0

f C2( )

∇ n⋅

n=∇F ∇F⁄ =er−C∇f C( )

−CDe∇f CDe( )−C2 ∇f C2( ) 1
2
--- ∇f C( ) ∇f C( )⋅( )er+  −…

∇ n⋅ =2−C 2f C( ) ∇2f C( )+[ ]−CDe 2fCDe( ) ∇2f CDe( )+[ ]( )

−C2 2f C2( )−2f C( )f C( ) ∇2f C( )+[ ]�…

Ψ N( )= A2
0( ) A2

0( )r 2––( )Q2 η( ) C+ A([ 2
C( ) B2

C( )r 2–+ )Q2 η( )

+ A( 4
C( )r 2– B4

C( )+ r 4– )Q4 η( )] O C2( )+

Ψ̃
N( )

= A2
0( )r5 A2

0( )r3–( )Q2 η( ) C Ã2
C( )[+ r5

B̃2
C( )

r3+ )Q2 η( )

+ Ã( 4
C( )

r7 B̃4
C( )+ r5)Q4 η( )] O C2( )+

Ãn B̃n

Qn η( )= Pn η( ) ηd
1–

η

∫

A2
0( )= 9R 1 SR–( )

5 2R 1+( )2 1 λ+( )
--------------------------------------–

A2
C( )=6

2
5
--- 1 R–

1 2R+
-------------- 1

35
------1 λ–

1 λ+
----------+ 

 F2
C( )A2

0( ); Ã2
C( )=A2

C( ) 5
7
---– F2

C( )A2
0( )
�





B2
C( )= A2

C( )– 46
21
------– F2

C( )A2
0( ); B̃2

C( )=−A2
C( )+3

7
---F2

C( )A2
0( )
�

A4
C( )=46

21
------F2

C( )A2
0( )
������Ã4

C( )=4
3
---F2

C( )A2
0( );





B4
C( )=−82

21
------F2

C( )A2
0( )
������B̃4

C( )=−64
21
------F2

C( )A2
0( ).

f N( )=CF2
C( )P2 η( ) C2+ F0

C2( ) F2
C2( )P2 η( ) F4

C2( )P4 η( )+ +[ ]

F2
C( )=

3

4 2R 1+( )2
----------------------- 1 R2 2SR2–+( ) R 1 SR–( )

3 2 3λ+( )
5 1 λ+( )
--------------------+ .

F0
C2( )=1

5
--- F2

C( )( )2
,

F0
C2( )=�1

4
--- 9F2

C( )

2R 1+( )2
-------------------- 1 R2 2SR2–+( ) 4

5
--- 1 R–

1 2R+
-------------- 2

7
---– 

 +20
7
------ F2

C( )( )2
September, 1999
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The constant is included in (22) to ensure that the drop
volume remains constant through the deformation.

We consider in this subsection the O(De) problem which re-
presents a first viscoelasticity correction to a drop suspended in
a uniform electric field. The electrostatic potentials are also go-
verned by Laplace’s equations subject to the boundary condi-
tions (2)-(5). It can be easily seen from (1) and boundary con-
ditions that the electrostatic potentials outside and inside the
drop are zero in O(De). This is due to the fact that the elec-
trostatic potentials are obviously independent of the rheological
properties of the fluids including the viscoelasticity. Hence, the
O(De) problem is reduced to a purely hydrodynamic one in-
duced by an electric field.

For the suspending phase, the equations of motion at O(De)
plus the continuity equation are

(24)

in which

and

The corresponding equations for the fluid inside the drop are,
of course, completely analogous to the expressions (23) for
the outside phase, and can be simply expressed by adding the
tilde mark to the variables. The continuity of the tangential
velocity and the kinematic condition at r=1 are

, (25)

. (26)

The stress balances can be expressed in terms of the electric
and hydrodynamic stressest at O(De) as shown in O(1) prob-
lem. The balances for the normal and tangential stresses are

        (27)

        (28)

The parameter β which appears in (26) and (27) represents the
ratio of Deborah numbers of the two fluids, i.e.,

,

and is thus independent of the zero-shear-rate viscosity ratio λ.
Consequently, for moderate values of λ, both the fluid motions
inside and outside the drop contribute to the drop deformation
at O(De) if β is of O(1). If β approaches zero or infinity, one
of the fluids may be considered Newtonian, and therefore pro-
duces no direct contribution at O(De) to the drop deformation.

In the case of the Newtonian fluid, the momentum equation

for the creeping flows can be reduced to a homogeneous diffe
tial equation for the stream functions as noted from (18) a
(19) of the O(1) problem. However, in the presence of the n
Newtonian contribution of the extra stress tensor, the stre
functions of O(De) satisfy an inhomogeneous equation of 
form

(29)

in which the function Z(r, θ) can be easily shown to be

,

and a similar expression for the stream function for t
drop phase can be obtained in terms of the non-Newton
extra stress tensor.

The particular solutions of the above equations can be de
mined with the aids of the O(1) solutions and the results are

,

. (30)

The solutions of the homogeneous parts

(31)

have the same forms as those of the Newtonian fluid c
which appear in (18) and (19). The unknown coefficients co
tained in the O(De) stream function can be determined fr
(24), (25), and (26), with the leading order results. The stre
functions and can be expressed as (18) and (
with the nonzero coefficients , ,  and  (n=2,
4), which are given below :

,

,

,

,

,

,

,

. (32)

From the normal stress balance (27), we can determine
correction for the drop shape induced by non-Newtonian c
tributions. The result is 

(33)

where

A2
C( ) 2 3λ+( ) 1

7
---– F2

C( )A2
0( ) 8 13λ+–( )

�

�
–

F0
C2( )= 1

18
------ 24

35
------ 9F2

C( )

2R 1+( )2
-------------------- 1 R2 2SR2–+( )+36

7
------ F2

C( )( )2
–

2
35
------– F2

C( )A2
0( ) 88 113λ+( )

�

�

F0
C2( )

∇ TH De( )⋅ =0, ∇ u De( )⋅ =0,

TH De( )=−PDe( )I τ 1( )
De( ) Textra,+ +

Textra= τ 1( )
0( ) τ 1( )

0( ) φ1τ 2( )
0( )+⋅[ ].

uθ
De( )=ũθ

De( )

ur
De( )=ũr

De( ) 0=

Trθ
E De( ) ST̃rθ

E De( ) τ 1( )��rθ
De( ) λτ̃ 1( )��rθ

De( ) τ 1( )
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De( )
B̃n

De( )

A2
De( )=Ã2
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LINEAR STABILITY OF THE STEADY-STATE SHAPE

In the preceding sections, we have determined the steady-
state shape function f up to O(C2):

(34)

The most important feature of the present solution is that it
exhibits multiple steady-state solutions for electric capillary num-
bers below a critical value, but no steady-state solution beyond
the critical value. Kang and Leal [1988] and Yang et al. [1993],
and more recently, Ha and Yang [1995] have shown that in the
small deformation limit, the critical electric capillary number
which separates the stable and unstable steady-state solution
branches, can be determined without solving the unsteady dis-
turbance problem. According to their perturbation theory, an
estimation of the critical electric capillary number can be car-
ried out by transforming the C-perturbation into a P2-pertur-
bation, in which the small parameter is the magnitude of the
P2(η) mode of deformation

, (35)

instead of C. Then, the electric capillary number as a function
of ζ is given by

, (36)

in which

.

The expansion in terms of ζ is equivalent to interchanging the
dependent and independent variables from ζ and C, respec-
tively, to C and ζ. By the transformation, the limit point, which
appears as a singular point on the stable solution branch at a
critical electric capillary number Cc, is converted to a regular
point. Thus, we can determine the electric capillary number C
as a function of ζ for both the unstable and stable branches of

the solution curve, as shown in Fig. 2. The critical elect
capillary number, which occurs when can thus 
estimated as

. (37)

It can be easily shown that the stability of the solution bran
is exchanged at the critical point estimated above.

In a rigorous linear stability analysis, we must consider 
arbitrarily small three-dimensional disturbance to a steady-s
shape and examine whether the drop will return to the stea
state shape or continue to either deform or break up, by s
ing the corresponding unsteady problem for the disturban
The steady-state drop shape can be always expressed in 
of spherical surface harmonics. However, for an axisymme
case, the spherical surface harmonics can be related to the
gendre polynomials, Pn(η). Thus, the present solution for the
steady-state drop shape is given by (22), and (32) in term
Pn(η). The unsteady problem in quasi-steady Stokes flow 
the three-dimensional disturbance of O(C) to the steady sh
can be constructed by considering the kinematic condition

, (38)

in which qi=xi/r (r=(xixi)
1/2). The corresponding unsteady prob

lem was formulated by Barthes-Biesel and Acrivos [1973]. F
the three-dimensional disturbances of O(C), f12=f21, f11=f22=−1/
2 f33, and f13=f31=f32=f23, due to the axisymmetry of the problem
about the x3-axis. Thus, we have to consider three simult
neous unsteady problems for f33, f12, and f13:

(39)

in which the detailed formula for the parameter Fn at each
order is given in the previous section. The unsteady soluti
will decay and the steady drop shape is stable only if all of 
coefficient functions h33, h12, and h13 are always negative. It
can be shown straightforwardly that the stability condition
satisfied only when

, (40)

which is identical to the critical electric capillary number fo
the stability of P2(η) mode. Consequently, up to the O(C) dis
turbance to the steady-state shape which is correct to O(2),
the stability condition can be determined by estimating t
limit point for the existence of the steady state in  P2-perturba-
tions. 

Although instability may be manifested by the amplificatio
of nonaxisymmetric as well as axisymmetric deformations, th
is a region in which only the axisymmetric instability mode
are observed in a uniform electric field [Saville, 1970]. Thu
the present study can afford insights into the phenomena of e
trohydrodynamic stability in the region of validity. For exam
ple, experiments reported by Taylor [1969] showed that 
stability and instability phenomena in an axisymmetric mo
have been observed with field strengths in the range 0-6 kVc−1
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De( ) 2
315
--------- 22 1 β–( ) 52– φ1 βφ̃1–( )[ ]+

A2
0( )( )2+ A2

0( )( )2

210
-------------- 1 φ1+( )�

f=f N( ) f NN( )=Cf C( ) CDefCDe( ) C2f C2( )
�+ + +

ζ fP2 η( ) ηd
1–

1

∫≡

C=c1ζ c2ζ2+

c1=
5

2F2
C( )-----------, c2=−25 F2

C2( ) δF2
CDe( )+[ ]

4 FeC( )( )3--------------------------------------

∂C ∂ζ⁄ =0,

Cc=
F2

C( )

4 F2
C2( ) δF2

CDe( )+[ ]
----------------------------------- at ζc=

F2
C( )( )2

5 F2
C2( ) δF2

CDe( )+[ ]
-----------------------------------
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Fig. 2. Representation of stability exchange.
(a) C in terms of ζ; (b) ζ in terms of C
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while at somewhat higher field strengths instability is mani-
fested in a nonaxisymmetric form. Of course, the result out-
lined above also may not be valid for a large deformation
problem in which there are significant nonlinear interactions.

DISCUSSION

In the previous sections, we obtained the asymptotic solution
correct up to O(C2) for the steady-state shape of a drop sub-
jected to a uniform electric field. In addition, we also consid-
ered the linear stability of the drop by transforming the C-
perturbation into the P2-perturbation. Since the continuous and
dispersed fluids are assumed to be non-Newtonian, specifically,
second-order fluids, it is expected that the drop behaviors would
be different from those of a Newtonian fluid. In this section,
we will discuss the results given by the small deformation
theory and linear stability analysis. The main purpose of this
section is to determine whether the elasticity of the continuous

and drop phases stabilizes or destabilizes the drop. To do
among various parameters we will concentrate on the role oβ,
the ratio of the normal stress coefficients of two phases, and
Deborah number of the continuous phase.

Prior to analysis of the deformation and stability of the dro
we have to estimate the material parameters φ1 and  of the
two fluids. The second normal stress coefficient is not nearly
well studied experimentally as the shear viscosity and first n
mal stress coefficient. However, the most important point
note about the second normal stress coefficient is that its m
nitude is much smaller than that of the first normal stress 
efficient. Although there are some disputes on the magnitud
the second normal stress coefficient and even on the sign o
value, it is generally accepted that the magnitude of the
cond normal stress coefficient ranges from 1% and 20% of that
of the first normal stress coefficient. Therefore, in general, i
believed that φ1 and should always lie between −0.5 and −0.6,
as verified experimentally by Leal [1975]. It is also known th
although our knowledge about the second normal stress co
cient is still incomplete, the first normal stress coefficient 
sufficient to provide general behaviors of a non-Newtoni
drop, especially when the fluids are weakly non-Newtonian.
the present study, we thus fixed both values of φ1 and as
−0.50 to avoid complexity caused by the nondeterministic 
rameter.

The estimated critical electric capillary number, obtained fro
(36) as a function of the zero-shear-rate viscosity ratio λ, is re-
presented in Fig. 3(a) and 3(b) for a prolate and for an ob
spheroid, respectively. Also displayed in these figures is t
the critical electric capillary number influenced by the ratio 
the normal stress differences β is compared to that of a Newto
nian pair in which other parameters, such as the permittiv
ratio S and the resistivity ratio R are the same. It can be no
that the effect of non-Newtonian elasticity is diminished as 
viscosity ratio increases. However, when both the phases are 
Newtonian, elasticity of the drop phase make the drop eit
stable or not, depending upon the type of deformation. 
example, as the ratio of the normal stress difference ratiβ
increases the drop becomes more stable for the prolate-
deformation, whereas the trend is reversed for the oblate-t
deformation. In addition, for the prolate-type deformation, co
parison with the Newtonian pair shows that a non-Newton
fluid drop in a non-Newtonian fluid is slightly less stable whe
β is less than unity, and becomes more stable when β increases
above unity. In the polymer blending technology, it is a we
known rule of thumb that the drop phase elasticity is expec
to reduce the deformation and increase the critical shear 
for the drop breakup, while the matrix elasticity should i
crease the deformation and decrease the critical shear rates
mendorp and Maalcke, 1985].

These somewhat complicated results can be understood
simply considering which is the largest, first contributio
from the non-Newtonian property and appears in (32). Fo
moment, let us restrict our attention to the stability of a prol
spheroid. When is positive, the drop deforms into a p
late spheroid at O(CDe) causing the critical electric capilla
number Cc to decrease. Since we have fixed the value of φ1 and

φ̃1

φ̃1

φ̃1

F2
CDe( )

F2
CDe( )

Fig. 3. Critical electric capillary number Cc as a function of the
zero-shear-rate viscosity ratio.
Filled circles denote Cc of a Newtonian drop and continu-
ous phases with the same electrical properties. - - - -,
β=0.01; −−−−, β=1, _._, β=10; _.._, β=20. (a) S=1, R=
0.1, δ=1, and φ1= = −0.50. (b) S=1, R=100, δ=0.1 and
φ1= = −0.50.

φ̃1

φ̃1
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in the present analysis, the sign of is determined by the
viscosity ratio and β. However, the sign is independent of the
electrical properties of the fluids. The velocity field, and conse-
quently the deformation of the drop are considerably influ-
enced by the electrical properties at O(1). However, at O(CDe),
the behavior of drop is determined solely by the non-Newto-
nian rheological properties of the fluids. In Fig. 4, the effect of
λ and β on the sign of is reproduced. From this figure, it
can be seen why the drop is stabilized as β increases and less
stable when β is smaller than unity. It can be also noticed from
this figure that the non-Newtonian contribution is vanished,
and thus, no deformation occurs at O(CDe) for a certain com-
bination of β and λ. In this special case, the drop behaves like a
Newtonian drop although the drop possesses non-Newtonian
properties, i.e., non-zero normal stress difference. This stability

diagram is depicted in Fig. 5, in which the contours of  =
0 are plotted for various combinations of φ1 and . Above a
given contour line, <0 the non-Newtonian contributio
makes the drop stable. On the other hand, below the con
line, the viscoelasticity acts in the opposite way and the d
becomes less stable.

The Deborah number De of a continuous phase is also
important parameter for the stability of a non-Newtonian dro
As discussed previously, De is linearly proportional to the el
tric capillary number and the proportionality constant δ is de-
termined by the rheological properties of the fluid. As δ (or
equivalently, De) increases, the drop becomes more stabl
the prolate-type deformation, which is illustrated in Fig. 6. T
stability of an oblate spheroid can be explained by a sim
consideration of in terms of  β and De.

Finally, the effect of the resistivity ratio R on the stability o
a drop is shown in Fig. 7 in which both the viscosity and p
mittivity ratios are fixed at 0.001 and at unity, respectively. D
to the fact that the permittivity ratio S is unity, the drop rema
always stable if the resistivity ratio R is unity. The effect 

φ̃1 F2
CDe( )

F2
CDe( )

F2
CDe( )

φ̃1

F2
CDe( )

F2
CDe( )

Fig. 4. in terms of the zero-shear-rate viscosity ra-
tio, λλλλ.
φ1= = −0.50. - - - -, β=0.01; −−−−, β=0.1; _._, β=1.

F2
CDe( ) A2

0( )( )2⁄⁄⁄⁄

φ̃1

Fig. 5. Contours of F(CDe)=0 representing the non-Newtonian con-
tribution to the drop stability.
- - - -, φ1= =−0.5; −−−− , φ1= =−0.55; −.−, φ1=−0.5, and

=−0.55, _.._, φ1=−0.55 and = −0.50.
φ̃1 φ̃1

φ̃1 φ̃1

Fig. 6. Effect of Deborah number on Cc.
(a) S=1, R=0.1, β=1 and φ1= =−0.50, (b) S=1, R=100,
β=1 and φ1= =−0.50: - - - -, δ=0.1; −−−−, δ=1, _._, δ=
10.

φ̃
1

φ̃1
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elasticity is more appreciable for an oblate spheroid compared
to the case of a prolate spheroid for which the influence of el-
asticity is small. According to the results of linear stability an-
alysis carried out in the present study, Cc is very weak function
of R provided that the resistivities of two phases are quite
different.

 CONCLUSIONS

In the present study, we investigated one of the general prob-
lems concerned with liquid-liquid dispersion; more specifical-
ly, we studied the effect of non-Newtonian properties on the de-
formation and breakup of a droplet in a uniform electric field
from theoretical point of view. In order to obtain an analytic solu-
tion for the drop shape, the fluids were simply assumed as se-
cond-order fluids. The inherent nonlinearity of the free bound-
ary problem was removed by the method of domain perturba-
tion and a double asymptotic expansion in terms of C and De.
The stability of the steady-state drop shape was studied by trans-
forming the C-perturbation into a P2-pertubation, and thus, the
critical electric capillary number, which separates the stable and
unstable steady-state solution branches could be determined.

The theoretical approach suggested that the non-Newtonian
contributions made the drop either more stable or unstable. As
the normal stress coefficient of the drop phase increased, the
stability of the drop was enhanced for a prolate spheroid. How-
ever, for an oblate drop, the drop stability was deteriorated sig-
nificantly as the normal stress difference coefficient of the drop
phase increased. Non-Newtonian contributions to the drop defor-
mation became small as the viscosity ratio increased. The small
deformation theory showed that only rheological properties of
the fluids were involved in determining the type (i.e., prolate or
oblate) of deformations at O(CDe).
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