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Abstract−A semi-empirical equation of state for the freely jointed square-well chain fluid is developed. This
equation of state is based on Wertheim's thermodynamic perturbation theory (TPT) and the statistical associating
fluid theory (SAFT). The compressibility factor and radial distribution function of square-well monomer are ob-
tained from Monte Carlo simulations. These results are correlated using density expansion. In developing the equa-
tion of state the exact analytical expressions are adopted for the second and third virial coefficients for the com-
pressibility factor and the first two terms of the radial distribution function, while the higher order coefficients are
determined from regression using the simulation data. In the limit of infinite temperature, the present equation of
state and the expression for the radial distribution function are represented by the Carnahan-Starling equation of
state. This semi-empirical equation of state gives at least comparable accuracy with other empirical equation of state
for the square-well monomer fluid. With the new SAFT equation of state from the accurate expressions for the mo-
nomer reference and covalent terms, we compare the prediction of the equation of state to the simulation results for
the compressibility factor and radial distribution function of the square-well monomer and chain fluids. The pre-
dicted compressibility factors for square well chains are found to be in a good agreement with simulation data.
The high accuracy of the present equation of state is ascribed to the fact that rigorous simulation results for the
reference fluid are used, especially at low temperatures and low densities.
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INTRODUCTION

The thermodynamic properties of chain fluids are of interest
in theory and for industrial applications. A number of theories
have appeared in literature to predict the properties for model
chain fluids. Dickman and Hall [Dickman and Hall, 1986, 1988]
and Honnell and Hall [Honnell et al., 1987, 1989] developed
theories for the freely jointed hard-sphere chain fluid by ex-
tending Flory’s probabilistic assumptions about lattice chains to
continuous space. Using the concept of excluding volume and
insertion probability of a chain molecule, they derived the gen-
eralized Flory (GF), the generalized Flory-Huggins (GFH), and
the generalized Flory-Dimer (GFD) equations of state for the
hard-sphere chain fluids. Using thermodynamic perturbation the-
ory of polymerization (TPT), Wertheim developed an equation
of state for the freely jointed hard-sphere fluid [Wertheim, 1984a,
b, 1986a, b]. In TPT, the Helmholtz free energy of the polymer
fluid is related to the Helmholtz free energy and the pair cor-
relation function of the monomer fluid at the same reduced den-
sity and temperature. Chapman et al. [Chapman, 1990; Ghonasgi
and Chapman, 1994] extended Wertheim’s theory to mixtures.
They developed the statistical associating fluid theory (SAFT)
equation of state for the real fluids based on the Wertheim’s the-
ory. Chang and Sandler developed TPT-Dimer theory for hard

chain fluids and found a good agreement between theory and
simulation [Chang and Sandler, 1994, 1995]. Yethiraj and Hall
developed an equation of state for hard-core square-well chains
using the mean-field approximation [Yethiraj and Hall, 1991].
Banaszak et al. used TPT1 theory to generate equations of state
for freely jointed square-well chains [Banaszak et al., 1994].
Tavares et al. also developed a TPT-Dimer for the square-well
chain fluid by incorporating structural information for the diato-
mic square-well fluid [Tavares et al., 1995]. The main objective
of this work is to derive an equation of state for the freely joint-
ed square-well chain fluid, based on Wertheim’s thermodyna-
mic perturbation theory and rigorous simulation data. The NVT-
Monte Carlo simulation is performed in order to obtain the equa-
tion of state of monomer fluid. We obtain the thermodynamic
properties of square-well monomers directly from Monte Carlo
(MC) simulations. The compressibility factors of chains fluids
predicted by the present equation of state are compared with MC
simulation results.

MONTE CARLO SIMULATION

The NVT-MC simulations for square-well monomers were
performed to obtain the radial distribution functions and com-
pressibility factors. In MC simulations for the bulk phase of
square-well monomers we used the Metropolis algorithm, for a
wide range of reduced densities ranging from 0.025 to 0.9 and
temperatures ranging from 0.9 to 2.5. The number of mole-
cules used in the simulations is 512. Periodic boundary condi-
tions, using the minimum image convention, were applied in all
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the directions. In order to speed up the simulation, the linked
list method was used [Allen and Tildesley, 1987]. A typical run
is consisted of 30,000 equilibration cycles, followed by 90,000
production cycles. The results of the MC simulation for the squ-
are-well monomer are presented in Table 1.

EQUATION OF STATE FOR THE SQUARE-WELL
MONOMER FLUID

The compressibility factor and the contact value of RDF of
monomer fluid are obtained from MC simulation results in the
literature and supplementary simulation results in this work. The
simulation results are correlated using the density expansions:

(1)

(2)

where T*(=kT/ε), ρ*(=ρσ3) are reduced temperature and den-
sity, respectively. In Eqs. (1) and (2), the exact analytical expres-
sions are adopted for the second and third virial coefficients for
the compressibility factor and the first two terms of the radial dis-
tribution function,
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Table 1. The MC simulation results for the compressibility fac-
tor and the contact values of the radial distribution func-
tion for the square-well monomer fluids at T�=0.9, 1.0,
1.115, 1.333 and 2.5. The errors are the standard de-
viations in last digits estimated from four independent
simulation runs (N=512, Navg=120,000)

T* ρ* ZM gM

0.9 0.025 0.795(5) 3.519(48)
0.10 0.158(26) 8.713(346)
0.70 0.770(8) 2.532(6)
0.75 1.019(9) 2.940(14)
0.80 2.303(16) 3.485(9)
0.90 5.879(20) 4.960(14)

1.0 0.025 0.838(3) 2.913(21)
0.05 0.670(6) 3.222(30)
0.10 0.320(12) 5.769(44)
0.15 0.173(14) 5.103(308)
0.20 0.089(13) 4.385(125)
0.25 0.012(20) 3.781(135)
0.65 0.015(17) 2.307(7)
0.70 0.629(8) 2.589(5)
0.75 1.563(22) 2.998(8)
0.80 2.801(19) 3.509(14)
0.90 6.314(26) 4.940(28)

1.15 0.025 0.881(2) 2.437(22)
0.05 0.770(3) 2.512(13)
0.10 0.694(2) 2.165(10)
0.15 0.394(8) 2.766(73)
0.20 0.282(6) 2.725(49)
0.25 0.200(9) 2.613(66)
0.30 0.153(13) 2.481(51)
0.35 0.103(8) 2.315(47)
0.40 0.063(13) 2.190(16)
0.45 0.030(7) 2.096(13)
0.50 0.022(10) 2.050(12)
0.55 0.085(7) 2.081(2)
0.60 0.274(11) 2.183(8)
0.65 0.641(13) 2.371(6)
0.70 1.269(9) 2.662(8)
0.75 2.175(12) 3.051(5)
0.80 3.398(23) 3.560(9)
0.90 6.850(30) 4.937(21)

1.333 0.025 0.917(2) 2.130(23)
0.05 0.835(4) 2.147(15)
0.10 0.690(3) 2.153(15)
0.15 0.574(7) 2.137(20)
0.20 0.484(5) 2.109(17)
0.25 0.418(11) 2.061(9)
0.30 0.371(8) 2.018(12)

Table 1. Continued

T* ρ* ZM gM

0.35 0.340(1) 1.975(8)

0.40 0.328(4) 1.960(9)
0.45 0.339(17) 1.965(6)
0.50 0.394(12) 2.000(4)
0.55 0.539(9) 2.085(5)
0.60 0.791(8) 2.218(1)
0.65 1.219(1) 2.437(4)
0.70 1.860(10) 2.725(4)
0.75 2.760(5) 3.109(6)
0.80 3.945(27) 3.595(8)
0.90 7.336(43) 4.941(29)

2.5 0.025 0.993(1) 1.490(4)
0.05 0.987(2) 1.503(11)
0.10 0.977(6) 1.517(8)
0.15 0.979(4) 1.543(3)
0.20 0.998(7) 1.566(3)
0.25 1.037(3) 1.605(4)
0.30 1.090(10) 1.653(4)
0.35 1.178(2) 1.720(2)
0.40 1.299(4) 1.800(6)
0.45 1.461(5) 1.893(5)
0.50 1.687(4) 2.024(5)
0.55 1.987(7) 2.182(4)
0.60 2.386(5) 2.379(4)
0.65 2.936(5) 2.633(5)
0.70 3.630(13) 2.938(10)
0.75 4.528(12) 3.315(9)
0.80 5.668(16) 3.776(6)
0.90 8.820(25) 4.996(14)
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Higher order coefficients are determined from the regression of
the simulation data. In the limit of infinite temperature, this equa-
tion of state and expression for the radial distribution function
are reduced to the Carnahan-Starling equation of state [Carnahan
and Starling, 1969]. The values of the high-order parameters in
equations are defined and summarized in Tables 2 and 3.

EQUATION OF STATE FOR THE SQUARE-WELL
CHAIN FLUID

We consider a SAFT form of equation of state [Chapman, 1990;
Ghonasgi and Chapman, 1994] for homonuclear freely jointed
tangent square-well chain fluids. The equation of state of an as-
sociating fluid mixture can be written as a sum of separate con-
tributions. The corresponding Helmholtz free energy is given by

 (7)

where N is the number of monomers, T is the temperature, k
is the Boltzman constant. AR

mono is the Helmholtz free energy of
the monomer reference fluid. Similarly, the compressibility fac-
tor can also be expressed as a sum of the square-well monomer,
chain, and association contributions.

Aideal and Aassoc are given by

 (8)

(9)

where ρ is the total number density of monomer segments, Xa

is the fraction of monomers, s is the number of associating
sites on each segment. The fraction of monomers is obtained
from

(10)

where the covolume ∆ab is defined as

(11)

 (12)

Here gM(σ) is the pair correlation function of the reference
fluid, and σ is the bond length of this model, ψa,b is the as-
sociation potential. The covalent contribution Achain is given by

 (13)

where m is the number of segments in a chain, and yM(σ) is
the cavity correlation function evaluated at the bond length σ.
The compressibility factor of the square-well chain fluids is
obtained by differentiating the Helmholtz free energy (7) with
respect to volume.

(14)

(15)

(16)

(17)

RESULTS AND DISCUSSION

The NVT-MC simulations for square-well monomers were
performed to supplement the previous simulation data espe-
cially at low temperatures. Fig. 1 shows the compressibility fac-
tor of square-well monomer fluid at T*=1.15, 1.333, 1.5, 2.0,
2.5 and 3.0. The symbols are the simulation data of Tavares et
al. and this work. A comparison between literature and the pre-
sent simulation data tests the consistency of our MC simulation
code as shown in Fig. 1.

In order to obtain the equation of state of chain fluids, Banaszak
et al. [Banaszak et al., 1994] used the Barker-Henderson per-
turbation theory to estimate the compressibility factor and radial
distribution function (RDF) at contact for the square-well mo-
nomer. In this work, the equation of state of chain fluids is de-
veloped by using the compressibility factor and radial distribu-
tion function of square-well monomer which are obtained from
rigorous simulation data. We compare simulation results for the
compressibility factor and radial distribution function of the squ-
are-well monomer and the compressibility factor of the square-
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Table 2. The fitted parameters for density expansion for the
contact values RDF of square-well monomer fluids

i gi1 gi2 gi3

2 −2.08641 −4.24608 −7.79942

3 −2.42691 −5.46389 −8.51813
4 −0.46644 −3.27859 −3.47026

* (i=2, 3, 4)

Table 3. The fitted parameters for density expansion for high-
er order virial coefficients of square-well monomer
fluids

i ai1 ai2 ai3

4 1−4.63192 1−9.38959 −18.68150
5 1−8.75256 −22.76898 −18.91511
6 −17.03459 1−8.05376 1−2.72835
7 1−3.22009 −20.43658 −11.30432
8 −22.03529 1−6.59061 1−7.42395
9 −12.07164 −15.20581 −10.55146

*  (i=4, 5, 6, 7, 8, 9)

gi= gik
k=1

3

∑ T*( )∆k

Bi= aik
k=1

3

∑ T*( )∆k



Semi-empirical Equation of State for Square-well Chain Fluid 55

Korean J. Chem. Eng.(Vol. 17, No. 1)

well chain fluid with the predictions of the Banaszak et al.’s
and the equation of state in this work. Figs. 2 and 3 show the
compressibility factor of square-well monomer fluid at T*=1.0,
1.15, 1.333, 1.5, 2.0, 2.5, 3.0 and 4.0 and Figs. 4 and 5 show the
contact values of radial distribution function of square-well mo-
nomer at T*=1.0, 1.15, 1.333, 1.5, 2.0, 2.5, 3.0 and 4.0. The
symbols represent the simulation data of Tavares et al. and this
work and the curves represent the predictions of the theories. In
Figs. 2 and 4 the symbols represent the simulation results in the
literature. In Figs. 3 and 5 the symbols represent the simulation
results in this work. In Figs. 2 and 3 are shown the predictions
of the Banaszak et al.’s and the present theory and Monte Carlo

results for the compressibility factors of the square-well mono-
mer fluids. The present equation of state gives accurate predic-
tions at high densities and low temperatures. In Figs. 4 and 5
are shown the predictions of the Banaszak et al.’s and the pre-
sent theory and Monte Carlo results for the radial distribution
function of square-well monomer. Especially the results of the
present theory for the contact values RDF of square-well mo-
nomer fluids agree with MC simulations better than Banaszak
et al.’s at low densities and low temperatures because the exact
analytical expressions are adopted for the first two terms of the
density expansion for the radial distribution function.

Figs. 6 and 7 show the compressibility factor of square-well
chain fluid at T*=1.5, 2.0, 3.0 and 4.0 and the results for the

Fig. 1. The compressibility factor of square-well monomer fluid
at T�=1.15, 1.333, 1.5, 2.0, 2.5, 3.0. The symbols are the
simulation data of Tavares et al. [1995] (grey symbols)
and this work (solid symbols).

Fig. 2. The compressibility factor of square-well monomer fluid
at T�=1.5, 2.0, 3.0, 4.0. The symbols are the simulation
data of Tavares et al. [1995].

Fig. 3. The compressibility factor of square-well monomer at
T�=1.0, 1.15, 1.333, 2.5. The symbols are the simulation
data in this work.

Fig. 4. The contact values of radial distribution function of squ-
are-well monomer at T�=1.5, 2.0, 3.0, 4.0. The symbols
represent the simulation data Tavares et al. [1995].
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square-well chain fluid are compared with simulation results of
4-mers and 16-mers. A good agreement between the present
theory and simulations are found as shown in Figs. 6 and 7. For
monomer fluids the predictions of the perturbation theory of
the Banaszak et al.’s and the present theory show the consider-
able difference at low temperatures. But the difference isn’t near-
ly represent in Figs. 6 and 7 because this does not lead to a sig-
nificant difference for the compressibility factor of chain fluids
because the errors are attenuated by taking the logarithm of the
radial distribution function of monomer reference fluid as in
the Eq. (13). In Figs. 3, 6 and 7, the region of the negative com-
pressibility factors represents a metastable region. More accu-

rate information of the metastable region will be gained from a
Gibbs Ensemble Monte Carlo simulation (GEMC).

CONCLUSIONS

NVT-MC simulations for the square well monomer fluid are
performed to obtain the compressibility factor and the contact
values of the radial distribution function. Using MC simulation
results for the compressibility factor of square-well monomer
fluid and the radial distribution function, we developed an equ-
ation of state for the freely jointed square-well chain fluid. The
predictions of the compressibility factor of the square-well chain
fluid from the present theory are compared with simulation results
of the literature and this work. A good agreement between the
present theory and simulation results is found.

NOMENCLATURE

A : Helmholtz free energy of the reference fluid
Aassoc : associating Helmholtz free energy
Achain : chain Helmholtz free energy
A ideal : Helmholtz free energy of ideal state
AR

mono : Helmholtz free energy of the reference fluid
B2, B3: second and third virial coefficients for the compressibil-

ity factor
fa,b : mayer function
gM(σ) : reference fluid pair correlation function
k : Boltzmann’s constant
m : number of segments in a chain
N : number of monomers 
T, T* : temperature, reduced temperature
s : number of associating sites
Xa : fraction of monomers
yM(σ) : cavity correlation function evaluated at the bond length σ
ZM : reference fluid compressibility factor

Fig. 5. The contact values of radial distribution function of
square-well monomer at T�=1.0, 1.15, 1.333, 2.5. The sym-
bols represent the simulation data in this work.

Fig. 6. The compressibility factor of square-well 4-mer fluid at
T�=1.5, 2.0, 3.0, 4.0. The symbols are the simulation
data Tavares et al. [1995] (grey symbols) and Yethiraj
and Hall [1991] (solid symbols).

Fig. 7. The compressibility factor of square-well 16-mer at T�=
1.5, 2.0, 3.0, 4.0. The symbols are the simulation data
Tavares et al. [1995].
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Greek Letters
ρ, ρ* : total number density of monomer segments, reduced

density
ψa,b : the association potential

Superscripts
assoc : association
ideal : ideal gas
chain : chain term
M : monomer

* : reduced units

Subscript
a, b : associating sites
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