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Abstract−The higher-order discretization for determining the parametric dependence in partial differential equ-
ations of diffusion-convection-reaction type is described. For approximation of space differential operators, the
Stormer-Numerov formula with the O(h4) accuracy is used. This method turns out to be useful for investigating the
parametric dependence in parabolic diffusion-convection-reaction equations representing the behavior of tubular flow
reactors.
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INTRODUCTION

The systematic investigation for parametric dependence of
steady states, i.e., continuation, in partial differential equations is
still a difficult problem. Several methods for continuation in or-
dinary differential equations have been proposed and developed
very extensively. In the meanwhile, the analysis of parametric de-
pendence in partial differential equations is still at the very be-
ginning although some algorithms for locating Hopf-bifurcation
points have been published [Hassard and El-Henawy, 1981; Jensen
and Ray, 1982; Nandapurkar and Hlavacek, 1984]. A viable strat-
egy for calculating parametric dependence in partial differential
equations is to discretize the space differential operator and to
apply continuation methods developed in ordinary differential equa-
tions. The finite difference approximation of partial differential
equations via method of lines may result in a large set of ordi-
nary differential equations, and the calculation of multiplicity and
stability in stationary as well as periodic branches may present a
formidable task.

The purpose of this paper is to take advantage of the Stormer-
Numerov approximation with the O(h4) accuracy and to apply
this method to parabolic partial differential equations of diffusion-
convection-reaction type. The Stormer-Numerov approximation
is very important for the problems where storage limitation and
computer time expenditure preclude standard second-order meth-
ods. For the fourth-order approximation, a low number of mesh
points can be used for a majority of chemical engineering prob-
lems. Nandapurkar and Hlavacek [1984] demonstrated that higher-
order discretization methods might provide important improve-
ments of codes in terms of diminishing the required number of
mesh points as well as the computer time for desired solution by
using the Brusselator model to describe the trimolecular reac-
tion. This approximation can be applied for calculation of para-
metric dependence in tubular flow reactors.

GOVERNING EQUATIONS

Consider an irreversible exothermic first-order reaction A→
B taking place in tubular flow reactors. Mass and energy balances
can be written in the following dimensionless form:

(1)

(2)

subject to boundary conditions

(3)

. (4)

Here y and θ are dimensionless conversion and temperature. PeM

and PeH are Peclet numbers for mass and heat transfer, respec-
tively. Detailed descriptions of the parameters can be found else-
where [Hlavacek and Hofmann, 1970].

In order to eliminate the first derivatives with respect to ξ in
Eqs. (1) and (2), the following transformation of the conversion
and the temperature is used:
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     (8)

subject to boundary conditions

(9)

                               . (10)

DISCRETIZATION OF SPATIAL OPERATOR

It is obvious that the Stormer-Numerov formula can be appli-
ed to Eqs. (7) and (8), which can be rewritten in the following
simplified form:

. (11)
 

Here the quantities  ∼X,  
≈
C and  

∼
g are defined by

(12)

Let us review the Stormer-Numerov formula briefly. For a dif-
ferential equation

(13)

the finite difference approximation of Eq. (13) for N uniform
meshes with a spacing h (0=X0 < X1 <�< XN−1 < XN =1) can be ex-
pressed as

, i=0, 1, �, N  (14)

Applying the Stormer-Numerov formula, Eq. (14), to Eq. (11)
we can get

i=1, 2, �, N−1.  (15)

Therefore the resulting set of ordinary differential equations de-
rived from Eq. (15) can be rewritten in the following matrix form:

(16)

where  
≈
A and  

≈
D are (N−1)×(N−1) tridiagonal matrices:

 (17)

and

(18)

                                           .

In order to express Eq. (16) in an explicit form for d∼X/dτ,
we must solve the equations with respect to the d∼X/dτ variables.
Since the coefficient matrix ≈A is constant, we can invert the con-
stant matrix ≈A and hence transform Eq. (16) to a set of ordinary
differential equations:

. (19)

Then we can easily apply the continuation methods developed for
ordinary differential equations to a set of 2(N−1) differential equa-
tions, Eq. (18). The continuation for tracing out the periodic as
well as stationary branches was performed by using the software
package AUTO [Doedel, 1980].

It is also necessary to discretize the boundary conditions with
the same O(h4) accuracy. Boundary conditions, Eqs. (9) and (10),
can be generalized in the following form:

(20)

(21)

where the coefficient vectors, ∼α0, ∼
β0, ∼

γ0, ∼α1, ∼
β1, and ∼

γ1 represent

      (22)
                                                                    .

After some algebraic manipulation we can obtain the following
approximation formula for the first derivative at boundary ends
with the O(h4) accuracy:
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(24)

Substituting Eqs. (23) and (24) into Eqs. (20) and (21), we can get
the approximation formula at both ends with the O(h4) accuracy.
Eq. (19) together with the boundary conditions, Eqs. (21) and (22),
results in a set of 2(N+1) ordinary differential equations.

NUMERICAL EXAMPLES

The multiplicity region in ‘‘parametric plane’’ Pe-Da for con-
stant values of B, β, ε, θC and N when the Peclet numbers for mass
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Fig. 1. Multiplicity in tubular flow reactors with A  → B reac-
tion (B=6.0, β=0.0, ε=0.0, θC=0.0, N=10).

Fig. 2. Bifurcation diagram in tubular flow reactors with A  →
B reaction at Pe=2.0 (B=6.0, β=0.0, ε=0.0, θC=0.0, N=
10).

Table 1. A comparison of exact and approximate Damköhler
numbers  at turning points (B=6.0, β=0.0, ε=0.0, θC=
0.0, N=10)

Pe
Exact Approximate Error (%)

Da1 Da2 Da1 Da2 Da1 Da2

2.0 0.056 0.098 0.05565 0.09864 0.6 0.6

Fig. 3. Transient behavior at the exit of tubular flow reactors
with A  → B reaction (B=11.0, Da=0.2, β=2.0, ε=0.0, θC

=0.0, N=10). Pe is: (a) 0.5, (b) 1.4, (c) 1.739 and (d) 1.750.

and heat dispersion are the same (PeM=PeH=Pe), is depicted in
Fig. 1. The unique steady state exists in area I while area II is the
region of three steady states. There exists a range of Damköhler
number (Da1~Da2) at the constant Peclet number where the mul-
tiplicity can occur. By raising the Peclet number this interval
moves to higher values of Da, but the range of Da decreases. Fig.
2 shows parametric dependence of Da on y(1) for the same values
of parameters in Fig. 1 where y(1) is the outlet conversion of tu-
bular flow reactors. There exist turning points at Da1=0.05565
and Da2=0.09864. In this figure solid and dotted lines represent
stable and unstable steady states, respectively. The parametric de-
pendence in Fig. 2 shows the existence of one, three, and one
steady states as the value of Da increases. The values of Da (Da1

=0.05565, Da2=0.09864) to give turning points in Fig. 2 are in
excellent agreement with exact values calculated by numerical
simulation of Eqs. (1) to (4) as shown in Table 1. The difference
between two methods has maximum 0.6% error because exact
values of Da1 and Da2 are reported to be 0.056 and 0.098 with
two significant digits, respectively [Kim and Park, 1999].

For given parameters in Fig. 3, Hlavacek and Hofmann [1970]
found the cycles disappear in the interval of Pe=1.6-1.8. Our cal-
culation shows this Hopf bifurcation occurs at Pe=1.7390. The
eigenvalues at this Hopf bifurcation point in Table 2 guarantee
the occurrence of limit cycles. The transient behavior in Fig. 3
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clearly shows the transition from limit cycles to stable steady states
at Pe=1.7390.

CONCLUSIONS

The Stormer-Numerov discretization with the O(h4) accuracy
is adopted to investigate the parametric dependence in partial dif-
ferential equations of diffusion-convection-reaction type. The con-
tinuation algorithms are very sensitive to the accuracy of start-
ing steady states even for moderate Peclet numbers. Our strategy
using the low number of mesh points with higher order accuracy
represents the most promising approach for calculating paramet-
ric dependence in a set of parabolic partial differential equations.

This method may be useful in determining parametric depend-
ence in other systems such as explosion, catalytic reactor, and
flames in 1- and 2-dimensional spaces [Nandapurkar and Hla-
vacek, 1984].

 NOMENCLATURE

A≈ : matrix defined by Eq. (17)
B : adiabatic temperature rise
C≈ :  matrix defined by Eq. (12)
D≈ : matrix defined by Eq. (18)
Da : Damköhler number
f∼ : defined by Eq. (11)
g
∼

: nonlinear source term defined by Eq. (12)
h : spacing
N : total number of mesh points
PeM : Peclet number for mass dispersion
PeH : Peclet number for heat dispersion
R : defined in Eq. (13)

X∼  : vector defined by Eq. (12)
y, Y : conversion in original and transformed variables
y(1) : exit conversion

Greek Letters
β : heat transfer coefficient between reacting fluids and

cooling medium
τ : dimensionless time
θ, Θ : dimensionless temperature in original and transformed

variables
ε : dimensionless activation energy
ξ : dimensionless axial length
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