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Abstract−A novel nonequilibrium molecular dynamics (NEMD) method introduced in 1994 and its recent appli-
cation to investigations of the transport properties of gases and dense fluids within strongly inhomogeneous pore
structures are reviewed. In this technique molecular simulations are conducted under realistic nonequilibrium (ex-
perimental) conditions thus enabling direct insight into the underlying microscopic processes taking place during trans-
port within pores. The case studies reviewed in this paper establish the versatility and scope of the NEMD technique
and also demonstrate its significant advantages over prior molecular simulation procedures as a tool to assist in the
design and tailoring of novel nanopore systems.
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INTRODUCTION

The last decade has seen a significant growth in the develop-
ment and implementation of novel strategies for nanostructure de-
sign and processing in a variety of advanced technological areas.
These include the tailoring of new porous materials for highly
selective separations and reactions, drug design in the pharma-
ceutical industry and fabrication of semiconductor composites in
microelectronics. In parallel with experimental studies and engi-
neering design of such systems, one particular methodology which
has attracted the attention of many scientists and engineers and
which is fast becoming an invaluable tool involves direct atom-
istic simulation of the microscopic phenomena taking place within
these systems. Within the field of chemical engineering one par-
ticular area which is benefiting from computational work of this
kind is the modelling of adsorption and transport of pure fluids
and mixtures in microporous media and polymeric membranes
and it is a specific topic in this general area, namely molecular
simulation of diffusion through thin membranes, which is the
subject of this paper.
1. Background

The molecular simulation method most frequently employed
in the literature to predict species diffusion coefficients within po-
rous media involves the computation of particle trajectories under
equilibrium conditions (equilibrium molecular dynamics, EMD).
This trajectory information is then coupled with general results
provided by linear response theory [see Allen and Tildesley, 1987
for details] to provide estimates of the transport parameters. For
example, in the absence of a net convective contribution to the
fluxes and assuming isothermal conditions, the flux equation for
component i in a multicomponent mixture within an isotropic
homogeneous porous medium may be written as [Mason and
Viehland, 1978; Mason and Malinauskas, 1983]

(1)

The phenomenological diffusion coefficients Dij are directly relat-
ed to the d-dimensional time-correlation functions of the particle
centre-of-mass velocities, vγ(t) (Green-Kubo [Green 1952, 1954;
Kubo et al., 1985]) or the centre of mass relative displacements,
r γ(t)−r γ(0) (after Einstein [see Berne, 1971]) by

(2a)

 (2b)

ni and µi are the local concentration and chemical potential of
component i, T is the absolute temperature and Ni is the number
of particles of component i within a macroscopically small though
microscopically large (local equilibrium) volume element of the
medium. The angular brackets in Eq. (2) represent averaging over
an equilibrium ensemble of particles confined within the porous
medium.

The application of computer simulation to the evaluation of the
equilibrium time-correlation functions of confined fluids and mix-
tures is comparatively straightforward (details for simple model
systems are provided in MacElroy, 1997), however this approach
suffers serious difficulties when it is employed to compute (i) dif-
fusivities within strongly inhomogeneous systems (e.g. ultrathin
membranes) and (ii) diffusion within random media composed of
both percolating and nonpercolating clusters.

For locally inhomogeneous systems nonlocal effects should, in
general, be taken into consideration if equilibrium time-correla-
tion function methods (via EMD) are to be used. This is most clear-
ly demonstrated, for example, in the case of multicomponent bulk
fluid mixtures by the more general results for the microscopic (iso-
thermal) diffusion flux of component i reported by Mori [1965]
[see also Altenberger et al., 1987] which, in frequency and wave
vector space, is succinctly expressed as
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(3)

where j i
r(k, ω) is the ‘random’ component of the microscopic cur-

rent of particles of component i which is orthogonal to the space
spanned by the density fluctuations and the second term corre-
sponds to the systematic component arising directly from den-
sity fluctuations. Lrij(k, ω) is an ‘after-effect’ coefficient for diffu-
sion which is given by

(4)

and which is related to the more familiar linear response coeffi-
cients through the expression [Altenberger et al., 1987]

(5)

The elements of the matrix L  in this equation are

(6a)

and F(k, ω) is a matrix with elements

(6b)

It is important to note that the microscopic currents appearing in
the expression for the linear response coefficients Lij(k, ω) corre-
spond to the mechanical form

(7)

and are not the random currents j i
r(k, t) which are much more dif-

ficult to compute.
For comparatively small wave numbers and for low though

nonzero frequencies j i
r(k, ω)→0 and the isothermal (macrosco-

pically observed) flux is

(8)

where Lr
ij (r, t) is the inverse Laplace-Fourier transform of Eq. (5).

If the spatial range of sampling, V, is sufficiently large on a mi-
croscopic scale to include all possible inhomogeneities then spa-
tial nonlocality disappears and for an isotropic system we obtain
the considerably simplified result

(9)

where Cij(t) is the velocity time-correlation function

Eq. (9) further simplifies to Eq. (1) in the stationary limit (t → ∞)
with the diffusion coefficients Dij given by Eq. (2).

The spatial (nonzero k) and temporal (nonzero ω) nonlocal
contributions in the general theory arise due to the distinct vari-
ations in the environment in which a diffusing particle finds it-
self as its trajectory evolves. The range over which these nonlocal
effects are observed in practice is typically of the order of a few
tens of Å3 and picoseconds for simple homogeneous fluids and
these scales increase significantly for media with long-ranged in-
homogeneities (membranes or composites) or heterogeneities (se-

micrystalline or amorphous materials) and/or which are subject to
low frequency relaxation processes (polymers). To the author's
knowledge the only studies reported in the literature which have
attempted to account for nonlocal or spatial effects of this kind
are the work of Vertenstein and Ronis, 1986, and more recently,
Pozhar and Gubbins, 1993, 1997. Vertenstein and Ronis investi-
gated single particle (tracer) diffusion at the pore mouth and
within a model protein channel of finite length and their analy-
sis clearly demonstrates that the evaluation of the nonlocal terms
significantly complicates the EMD computational procedure. The
theoretical results of Pozhar and Gubbins have yet to be applied
to quantify diffusion in confined fluids however this theory does
look very promising and should prove essential in future studies
of transport in nanopores.

The second area (which is not unrelated to the above in many
respects) in which EMD techniques encounter obstacles is in the
computation of diffusion within semi-percolating systems. In prac-
tical applications of sorption and diffusion within porous media
and membranes a sorbate-free porous solid is usually exposed to
the sorbate mixture with subsequent separation (and/or reaction)
of the mixture taking place as a result of diffusion along perco-
lating pathways to the sorption (reaction) sites within the medium.
In EMD simulations, the usual procedure involved in the compu-
tation of the time-correlation functions for diffusion in a random
medium entails the creation of static realisations of the particles
of the solid phase with subsequent random insertion of the fluid
particles within the voids of the medium. By running a conven-
tional MD trajectory computation for all of the particles inserted
in this manner it is quite possible that a significant number of the
particles are actually trapped (depending on the relative proxim-
ity to the percolation threshold for the given solid/fluid pair) and
should not be included in the evaluation of the true diffusivity
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Fig. 1. Model pore structures. (a) An homogeneous medium with
sample spanning (percolating) pores in white, dead end
pores in grey and closed pores in black. (b) An inhomo-
geneous medium of three thicknesses. With reference to
the direction of particle flow the sample spanning pores
are in white and nonpercolating pores are in black.



NEMD Simulation of Diffusion in Membranes 131

Korean J. Chem. Eng.(Vol. 17, No. 2)

within the medium. This problem is illustrated schematically in
Fig. 1(a) for an ‘infinite’ medium. The white pore structure is ac-
cessible from both left and right (i.e. sample spanning) while the
dark grey pores are only accessible from either the left or the right.
Both of these regions of the pore space would be deemed open to
the surroundings in an uptake experiment of the kind described
above. The small black circle then represents a permissible loca-
tion to place a particle. The black pores on the other hand are in-
accessible and the white particle placed as shown does not repre-
sent a valid insertion. While it is possible to overcome some of
the difficulties associated with this problem using scaling theories
for diffusion in mixed percolating/non-percolating clusters [Gefen
et al., 1983] the explicit problem with the application of the EMD
technique still remains.

A further situation which combines both the effects of finite
spatial range and semi- or non-percolating conditions is illustrat-
ed in Fig. 1(b). Consider the situation in which a fluid mixture is
diffusing from left to right. In the first diagram on the left of Fig.
1(b) the white pores are percolating pathways while the black
pores represent either non-percolating paths or dead-end pores. In
the second diagram the thickness of the medium is increased by
a factor of two while retaining its general topological structure at
a local level. In this case the number of spanning pathways is re-
duced and the flux of material consequently drops. A further in-
crease in the thickness leads to the elimination of more percolat-
ing pathways with a further drop in flux. Taken to the limit, the
porous medium may prove to be impermeable or semipermeable
depending largely on how one specifies the local pore topology
(except for an infinite medium located precisely at its percolation
threshold in which case the pore topological characteristics of the
system as a whole must be considered). As will be demonstrated
later, diffusion in such systems cannot be investigated unambigu-
ously using the EMD technique without additional information
concerning the relative influence of the boundaries of the medi-
um.

The desire to circumvent the difficulties outlined above form-
ed the basis for the development of the novel molecular simula-
tion method proposed by MacElroy, 1994, and Heffelfinger and
van Swol, 1994, and it is this dual-control volume nonequilibrium
molecular dynamics (NEMD) technique which is the focus of
this paper. In Section 2 details of the NEMD technique as describ-
ed by MacElroy, 1994, and Heffelfinger and van Swol, 1994, and
in similar studies reported by Cracknell et al. [1995], Furukawa
et al., 1996, and Xu et al., 1998, will be outlined and in Section
3 four case studies undertaken in this laboratory will be reviewed.
The paper will close in Section 4 with a brief overview of related
work and future directions.

NONEQUILIBRIUM MOLECULAR DYNAMICS
SIMULATION OF DIFFUSION

The nonequilibrium simulation technique closely mimics real
laboratory conditions for diffusivity or permeability measurements
which have been used widely over the last four to five decades (see
for example, Wicke and Kallenbach, 1941, for gases and Kaufman
and Leonard, 1968, for liquids) and is best described with refer-
ence to Fig. 2. The fundamental cell for the molecular simulation

consists of two control volumes (regions I and II) on either side
of the intermediate permeable (or semi-permeable) region which
is of interest in the study (while in the present context this region
is a membrane of specified structure (inhomogeneous system), it
may also be simply an extension of the homogeneous fluid regions
in the control volumes I and II if bulk homogeneous transport pro-
perties are of principal concern). The cell is periodically imaged
in both the x and y directions (for details of periodic imaging as
a tool in the general area of molecular simulation the reader is re-
ferred to the text by Allen and Tildesley, 1987). Imaging in the
z direction may also be considered and has been employed by a
number of workers [Heffelfinger and van Swol, 1994; Cracknell
et al., 1995; and Furukawa et al., 1996] while in other studies
(those discussed later in Section 3) the background walls indicat-
ed in Fig. 2 have been incorporated into the simulations.

The membrane and the fluid species to be investigated are
modelled by specifying appropriate interatomic and/or intermolec-
ular and intramolecular potential energy functions which may take
on a variety of forms. These include nonbonded interactions (i.e.
London-van der Waals forces, polar interactions due to permanent
dipoles, quadrupoles etc., and electrostatic interactions) and bond-
ed (intramolecular) interactions (three body bond angle bending
and four body torsion potentials as well as bond stretching). In view
of the range of possible membrane materials and fluids which may
be encountered in practice, the analysis can vary from one extreme
of comparative simplicity (simple atomic fluids in crystalline mem-
branes of a pure material) to very complex systems (e.g. ion trans-
port across protein forming channels in lipid membranes). There-
fore, in the interests of clarity we will confine the discourse below
to systems composed of membranes and fluids which interact by
one or other of the following two simple interaction potentials:

(i) Hard core interactions:

φij(rij) = ∞   (rij <σij)

φij(rij) = 0   (rij > σij) (10a)

where σij  is the separation distance between the centres of parti-
cles i and j at contact.

(i) London-van der Waals interactions as modelled by the Len-

Fig. 2. The model system for nonequilibrium simulations. The
central permeable region between −L<z<L is the region
of interest were the nonequilibrium flows take place. The
two control volumes on either side are maintained at spe-
cified thermodynamic states during the course of the sim-
ulations.
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nard-Jones (12-6) potential

(10b)

The use of these potentials will permit a demonstration of the basic
principles of the nonequilibrium method.

Once the membrane and the fluid species have been selected for
study then, in general, the simulation algorithm proceeds in two
stages as follows:

(a) Initialisation: The length or thickness (2 L) of the mem-
brane is specified and the grand canonical ensemble Monte Carlo
(GCMC) simulation method of Adams, 1974, 1975 (fixed µ, V
and T) is applied independently to the two regions of the simu-
lation box z<0 and z>0 respectively if the permeable medium is
fully percolating or simply to the fluid regions outside the medium
if it is suspected that inaccessible domains exist within the mem-
brane. The fluid components in both regions differ only with re-
spect to their chemical potentials (or fugacities 

^
f i) and a uniform

temperature is maintained throughout the cell. At the end of this
initialisation stage the cell volume in the region z<0 (fully perco-
lating system) or z<−L (semi-percolating membrane) will contain
a particular number of atoms or molecules of both species and
the cell volume in the region z>0 (or z>L) will contain a differ-
ent number of particles of both species. In subsequent compu-
tations (see Realisation below) the chemical potentials of both spe-
cies are maintained at the preselected levels only within the control
volumes I and II.

(b) Realisation: The particle velocities are now assigned from
the Maxwell-Boltzmann distribution and the particle trajectories,
at fixed particle number, are computed by solving the equations
of motion. Depending on the nature of the intermolecular poten-
tials one may compute the trajectories algebraically (hard core in-
teractions) or by using one of a number of reported finite differ-
ence techniques (soft potentials). For reasons which will become
clearer later, a particular case of the latter will be discussed in some
detail below. As the particle trajectories evolve the particle deple-
tion or accumulation within control volumes I and II is counter-
balanced by periodically freezing the state of the system and con-
ducting a short sequence of GCMC destruction/creation events
on the fluid mixtures within control volumes I and II. For a given
component i the prescription for the particle destruction/creation
sequence is

Destruction: acceptance if (11a)

Creation: acceptance if (11b)

where Pβ /Pα is the relative probability of observing two states β
and α differing in potential energy by ∆Φαβ and particle number
by 1, Ni is the number of particles of component i present in state
α, and ξ is a random number uniformly distributed on {0, 1}. The
prescription for undertaking the destruction/creation events (i.e.
the frequency and number of such events at any given time) de-
pends on a number of factors the most important of which are the
size of the control volumes, the density or concentrations of the
species in these volumes and the anticipated flux of material to
or from the control volumes. While a careful assessment of these

conditions must be considered in order to ensure the chemical po-
tentials remain constant on both sides of the membrane, a gener-
ally useful guideline is to conduct these destruction/creation events
every time neighborhood lists [Verlet, 1967] are updated. The ac-
tual number of events required to keep the control volumes at
the required chemical potentials may then be determined from a
few short preproduction simulation runs. After each sequence of
destruction/creation events all of the newly created particles with-
in control volumes I and II are assigned velocities from the appro-
priate Maxwell-Boltzmann distribution function at the specified
temperature (the velocities and coordinates of all other particles are
still stored and remain untouched) and the forces on each particle
are evaluated from their known coordinates.

One particular decision which needs to be made before tackl-
ing a simulation of this kind is to choose whether the lattice atoms
which make up the material in the membrane are mobile or not.
Quite clearly if the solid material is assumed to be stationary then
a very significant savings in computer time may be achieved. While
this can result in a loss of some measure of realism (in polymeric
membranes above the glass transition temperature it is in fact nec-
essary to include these motions in order to obtain reliable predic-
tions of the permeation characteristics) for many inorganic mem-
branes it is possible under certain conditions to assume that the
membrane atoms are static [Ford and Glandt, 1995; Haberlandt
and Karger, 1999]. The underlying high frequency vibrational mo-
tion of the solid atoms (which constitutes the thermal reservoir
available to the fluid particles as they diffuse across the system)
may then be included using one or other of the thermostatting pro-
cedures reported in the literature (see Allen and Tildesley, 1987,
for details) for systems at equilibrium (applied in the present non-
equilibrium case at a local level assuming local thermal equili-
brium) or preferably by using the novel fluid particle/membrane
atom thermal collision process described recently in MacElroy
and Boyle, 1999. The latter procedure applies the local equilib-
rium concept in a unique way at a point rather than in a finite vol-
ume element and hence limits the influence of the thermostatting
on the nonequilibrium molecular flux profiles within the micro-
pores of the membrane. This is done in such a way that the parti-
cles are reflected from the fluid particle/wall collision plane ac-
cording to the cosine law of diffuse scattering while simultane-
ously satisfying conditions corresponding to thermal equilibration
with the solid surface. In MacElroy and Boyle, 1999, it was shown
that in order to simulate equilibrated thermal scattering from a sur-
face one need only sample three random numbers ξ1, ξ2, and ξ3

uniformly distributed on {0,1} and compute the velocity com-
ponents according to

(12a)

(12b)

(12c)

where the dimensionless speed v* =v  is obtained from

(12d)

v1 and v2 are the components of the velocity within the particle/
wall scattering plane and v3 is normal to this plane. This method
ensures that the particles emanating from a plane are scattered with
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a Maxwellian distribution of molecular speeds.
For hard core systems [Eq. (10a)] the application of this proce-

dure involves a very simple modification of the Alder-Wainwright
method [Alder and Wainwright, 1959] for tracking the fluid par-
ticle trajectories. Application of the technique for soft potentials
[i.e. Eq. (10b)] is best illustrated as follows for the Verlet finite
difference algorithm [Verlet, 1967]. This algorithm requires the
initial centre of mass positions r, velocities v and accelerations
a [based on force calculations using Eq. (10b)] of each particle
i:

(13a)

For times greater than this first step the particle positions are
computed using

(13b)

with the velocity at time t given by

(13c)

As the particle trajectories evolve the momentum and kinetic en-
ergy of any given particle are changed randomly when the rela-
tive separation of the fluid particle and an atom of the solid cor-
responds to the location of the minimum, ris=21/6σis, in the pair
potential function. As discussed in MacElroy and Boyle, 1999,
this is a fundamental requirement of the technique and therefore
a procedure must be employed to determine, a posteriori, if, dur-
ing a given time step, the relative separation of a fluid particle and
a solid atom satisfies the condition ris=21/6σis. If so, the particle
trajectory is retraced to determine the point of ‘collision’ by using
Newton’s method to solve the expression

(14)

where 0<f<1. Once the minimum value of f has been determin-
ed for a given i−s pair, particle i is advanced through time fminδt
and its velocity components are changed according to the prescrip-
tion described in Eq. (12). The completion of the time step is
then achieved by moving the particle to

(15)

where vi
scatt is the post-collisional velocity of the scattered parti-

cle. This procedure is to be applied to each fluid particle independ-
ently during a given time step and, if necessary, repeated when
multiple ‘collisions’ for the same particle are predicted to occur
within the time step.

At the end of a time step in which a ‘collision’ or ‘collisions’
occurs between a fluid particle and a solid atom the Verlet algo-
rithm [Eq. (13)] is restarted by computing the position at t using
the approximation

(16)

This analysis is repeated for each time step and for as many time
steps as may be required to reach and then sample the steady-state
fluxes of the components in the system.

The steady-state fluxes are determined quite simply by mon-
itoring the net transfer of particles across one or more planes with-

in the system and/or by noting the net number of insertions or de-
letions in the control volumes on either side of the membrane dur-
ing sequential periods of time. In the first case the steady-state flux
in the z-direction is computed using

(17a)

where Ni
+ and Ni

− are the total number of particles of component
i which have drifted downstream and upstream, respectively, re-
lative to all Np planes of cross-section Axy normal to the flow dur-
ing a total observation time ∆t. The second method for comput-
ing the steady-state flux employs the relation

(17b)

where Mc
k and Md

k are the total number of particles created or de-
stroyed by grand canonical events in control volume k during the
time period n∆tGC and n is the total number of time steps ∆tGC

monitored under steady-state conditions. The time element ∆tGC

may or may not correspond to the MD time step δt (in the outline
provided above, for example, ∆tGC corresponds to the time between
updates in neighborhood lists). The factor γ is 2.0 if confining
background walls of the type shown in Fig. 2 are used and is equal
to 4.0 if periodic imaging is employed in the z-direction.

In addition to providing particle fluxes, the nonequilibrium
simulations will also give full details of the species concentration
profiles from which one may either determine global permeabil-
ities or local transport coefficients. The former are easily defin-
ed by

(18)

where nkiB,i is the concentration of component i in control vol-
ume k. The local transport coefficients will be specific to the con-
stitutive equation assumed to describe the flow.

The capabilities of this procedure are best illustrated by exam-
ples and in the next section four case studies which have been in-
vestigated in detail by the author and coworkers will be described.

CASE STUDIES

1. Flow and Diffusion of Pure Materials in Membranes and
Pores

The first study of this kind was reported in MacElroy, 1994,
where the nonequilibrium MD technique was introduced. The pri-
mary purpose of this work was to ascertain the contribution of
the convective shear flow term [which was omitted in Eq. (1) and
corresponds to the last term in parenthesis in Eq. (19) below] to
the isothermal flux of a pure dense fluid in the z-direction with-
in a model microporous medium (see for example, Mason and
Viehland, 1978; Mason and Malinauskas, 1983).

(19)

The term Doo within the parenthesis of this equation is known as
the viscous slip coefficient and is simply the diffusive flux con-
tribution in Eq. (1) for a single component fluid. In the zero pres-
sure (zero density) limit this term reduces to the Knudsen diffu-
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sion coefficient (hard core collisions) or ‘activated’ free particle
diffusion coefficient (in the presence of a fluid/solid adsorption
force field). The remaining parameters appearing in this equation
are as follows: K is the equilibrium partition coefficient defining
the local equilibrium distribution of the fluid within the porous
medium relative to the bulk phase; n is the local pore fluid den-
sity; Bo is a medium structure factor associated with convective
transport (typically proportional to the square of the average pore
radius); and η is the shear viscosity of the pore fluid.

In MacElroy, 1994, a fluid composed of hard spherical parti-
cles, one of the simplest known fluids, was employed to investi-
gate the properties of Eq. (19). The permeable medium consider-
ed in this work is shown schematically in Fig. 3 and consists of
randomly overlapping spheres which are themselves impenetra-
ble to the fluid particles. The control volumes I and II in these sim-
ulations extend over the entire fluid region to the left and to the
right of the membrane. The membrane is generated by inserting
spheres at random positions, selected using a uniform random
number generator, in the volume between −L and +L. The fluid
phase is created using the GCMC algorithm (in this case the sim-
ulations are comparatively straightforward since no potential en-
ergy changes need to be computed i.e. ∆Φαβ only takes on one of
two possible values, +∞ or 0.0) and the Alder-Wainwright [Alder
and Wainwright, 1959] scheme for algebraically solving the equa-
tions of motion is readily applied to compute the particle trajec-
tories.

Results for the permeabilities for three different cases and for
a range of membrane thicknesses are illustrated in Fig. 4. In each
case the membrane porosity is 0.5 and the fluid particles are one
quarter the size of the membrane spheres. These conditions corre-
spond qualitatively to transport of a simple fluid through a mem-
brane containing pores in the range 1 to 2 nm i.e. typical of many
microporous media employed in the chemical and process in-
dustries. While membranes as thin as the ones simulated are not
usually encountered in practice the results do demonstrate con-
clusively that the viscous shear term appearing in Eq. (19) is
negligible in comparison with the slip contribution. This is seen
from the extrapolation of the results for finite systems to the left
hand axis i.e. the infinite system, 1/(2L*)→0. The agreement be-
tween the extrapolated value and the exact value for the Knudsen

(ideal gas) diffusion case (full circles) strongly supports the use
of similar extrapolations for the dense fluid cases. In the latter
simulations it was shown in MacElroy, 1994, that the pore fluid
within the membranes is sufficiently dense to ensure that the trans-
port process is in the transitional regime between the free particle
and continuum limits. Under these conditions one might expect
the viscous term in Eq. (19) to be of similar magnitude to the slip
term however the data shown in Fig. 4 quite smoothly extrapo-
late to the value DooK alone for the infinite system. The latter is
computed from independent equililbrium molecular dynamics and
GCMC simulations using periodically imaged ‘infinite’ systems
of the same porosity as the membrane. The expression relating
Doo to the microscopic properties of the system (in this case fluc-
tuations in the pore fluid centre of mass momentum) is [Suh
and MacElroy, 1986]

(20)

where N is the total number of fluid particles simulated in the
EMD simulations and uo is the centre of mass velocity for the
pore fluid as a whole

While the model system investigated in MacElroy, 1994, is very
simple additional work reported in [Travis and Gubbins, 1999] sup-
ports the basic premise that shear flow effects are negligible with-
in nanopore structures. This considerably simplifies the analysis
of flows in such systems since only the slip terms need to be esti-
mated. This particular issue will be revisited in Section 3.2 below.

The second case study involves a simple though nontrivial de-
monstration of single-file diffusion in pores of finite and infinite
length [MacElroy and Suh, 1997a, b]. Single-file diffusion arises
when the particles confined to a pore cannot overtake one another
and is observed in biological systems (for example, ion transport

Doo= 
N
3
---- uo t( ).uo 0( )〈 〉

0

∞
∫ dt

uo t( )= vi∑ t( ) N⁄

Fig. 3. Schematic diagram of the simulation cell for NEMD com-
putations using the overlapping spheres membrane. The
size of each control volume is 18σm

3 and the mass trans-
fer area is 9σm

2 where σm is the diameter of one of the
solid particles making up the membrane.

Fig. 4. The reduced permeability P, in units of σm√(kBT/m), as
a function of the inversed thickness of the membrane
with L * in units of σm. (•) Ideal gas diffusion; (>) dense
fluid flow (fluid particle/solid specular scattering); (= )
dense fluid flow (fluid particle/solid diffuse elastic scat-
tering).
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in protein forming membrane pores) and in a number of zeolitic
materials depending on the size of the diffusant (Theta-1 zeolite
[Barri et al., 1984], mordenite [Lei and Sachtler, 1993], and AlPO4-
5 [Gupta et al., 1995]). If the pores are infinitely long it may be
shown theoretically [Levitt, 1973; Karger et al., 1992; Hahn and
Karger, 1996] that the mean square displacement of a tracer par-
ticle (trace or self-diffusion conditions) is not linear in time but
varies as √t i.e.

(21)

where F is the mobility

(22)

In this last expression ρ is the linear density of the fluid within the
one-dimensional pore and Did(0) is the diffusivity at zero pore
loading. Eq. (21) is strictly only true for random (diffuse) scatter-
ing of the fluid particles from the confining pore walls and while
this should be the prevalent mode of particle/wall reflection in real
systems, if specular (mirror image) scattering takes place then a
linear relation between <∆z2(t)> and time will be observed [Leb-
owitz and Percus, 1967; MacElroy and Suh, 1997a].

The diffusion process implied by Eq. (21) is clearly non-Fickian
[i.e. diffusion is not defined in the stationary infinite time limit as
may be seen by employing Eq. (2b) with Eq. (21)]. However in
real single-file biological and zeolitic systems trace diffusion is
widely acknowledged to take place for the simple reason that real
pores are finite in length. This was demonstrated theoretically for
the first time in MacElroy and Suh, 1997a using the NEMD tech-
nique. In this study a simplified model based on ‘colour’ particle
diffusion within cylindrical pores (see Fig. 5) was employed to
demonstrate the distinction between single-file pores of infinite
and finite length. The diffusing particles were hard spheres whose
diameter, σ, was greater than the radius of the pore thus ensuring
the absence of overtaking trajectories within the pore. The NEMD
simulations were conducted from an initial state in which light
‘grey’ particles and dark ‘grey’ particles fully occupied the left
and right hand sides of the simulation cell, respectively, as illus-
trated in Fig. 5. The only difference between the particles is their
‘colour’ and there is no overall density difference between the left
and right hand sides of the cell at the beginning or during the pe-

riod of the simulation. As the simulation progresses the light par-
ticles will on average diffuse from control volume I to II and the
dark particles will be transported in the opposite direction. The
steady-state concentration gradients are achieved by maintaining
the chemical potentials of the particles of different ‘colour’ at high
or low values within the respective control volumes while keep-
ing the fluid densities in both volumes equal.

The results obtained for a range of pore lengths, two pore radii
and two fluid densities are reproduced in Fig. 6. In this figure we
have simultaneously plotted (i) the permeability P against inverse
pore length in the form Cs

*/2L* where Cs
* is the dimensionless

speed of sound in the one-dimensional pore fluid and (ii) the time-
dependent permeability for a pore of infinite length as a function
of inverse reduced time τ/t. The filled symbols in this figure were
obtained from EMD simulations for a pore of infinite length and
the long time value for D∞(t) in each case is predicted by Eq. (21)
to be F/(2√t). These results demonstrate not only that diffusion in
finite length single-file pores exists but also that, in scaling the pore
length with the speed of sound, the data sets for both the NEMD
(finite pore length) and EMD (infinite length pore) simulations col-
lapse onto one another. In MacElroy and Suh, 1997b, this was ex-
plained in terms of decorrelation times associated with the rate at
which a sound wave travels along the single file of fluid parti-
cles. For long pores the correlated dynamics of the pore fluid par-
ticles persist to long times and the influence of the random mo-
tion within the reservoirs in volumes I and II only enters at times
corresponding to 2L*/Cs

*. By inference, it also follows that this
correspondence between spatial and temporal length scales leads
to the following simple expression for the Fickian diffusion co-
efficient in single-file pores of finite length

∆z2 t( )〈 〉
t ∞→
lim = 2F t

F= 
1− ρσ

ρ
--------------

D1d 0( )
π---------------

Fig. 5. Schematic diagram of the simulation cell for NEMD com-
putations of single file diffusion. The volumes of regions
I and II are both chosen to be equal to VLxLyLz=(5σ)(5σ)
(8σ) (σ is the fluid particle diameter) and are periodically
imaged in the x and y directions. 

Fig. 6. The time-dependent permeability, D∞(t)K, for pores of in-
finite length at short times as a function of τ/t (filled sym-
bols), and the steady-state permeability for finite length
pores, P, as a function of Cs*/2L* (open symbols) for pores
with diffusely reflecting walls. The time dependent diffu-
sion coefficient D∞(t) is in units of RP√(3kBT/m) and τ=RP

/√(3kBT/m). Cs
* is the dimensionless speed of sound with-

in the pore in units of √(3kBT/m) and L* is in units of RP.
9σ/2Rp=0.7, nB

*=0.4, K=0.524, F*=0.670; >σ/2Rp=0.7,
nB

*=0.6, K=0.724, F*=0.148; <σ/2Rp=0.9, nB
*=0.4, K=0.122,

F*=5.07; where nB* =nσ3, F* =  and K is the equilib-
rium partition coefficient K=n P/nB.

F τ Rp
4⁄
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(23)

i.e. D scales as 1/√L in long single-file pores. The more general
result implied by the data shown in Fig. 6 is that the effective Fic-
kian diffusion within pores of arbitrary length is readily obtained
from a single trajectory computation for a pore of infinite length.
2. Separation of Binary Mixtures using ‘Thin’ Microporous
Membranes

While the simulations described in section 3.1 demonstrate spec-
ific aspects of the underlying philosophy of the NEMD method,
processes which might be considered to be of more immediate
chemical engineering interest have also been investigated in Mac-
Elroy et al., 1999, and MacElroy and Boyle, 1999. In the first of
these studies [MacElroy et al., 1999] the kinetic separation of air
into its constituents using carbon molecular sieves (CMSs) [Chi-
hara et al., 1978; Chihara and Suzuki, 1979; Ruthven et al., 1986;
Ruthven, 1992; Kikkinides et al., 1993; Chen et al., 1994] was ex-
amined in some detail. The physical mechanism controlling this
particular separation is believed to be associated with very small
apertures within the CMS medium as depicted schematically in
Fig. 7. It is known (see for example, Moore and Trimm, 1977) that
by gradually depositing carbonaceous material on the surface of
the pores within a carbon substrate the aperture narrows and ulti-
mately pore widths close to the kinetic diameters of nitrogen and
oxygen are created within the CMS medium. In MacElroy et al.,
1999, it was shown using NEMD that, although pore narrow-
ing is an important issue (see MacElroy et al., 1997, for further
details on this aspect of the problem), it is in fact the increase in
nanopore length during the deposition process which controls
CMS kinetic selectivity.

In order to simulate the permeation characteristics of nitrogen
and oxygen within a single aperture of the kind illustrated in Fig.
7, MacElroy et al., 1999, employed the model ‘membrane’ sys-
tem shown in Fig. 8(a). The permeable medium in this case is a
single heterogeneous carbon pore generated by randomly etch-
ing the graphite basal planes on either side of a slit-like cavity as
illustrated in Fig. 8(b). The etched pore walls employed in this
work are considered to be analogous to pore surfaces generated
by carbon deposition (further details are provided by MacElroy
et al., 1997). By varying the degree of etching, or adjusting the

distance between these walls and/or changing the length L of the
pore it is possible to investigate a wide range of ‘aperture’ condi-
tions which may directly influence the selectivity of CMS. Fol-
lowing prior work reported in MacElroy et al., 1997, and Seaton
et al., 1997, which concluded that pore width alone could not re-
produce experimental observations (most notably the magnitude
of the experimental diffusivities of N2 and O2), it was decided in
MacElroy et al., 1999, to focus attention on the pore length and
degree of etching. To simplify the NEMD computations while re-
taining the most important features of the separation process,
the gas phase in chamber I was treated as ideal (the fugacity of the
gas in the control volume is simply its partial pressure) and a vac-
uum was employed in chamber II (i.e. any gas molecules reach-
ing z=L3 were immediately deleted from the list of gas particles
in the system). Also, since the structure of the N2 and O2 mole-
cules is an important factor in the air/CMS separation process,
the gas molecules were treated as diatomic particles in the simu-
lations and therefore in addition to solving the centre-of-mass equa-
tions of motion of the molecules it was necessary to include the
reorientational dynamics of the diatoms [Fincham, 1984].

The results reported by MacElroy et al., 1999, demonstrated that
of the two possibilities (i) degree of etching (or deposition den-
sity) and (ii) pore length, only the latter has a direct influence on
the selectivity of the CMS. To illustrate this the results for the
three longest pores investigated in this work are shown in Fig. 9
for two pore widths w as defined in Fig. 8 (in all of these simul-
ations the degree of etching was 40%). In all cases the quantity
P/L (in the current notation) is exponentially related to the pore
length (rather than inversely proportional to L which one would

D
L ∞→
lim = 

F
2
--- Cs

2L
------

Fig. 7. Schematic representation of the influence of carbon de-
position on the oxygen/nitrogen selectivity of a pore mouth
in carbon molecular sieve.

Fig. 8. (a) Side view of the carbon membrane for the case L=
8lcc (where lcc=0.142 nm) and w=0 (∆=0.335 nm); (b) Sche-
matic diagram of a carbon slit pore with etched graphit-
ic walls.
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expect for Fickian diffusion conditions) and this dependence was
shown by MacElroy et al., 1999, to be due to non-Fickian diffu-
sion of the kind discussed earlier with reference to Fig. 1(b). Bas-
ed on a theoretical analysis of transport within a random medium
containing pore clusters which, on average, are percolating only
over a limited spatial range λi, it was shown that the permeability
may be simply expressed as

(24)

where kI,i and kII ,i are gas phase rate coefficients for transport to
the membrane face in chamber I and from the membrane face in
chamber II. The pore cluster spatial range λi is specific to the com-
ponent and is very sensitive to the diameter of the diffusing mole-
cule. For example for the pore width w=0.325∆ the values obtain-
ed for this parameter for nitrogen and oxygen were 0.222 nm and
0.273 nm, respectively, while the individual atomic diameters with-
in the diatoms of N2 and O2 are 0.3296 nm and 0.294 nm.

A comparative analysis of the simulation results and experi-
mental data for Takeda CMS [Chihara et al., 1978a, b] and Berg-
bau-Forschung CMS [Chen et al., 1994] is provided in Fig. 10.
The selectivity, defined by R=DO2

/DN2
, computed using the relation

(25)

and the simulation results, is plotted in Fig. 10(a) as a function
of pore length for both of the pore widths reported in Fig. 9. The
selectivities cited in the literature for Takeda CMS and Bergbau-
Forschung CMS are 3.1 and 36.0 respectively and from Fig. 10(a)
this suggests that the average aperture length within these ma-
terials is approximately 1.7 nm for Takeda CMS and 4.7 nm for
Bergbau-Forschung for pore widths w defined in Fig. 8 in the
range 0.0 to 0.11 nm. Fig. 10(b) demonstrates that this model can
provide accurate estimates of the widely disparate diffusivities
observed for these materials. The results for the pore width w=
0.325∆ are in fact only a factor of 7 lower for the Takeda CMS
(experimental value DO2

=6.7×10−11 m2/s) while the simulation

results are lower by a factor of 12 for the Bergbau-Forschung
CMS (DO2

=6.7×10−15 m2/s). One can quite easily envisage that a
small increase in the pore width and aperture length could lead to
excellent agreement. Additional work reported in MacElroy et al.,
1999, also demonstrates that the same conclusions are arrived at
even if a distribution of pore sizes is taken into consideration.

It is also important to note that while only carbon molecular
sieves were considered by MacElroy et al., 1999, it is clear that
the physical principles revealed in this work may be readily ap-
plied to other systems (for example, controlled chemical vapour
deposition of silica on amorphous silica substrates [Tsapatsis and
Gavalas, 1992, 1997]). Tailoring amorphous nanoporous systems
in this manner to achieve both kinetic as well as adsorptive selec-
tivity opens up a wide variety of possibilities for separating ‘dif-
ficult’ mixtures.

In the final case study [MacElroy and Boyle, 1999] the carbon
membrane simulated is very similar to the structure shown in
Fig. 8 with the simplification that no etching is involved. The pur-
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Fig. 9. Permeability as a function of carbon membrane thick-
ness with 40% etching. The filled and open symbols are
for nitrogen and oxygen respectively.

Fig. 10. (a) Diffusivity ratio R=DO2
/DN2

 as a function of pore
length. The horizontal dotted lines correspond to the
experimental values for Takeda CMS (3.1) and Berg-
bau-Forschung CMS (36). (b) The oxygen diffusivity as
a function of pore length. The horizontal dotted lines cor-
respond to the experimental values for Takeda CMS
(6.7×10−11m2/s) and Bergbau-Forschung CMS (6.5×10−15

m2/s).
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pose of this investigation was to examine the adsorptive selectiv-
ity of dense gas mixtures and, in particular, to verify the hypo-
thesis that for H2/hydrocarbon separations it is hydrocarbon pore
filling which accounts for hydrogen enrichment on the high pres-
sure side during membrane separations of these mixtures. Addi-
tional issues under consideration in this work were (a) the valid-
ity of Fickian flux expressions for diffusion within very narrow
but open (fully percolating) pores; (b) the relative magnitude of
the cross-coupling terms appearing in the flux equations predict-
ed both by nonequilibrium statistical mechanics and irreversible
thermodynamics [the terms i≠j in Eqs. (1) and (8)]; (c) the rela-
tive contribution of the mass transfer resistance at the pore en-
trance/exit for adsorbing dense fluid mixtures; and (d) the magni-
tude of the viscous term in the species transport equations [i.e.
the second term in Eq. (19) which, for multicomponent mixtures,
appears in Eq. (1) in precisely the same form except ni replaces n
and η is understood to be the pore fluid mixture viscosity].

In the system investigated by MacElroy and Boyle, 1999, a
single graphitic pore width of w=1.25∆ (see Fig. 8) was employ-
ed in the simulations and the permeation characteristics of H2/
CH4 mixtures were investigated for (a) pressure driven transport
from control volume I to control volume II (two separate sets of
simulations were conducted for both gases) and (b) isobaric coun-
terdiffusion of the two components. The temperature employed
in the simulations was 0oC in all cases and the permeabilities
were computed for a range of pore lengths L. In this case the de-
finition of the permeability differs from Eq. (18) in that the con-
centration nB,i is replaced by the fugacity 

^
f i

I and 
^
f i

II, i.e.

(26)

This simplifies the comparison between the NEMD results and
independent computations conducted using EMD and Eq. (2) on
an ‘infinitely’ long pore.

The principal results of this work are shown in Figs. 11-13. The
permeabilities under forced flow conditions cited in Fig. 11(a) re-
fer to two independent sets of computations in which a chemical
potential gradient was maintained for only one of the components.
In conjunction with subsidiary results (the absence of fluxes for
the species whose fugacity is maintained constant) the following
conclusions were arrived at:

(i) The cross-coupling terms Dij and the viscous flow terms in
Eq. (1) do not influence the fluxes under forced flow conditions.
If one or both these contributions did play a role then, as Eqs. (1)
suggests, transport of the material maintained at fixed chemical
potential would have been observed. This conclusion is support-
ed by the local (pore centreline, z=0) effective diffusivities shown
in Fig. 13(a) which were computed from the concentration gra-
dients (and hence the chemical potential gradients), some of which
are provided in Fig. 12(a). The horizontal dashed lines in Fig.
13(a) tagged by open and filled squares are the infinite system
direct diffusivities Dii for both species.

(ii) The predicted results for the permeabilities in an infinite
pore under forced flow conditions are also shown in Fig. 11(a) as
horizontal dashed lines and it is clear that the much lower meth-
ane permeabilities for pores of finite length (filled circles) arise
due to significant pore entrance/exit mass transfer resistances. The
short dashed curve traced through these points actually corresponds

to

(27)

where 1/PoCH4 represents the resistance at the pore ends and Pp
CH4

is the intrapore permeability which, for fully percolating pores,
should, in principle, be independent of pore length. The results
shown in Fig. 11(a) imply that the influence of the pore ends will
be negligible (<1%) only if this comparatively narrow pore is of
the order of 0.1 microns or greater in length. The significant affect
of the pore entrance/exit on transport of methane has also been
observed in very recent work by Nitta and Furukawa, 1999.

(iii) The hydrogen permeabilities in Fig. 11(a) display a max-
imum which is characteristic of pore blockage by the methane as
the pore length (and hence adsorptivity of methane) is increas-
ed. As the pore length increases it is observed that the separation
selectivity of the carbon pore for methane over hydrogen appro-
aches 10 which is typical of real experimental data reported in the
literature (see, for example, Rao and Sircar, 1993). Similar results
have been reported by Furukawa and Nitta, 1997, in their studies
of ethane/methane separation using model carbon pores.

(iv) The results shown in section (b) of Figs. 11 to 13 repre-
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Fig. 11. NEMD methane and hydrogen permeabilities obtained
from (a) pressure driven transport and (b) isobaric coun-
terdiffusion. The dashed lines tagged by open and fill-
ed squares correspond to the predicted results for infi-
nitely long pores and the dashed line through the filled
circles corresponds to Eq. (27).
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sent isobaric counterdiffusion of methane and hydrogen. The gen-
eral trends are very similar to the forced flow results with two ex-
ceptions: the overall hydrogen transport is significantly reduced
[compare the open symbol data shown in Figs. 11(a) and 11(b)]
while the magnitude of the pore centreline effective diffusivity is
much larger than the value predicted for a pore of infinite length
(Fig. 13). The permeability reduction is due to pore blockage at
the methane upstream end of the pore where the loading is signi-
ficantly higher than in the forced flow simulations at uniform
methane chemical potential. The results for the centreline hydro-
gen diffusivity, however, are not as easily interpreted. The predict-
ed value for the diffusivity within the infinite length pore [dash-
ed line tagged by open squares in Fig. 13(b)] is approximately a
factor of three lower than the value shown in Fig. 13(a) for forc-
ed flow and MacElroy and Boyle, 1999, have demonstrated that
this is due to an important contribution to the counterdiffusing
hydrogen flux arising from the cross term Dij (i≠j) (the methane
flux is largely unaffected). For the finite length pore we can only
suggest at this time that in view of the similarity of the magni-
tude of the centreline hydrogen diffusivities in both the forced

flow and isobaric simulations, coupling near the pore centreline in
the short pores is not significant and this raises serious questions
concerning the validity of Eq. (1) in its application to nonadsorb-
ing or weakly adsorbing gases in pores of finite spatial range (non-
local dependencies of the kind indicated in Eq. (8) should be taken
into consideration for such gases). In contrast it would appear that
the stationary ‘infinite’ system flux equations are valid for strong-
ly adsorbing species due to rapid decorrelation of the time cor-
relation functions as the adsorbing molecule is scattered repeat-
edly over short distances within and between the adsorption sites
on the solid surface.

RELATED WORK AND FUTURE DIRECTIONS

The computational facilities required to conduct simulations
of the kind described in section 3 are not resource demanding in
view of the current availability of comparatively low cost work-
stations or personal computers. For example, typical run times
for the case studies cited in Section 3.2 were between 5 and 20 pi-
coseconds of trajectory time per minute of CPU time on a dedi-
cated (serial) Digital 433au series workstation. These computa-
tions usually involved approximately 300 fluid particles and over

Fig. 12. Concentration profiles through the pores (n* is the re-
duced density in units of ∆−3). (a) Methane density pro-
files for three pore lengths under forced flow conditions
(fixed H2 fugacity); (b) Methane and hydrogen profiles
within the pore of length 2L=3.266 nm under isobaric
conditions.

Fig. 13. Centreline diffusivities for the three longest pores as
functions of pore length. (a) Effective diffusivities, Di,eff,
for methane and hydrogen under forced flow conditions;
(b) Pore diffusivities under isobaric conditions.
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1000 carbon substrate atoms. From an applications point of view,
single nanopore or micropore simulations of this type provide
fundamental information which may be used in conjunction with
an appropriate network model of the pore space to obtain an ac-
curate model for transport within a given porous medium (see
for example, Sahimi, 1994). There are limitations, however, and
important questions may arise if pore junctions are deemed to
influence transport within the network. If this should prove to be
the case, then analysis at the single pore level will need to be sup-
plemented with simulations of pore-pore correlation effects under
nonequilibrium conditions. Studies of this kind are currently in
progress [Xu et al., 1999] and it is anticipated that, by incorporat-
ing such effects into network models, a powerful predictive tool,
requiring only limited information on a particular pore structure,
will result.

As illustrated in the first case study in section 3.1 one is not re-
stricted to single pore structures and systems of effectively ‘infi-
nite’ range may be investigated by introducing periodic bound-
ary conditions in the z-direction (i.e. removing the optional walls
shown in Fig. 2) and extending the pore structure throughout the
entire volume (including the control volumes I and II). If neces-
sary, much larger model systems may be studied over significant-
ly longer periods of time by making use of the parallel comput-
ing facilities provided by microprocessor clusters or supercom-
puters. The latter approach has been particularly emphasised in
recent work by Heffelfinger and coworkers [Pohl et al., 1996;
Heffelfinger and Ford, 1998; Ford and Heffelfinger, 1998; Thomp-
son et al., 1998; Pohl and Heffelfinger, 1999; Thompson and Hef-
felfinger, 1999]. A number of important problems are tackled in
these studies, including transport within polymeric media (with
the intramolecular dynamics of the polymer chains included in
the simulations) [Ford and Heffelfinger, 1998] and transport of a
large molecular species [Thompson and Heffelfinger, 1999]. This
latter study is of significance in that it reports a novel algorithm
to overcome difficulties associated with the GC creation/destruc-
tion phase of the NEMD method. GC creation/destruction steps
are subject to one major drawback, namely, the very low proba-
bility of finding a cavity of sufficient size to insert a particle when
the particle is large or the fluid density is high (creation step) or
the very low probability of generating a cavity in a fluid during
an attempted removal of a particle also when the particle is large
or the fluid density is high (destruction step). Thompson and Hef-
felfinger, 1999, avoid this problem by conducting the simula-
tions at fixed temperature and pressure (rather than fixed volume)
while simultaneously maintaining fixed chemical potentials for
all of the species except one (the large particle component) with-
in the respective control volumes. The number of particles of the
large species is maintained constant during the simulations. This
procedure should be of particular value in simulations involving
large hydrocarbon molecules during separation of petrochemical
mixtures or transport of biospecies across model biological mem-
branes. In future work on systems of the latter kind it is also pos-
sible that algorithmic developments in the simulation of rare event
dynamics (see for example Ànderson, 1995; Tunca and Ford, 1999)
or ‘hyper’ molecular dynamics [Voter, 1997] could play an im-
portant role in tracking the temporal evolution of the particle tra-
jectories. This will require a careful assessment of these techniques

in their ability to simulate the collective modes of the transport
process.

NOMENCLATURE

a : acceleration [m/s2]
Bo : viscous flow coefficient [m2]
C(t) : velocity correlation function [m2/s2]
Cs : speed of sound [m/s]
D : diffusion coefficient [m2/s]
F : single-file mobility [m2/ ]
^
f : fugacity [J/(mole·m3)]
J, J : flux [particles/m2·s]
j : microscopic particle current [particles/m2·s]
K : equilibrium partition coefficient
kB : Boltzmanns constant
km,i : membrane surface mass transfer coefficient [m/s]
k : wave vector [m−1]
L : pore half-length or total pore length in the etched carbon

membranes [nm]
Lij : phenomenological coefficient [s/kg·m2]
m : particle mass [kg]
n : particle number density [particles/m3]
N : particle number
p : pressure [N/m2]
P : permeability [m2/s]
Po : pore mouth conductance [m/s]
Pp : intrapore permeability [m2/s]
R : oxygen/nitrogen diffusivity ratio
rij : relative separation of particles i and j [nm]
r : particle coordinate [m]
t : time [s]
T : temperature [K]
uo : fluid centre of mass velocity [m/s]
v : particle velocity [m/s]
V : volume [m3]
w : pore width [nm]
x, y, z: cartesian coordinates [m]

Greek Letters
∆ : interplane spacing in graphite [0.335 nm]
ε : potential minimum in the Lennard-Jones (12-6) poten-

tial function [J/particle]
η : shear viscosity [N·s/m2]
µ : chemical potential [J/particle]
ξ : uniformly distributed random number
ρ : single-file number density [particles/nm]
σ : Lennard-Jones (12-6) diameter or hard sphere diameter

[nm]
φ : potential interaction energy [J]
Φ : system potential energy [J]
ω : frequency [s−1]
λ : average percolation cluster size [nm]
lcc : carbon-carbon bond length in graphite [0.142 nm]

Subscripts
B : bulk fluid state

s
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I : cell I
II : cell II
i : species or particle index
j : species or particle index

REFERENCES

Adams, D. J., ‘‘Chemical Potential of Hard Sphere Fluids by Monte
Carlo Methods,’’ Mol. Phys., 28, 1241 (1974).

Adams, D. J., ‘‘Grand Canonical Ensemble Monte Carlo for a Len-
nard-Jones Fluid,’’ Mol. Phys., 29, 307 (1975).

Alder, B. J. and Wainwright, T. E., ‘‘Studies in Molecular Dynamics.
I. General Method,’’ J. Chem. Phys., 31, 459 (1959).

Allen, M. P. and Tildesley, D. J., ‘‘Computer Simulation of Liquids,’’
Clarendon, Oxford (1987).

Altenberger, A. R., Dahler, J. S. and Tirrell, M., ‘‘On the Molecular
Theory of Diffusion and Heat Conduction in Multicomponent Solu-
tions,’’ J. Chem. Phys., 86, 2909 (1987).

Anderson, J. B., ‘‘Predicting Rare Events in Molecular Dynamics,’’
Adv. Chem. Phys., 91, 381 (1995).

Barri, S. A. I., Smith, G. W., White, D. and Young, D., ‘‘Structure of
Theta-1, the First Unidimensional Medium-pore High-silica Zeo-
lite,’’ Nature, 312, 533 (1984).

Berne, B. J., ‘‘Time-Dependent Properties of Condensed Media,’’
Ch. 9 in Physical Chemistry-An Advanced Treatise, 8B, D. Hen-
derson, (Ed.), Academic press (1971).

Chen, Y. D., Yang, R. T. and Uawithya, P., ‘‘Diffusion of Oxygen,
Nitrogen and their Mixtures in Carbon Molecular Sieve,’’ AIChE
J., 40, 577 (1994).

Chihara, K., Suzuki, M. and Kawazoe, K., ‘‘Interpretation for the Mi-
cropore Diffusivities of Gases in Molecular-Sieving Carbon,’’ J.
Colloid Interface Sci., 64, 584 (1978a).

Chihara, K., Suzuki, M. and Kawazoe, K., ‘‘Adsorption Rate on Mole-
cular Sieving Carbon by Chromatography,’’ AIChE J., 24, 237
(1978b).

Chihara, K. and Suzuki, M., ‘‘Control of Micropore Diffusivities of
Molecular Sieving Carbon by Deposition of Hydrocarbons,’’ Car-
bon, 17, 339 (1979).

Cracknell, R. F., Nicholson, D. and Quirke, N., ‘‘Direct Molecular
Dynamics Simulation of Flow Down a Chemical Potential Gradi-
ent in a Slit-shaped Micropore,’’ Phys. Rev. Lett., 74, 2463 (1995).

Fincham, D., ‘‘More on Rotational Motion of Linear Molecules,’’
CCP5 Quarterly, 12, 47 (1984).

Ford D. M. and Glandt, E. D., ‘‘A Molecular Simulation Study of
the Surface Barrier Effect: Dilute Gas Limit,’’ J. Phys. Chem.,
99, 11543 (1995).

Ford, D. M. and Heffelfinger, G. S., ‘‘Massively Parallel Dual Con-
trol Volume Grand Canonical Molecular Dynamics with LAD-
ERA. II. Gradient-driven Diffusion through Polymers,’’ Mol. Phys.,
94, 673 (1998).

Furukawa, S., Shigeta, T. and Nitta, T., ‘‘Nonequilibrium Molecular
Dynamics for Simulating Permeation of Gas Mixtures through
Nanoporous Carbon Membranes,’’ J. Chem. Eng. Japan, 29, 725
(1996).

Furukawa, S. and Nitta, T., ‘‘Computer Simulation Studies on Gas
Permeation through Nanoporous Carbon Membranes by Nonequi-
librium Molecular Dynamics,’’ J. Chem. Eng. Japan, 30, 116

(1997).
Gefen, Y., Aharoni, A. and Alexander, S., ‘‘Anomalous Diffusion on

Percolating Clusters,’’ Phys. Rev. Lett., 50, 77 (1983).
Green, M. S., ‘‘Markoff Random Processes and the Statistical Me-

chanics of Time Dependent Phenomena,’’ J. Chem. Phys., 20,
1281 (1952).

Green, M. S., ‘‘Markoff Random Processes and the Statistical Me-
chanics of Time Dependent Phenomena. II. Irreversible Process-
es in Fluids,’’ J. Chem. Phys., 22, 398 (1954).

Gupta, V., Nivarthi, S. S., McCormick, A. V. and Davis, H. T., ‘‘Evi-
dence for Single-file Diffusion of Ethane in the Molecular Sieve
AlPO4-5,’’ Chem. Phys. Lett., 29, 596 (1995).

Haberlandt, R. and Karger, J., ‘‘Molecular Dynamics under the Con-
finement by the Host Lattice in Zeolitic Adsorbate-Adsorbent Sys-
tems,’’ Chem. Eng. J., 74, 15 (1999).

Hahn, K. and Karger, J., ‘‘Molecular Dynamics Simulation of Sin-
gle-file Systems,’’ J. Phys. Chem., 100, 316 (1996).

Heffelfinger, G. S. and Ford, D. M., ‘‘Massively Parallel Dual Con-
trol Volume Grand Canonical Molecular Dynamics with LAD-
ERA. I. Gradient-driven Diffusion in Lennard-Jones Fluids,’’ Mol.
Phys., 94, 659 (1998).

Heffelfinger, G. S. and van Swol, F., ‘‘Diffusion in Lennard-Jones
Fluids using Dual Control Volume Grand Canonical Molecular Dy-
namics Simulation (DCV-GCMD),’’ J. Chem. Phys., 100, 7548
(1994).

Karger, J., Petzold, M., Pfeifer, H., Ernst, S. and Weitkamp, J., ‘‘Sin-
gle-file Diffusion and Reaction in Zeolites,’’ J. Catal., 136, 283
(1992).

Kaufman, T. G. and Leonard, E. F., ‘‘Studies in Intramembrane Trans-
port: A Phenomenological Approach,’’ AIChE J., 14, 110 (1968).

Kikkinides, E. S., Yang, R. T. and Cho, S. H., ‘‘Concentration and
Recovery of CO2 from Flue Gas by Pressure Swing Adsorption,’’
Ind. Eng. Chem. Res., 32, 2714 (1993).

Kubo, R., Toda, M. and Hashitsume, N., ‘‘Statistical Physics II. Non-
equilibrium Statistical Mechanics,’’ Springer-Verlag, Berlin (1985).

Lebowitz, J. L. and Percus, J. K., ‘‘Kinetic Equations and Density Ex-
pansions: Exactly Solvable One-dimensional System,’’ Phys. Rev.,
155, 122 (1967).

Lei, G.-D. and Sachtler, W. M. H., ‘‘H D Exchange of Cyclopentane
on Pt Mordenites-Probing for Monatomic Pt Sites,’’ J. Catal.,
140, 601 (1993).

Levitt, D. G., ‘‘Dynamics of a Single-file Pore: Non-Fickian Behav-
iour,’’ Phys. Rev. A, 8, 3050 (1973).

MacElroy, J. M. D. and Suh, S.-H., ‘‘Computer Simulation of Mod-
erately Dense Hard-Sphere Fluids and Mixtures in Microcapil-
laries,’’ Mol. Phys., 60, 475 (1987).

MacElroy, J. M. D., ‘‘Diffusion in Homogeneous Media,’’ Ch. 1 in
Diffusion in Polymers, Neogi, P. (Ed.) Marcel Dekker, New York
(1997).

MacElroy, J. M. D., ‘‘Nonequilibrium Molecular Dynamics Simu-
lation of Diffusion and Flow in Thin Microporous Membranes,’’
J. Chem. Phys., 101, 5274 (1994).

MacElroy, J. M. D., Seaton, N. A. and Friedman, S. F., ‘‘Sorption
Rate Processes in Carbon Molecular Sieves,’’ Ch. 17 in Equilib-
ria and Dynamics of Gas Adsorption on Heterogeneous Solid
Surfaces, W. Rudzinski, W. A. Steele and G. Zgrablich (Eds.),
Elsevier, Amsterdam (1997).



142 J. M. Don MacElroy

March, 2000

MacElroy, J. M. D. and Suh, S.-H., ‘‘Single-File Counterdiffusion
in Pores of Infinite and Finite Length,’’ Progress in Zeolite and
Microporous Materials, 105, 1875 (1997a).

MacElroy, J. M. D. and Suh, S.-H., ‘‘Self-diffusion in Single-file Pores
of Finite Length,’’ J. Chem. Phys., 106, 8595 (1997b).

MacElroy, J. M. D., Seaton, N. A. and Friedman, S. P., ‘‘On the Ori-
gin of Transport Resistances within Carbon Molecular Sieves,’’
Chem. Eng. Sci., 54, 1015 (1999). 

MacElroy, J. M. D. and Boyle, M. J., ‘‘Nonequilibrium Molecular
Dynamics Simulation of a Model Carbon Membrane Separation
of CH4/H2 Mixtures,’’ Chem. Eng. J., 74, 85 (1999).

Mason, E. A. and Malinauskas, A. P., ‘‘Gas Transport in Porous
Media: The Dusty Gas Model,’’ Elsevier, Amsterdam (1983).

Mason, E. A. and Viehland, L. A., ‘‘Statistical-mechanical Theory of
Membrane Transport for Multicomponent Systems: Passive Trans-
port through Open Membranes,’’ J. Chem. Phys., 68, 3562 (1978).

Moore, S. V. and Trimm, D. L., ‘‘The Preparation of Carbon Molec-
ular Sieves by Pore Blocking,’’ Carbon, 15, 177 (1977).

Mori, H., ‘‘Transport, Collective Motion, and Brownian Motion,’’
Prog. Theor. Phys., 33, 423 (1965).

Nitta, T. and Furukawa, S., ‘‘Simulation Performance of a Non-Equi-
librium Molecular Dynamics Method using Density Difference as
a Driving Force,’’ Molec. Sim., in press (1999).

Pohl, P. I., Heffelfinger, G. S. and Smith, D. M., ‘‘Molecular Dynam-
ics Simulation of Gas Permeation in Thin Silicalite Membranes,’’
Mol. Phys., 89, 1725 (1996).

Pohl, P. I. and Heffelfinger, G. S., Massively Parallel Molecular Dy-
namics Simulation of Gas Permeation across Porous Silica Mem-
branes,’’ J. Membrane Sci., 155, 1 (1999).

Pozhar, L. A. and Gubbins, K. E., ‘‘Quasihydrodynamics of Nano-
fluid Mixtures,’’ Phys. Rev. E, 56, 1 (1997).

Pozhar, L. A. and Gubbins, K. E., ‘‘Transport Theory of Dense, Strong-
ly Inhomogeneous Fluids,’’ J. Chem. Phys., 99, 8970 (1993).

Rao, M. B. and Sircar, S., ‘‘Nanoporous Carbon Membranes for Sep-
aration of Gas Mixtures by Selective Surface Flow,’’ J. Mem-
brane Sci., 85, 253 (1993).

Ruthven, D. M., ‘‘Diffusion of Oxygen and Nitrogen in Carbon Mole-
cular Sieve,’’ Chem. Eng. Sci., 47, 4305 (1992).

Ruthven, D. M., Raghavan, N. S. and Hassan, M. M., ‘‘Adsorption
and Diffusion of Nitrogen and Oxygen in a Carbon Molecular
Sieve,’’ Chem. Eng. Sci., 41, 1325 (1986).

Sahimi, M., ‘‘Applications of Percolation Theory,’’ Taylor and Fran-
cis, London (1994).

Seaton N. A., Friedman, S. P., MacElroy, J. M. D. and Murphy, B. J.,
‘‘The Molecular Sieving Mechanism in Carbon Molecular Sieves,’’

Langmuir, 8, 1199 (1997).
Suh, S. H. and MacElroy, J. M. D., ‘‘Molecular Dynamics Simula-

tion of Hindered Diffusion in Microcapillaries,’’ Mol. Phys., 58,
445 (1986).

Sunderrajan, S., Hall, C. K. and Freeman, B. D., ‘‘Estimation of Mu-
tual Diffusion Coefficients in Polymer/Penetrant Systems using
Nonequilibrium Molecular Dynamics Simulations,’’ J. Chem. Phys.,
105, 1621 (1996).

Thompson, A. P. and Heffelfinger, G. S., ‘‘Direct Molecular Simula-
tion of Gradient-driven Diffusion of Large Molecules using Con-
stant Pressure,’’ J. Chem. Phys., 110, 10693 (1999).

Thompson, A. P., Ford, D. M. and Heffelfinger, G. S., ‘‘Direct Molec-
ular Simulation of Gradient-driven Diffusion,’’ J. Chem. Phys.,
109, 6406 (1998).

Travis, K. P. and Gubbins, K. E., ‘‘Combined Diffusive and Viscous
Transport of Methane in a Carbon Slit Pore,’’ Molec. Sim., in
press (1999).

Tsapatsis, M. and Gavalas, G. R., ‘‘A Kinetic Model of Membrane
Formation by CVD of SiO2 and Al2O3,’’ AIChE J., 38, 847 (1992).

Tsapatsis, M. and Gavalas, G. R., ‘‘Modelling of SiO2 Deposition in
Porous Vycor: Effects of Pore Network Connectivity,’’ AIChE J.,
43, 1849 (1997).

Tunca, C. and Ford, D. M., ‘‘A Transition-state Theory Approach to
Adsorbate Dynamics at Arbitrary Loadings,’’ J. Chem. Phys., 111,
2751 (1999).

Verlet, L., ‘‘Computer ‘Experiments’ on Classical Fluids. I. Thermo-
dynamical Properties of Lennard-Jones Molecules,’’ Phys. Rev.,
159, 98 (1967).

Vertenstein, M. and Ronis, D., ‘‘Microscopic Theory of Membrane
Transport. III. Transport in Multiple Barrier Systems,’’ J. Chem.
Phys., 85, 1628 (1986).

Voter, A. F., ‘‘A Method for Accelerating the Molecular Dynamics
Simulation of Infrequent Events,’’ J. Chem. Phys., 106, 4665 (1997).

Wicke, E. and Kallenbach, R., ‘‘The Surface Diffusion of Carbon
Dioxide in Activated Charcoals,’’ Kolloid Z., 97, 135 (1941).

Xu, L. F., Sedigh, M. G., Sahimi, M. and Tsotsis, T. T., ‘‘Nonequilib-
rium Molecular Dynamics Simulation of Transport of Gas Mix-
tures in Nanopores,’’ Phys. Rev. Lett., 80, 3511 (1998).

Xu, L. F., Tsotsis, T. T. and Sahimi, M., ‘‘Nonequilibrium Molecular
Dynamics Simulation of Transport and Separation of Gases in
Carbon Nanopores. I. Basic Results,’’ J. Chem. Phys., 111, 3252
(1999).

Zwanzig, R., ‘‘Memory Effects in Irreversible Thermodynamics,’’
Phys. Rev., 124, 983 (1961).


