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Abstract−The reactant concentration control of a reactor using Model Predictive Control (MPC) is presented in
this paper. Two major difficulties in the control of reactant concentration are that the measurement of concentration
is not available for the control point of view and it is not possible to control the concentration without considering
the reactor temperature. Therefore, MIMO control techniques and state and parameter estimation are needed. One of
the MIMO control techniques widely studied recently is MPC. The basic concept of MPC is that it computes a control
trajectory for a whole horizon time minimising a cost function of a plant subject to a dynamic plant model and an
end point constraint. However, only the initial value of controls is then applied. Feedback is incorporated by using
the measurements/estimates to reconstruct the calculation for the next time step. Since MPC is a model based con-
troller, it requires the measurement of the states of an appropriate process model. However, in most industrial pro-
cesses, the state variables are not all measurable. Therefore, an extended Kalman filter (EKF), one of estimation tech-
niques, is also utilised to estimate unknown/uncertain parameters of the system. Simulation results have demon-
strated that without the reactor temperature constraint, the MPC with EKF can control the reactant concentration
at a desired set point but the reactor temperator is raised over a maximum allowable value. On the other hand,
when the maximun allowable value is added as a constraint, the MPC with EKF can control the reactant con-
centration at the desired set point with less drastic control action and within the reactor temperature constraint.
This shows that the MPC with EKF is applicable to control the reactant concentration of chemical reactors.
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INTRODUCTION

An optimisation model based feedback controller design known
as “Model Predictive Control (MPC)” technique has been re-
quired to handle highly nonlinear chemical processes including
constraints. The basic idea of MPC is to determine a set of con-
trols for a whole time horizon by minimising a cost function of
the plant subject to a dynamic plant model incorporating plant
nonlinearities, and an end point constraint. The initial value of
control is then applied to the plant.The use of measurements/
estimates of state and repeating the calculation provides feedback
controls action. It has been shown theoretically that, under re-
stricted conditions, this approach guarantees plant stabilisation.
Kwon and Pearson [1977], Mayne and Michalska [1990], and
Kershenbaum et al. [1993] have derived the stabilising properties
of the MPC in several systems.

The control performance of the MPC technique has been
widely tested in several systems for over a decade. First of all,
the MPC technique was applied together with neural network
structure in pH control which involved significant nonlinearity
and uncertainty. Simulation results showed that the MPC control-
ler with the neural network gave satisfactory control response
[Warwick et al., 1992].

Secondly, the MPC strategy was tested in the control o
simulated gas sweetening unit. The control objective was to
gulate the output of the modelled unit (the partial pressure
the carbon-dioxide at the output gas stream) to a set point valu
0.001 bar by means of manipulating mono-ethanolamine (M.E
solution and steam flows. The performance of the MPC w
compared to that of open loop optimal control. It was fou
that the MPC gave better control response than the optimal 
trol did. Control results showed the success of the MPC in ha
ling both disturbances and moderate modelling errors. None
less, the steady state offset could not be eliminated; the M
could not provide any kind of an integral control action [Grbov
1992].

Extended work on controlling the gas sweetening unit w
carried out based on more realistic models. The main goal 
to keep the process output below a specified level, not to 
bilise the unit. Simulation results showed that the MPC was a
to account for a large disturbance reasonably well [Kershenba
et al., 1993].

The application of the MPC on an exothermic batch reac
was addressed by eg. Kittisupakorn and Ruksawid [1998]. It w
found that the MPC could control the temperature of the ba
reactor, which involved highly nonlinear behaviour and subjec
to constraints, at a desired set point and gave a better co
performance than the PID did. In the presence of plant/mo
mismatch, the EKF was incorporated in the MPC to estim
unknown/uncertain parameters. As a result, the MPC with E
was robust; it could give good control performance in the p
sence of plant/model mismatch.



Model Predictive Control for the Reactant Concentration Control of a Reactor 369

 is
ents
st
s are
r to
rol

on-
ture
on-
ex):

tate
tor

n

he
ini-
oint

on-
the
 is
ctor
on-
id-
n is

-
bed
e

nd
on-
rder
trol
 re-
al-

ach.
al
The control of a continuous stirred tank reactor using the
MPC technique has been widely studied by eg. Patwardhan et al.
[1990], Sistu and Bequette [1991] and Ramamurthi et al. [1993].
However, such study has aimed to control the temperature ra-
ther than the reactant concentration of the reactor. On the other
hand, to set up product specifications, the reactant concentration
needs to be controlled rather than the reactor temperature. The
control of reactant concentration faces two major difficulties. The
first one is that it is not possible to control the concentration
without considering the reactor temperature due to safety reasons.
The other one is that the measurement of concentration is not
available for the control point of view. Therefore, this paper is
aimed to study the reactant concentration control of a CSTR
using the MPC with an extended Kalman filter with respect to
the difficulties.

DESCRIPTION OF A CONTINUOUS REACTOR

The reactor used by Limqueco and Kantor [1990] has been
studied here. This system consists of a jacketed CSTR in which
a first order, irreversible reaction, A�B, takes place. Assump-
tions made in formulating the model are: the reactor is perfectly
mixed and no heat loss occurs within the system, the amount of
heat retained in the reactor walls is negligible, all temperatures
are measurable, the jacket temperature can be directly manipu-
lated without delay i.e. the cooling water jacket dynamics can be
neglected and the feed concentration is assumed to be a known
constant in this case.

Under the assumptions above, the energy and mass balances
in the CSTR can be written as follows: 

(1)

(2)

The meaning of letters and symbols are given in Nomencla-
ture. The physical properties and process data are given in Table
1.

The main purpose of this simulation study is to evaluate the
performance of the MPC with estimator to control the reactant
concentration (Ca) of the reactor to a desired steady state by ad-
justing the jacket temperature (Tj) with/without a reactor tem-
perature constraint.

THEORETICAL DESCRIPTION

1. Model Predictive Control
The basic concept of the Model Predictive Control (MPC)

that it calculates future controls based on current measurem
via the solution of an optimal control problem but only the fir
element of controls is applied to the process. Then, the state
measured or estimated and used as initial conditions in orde
recalculate the future controls by re-solving the optimal cont
problem.
1-1. Optimal Control Problem

In this work, the reactant concentration of the reactor is c
trolled at a desired set point by adjusting the jacket tempera
(without considering the control cost). Therefore, the optimal c
trol problem can be given by a cost function (Performance Ind

(3)

where W is a weighting factor.
Subject to the system equations (Eqs. (1) and (2)), a final s
constraint (Eq. (4)), a bounded control (Eq. (5)) and a reac
temperature constraint (Eq. (6))

(Ca−Casp)(tf)=0 (4)

293.15≤Tj(t)≤333.15 (5)

Tr(t)≤338.15 (6)

with the initial conditions (Eqs. (7) and (8)) and time horizo
(Eq. (9))

Tr(0)=333.15 (7)

Ca(0)=5.364 (8)

0≤t≤20. (9)

The objective function (Eq. (3)) is included to define that t
reactant concentration is controlled to a desired set point m
mising the error between the control response and the set p
for a whole time horizon. It should be noted that in several c
trol problems the control action movement is also included in 
objective function. However, since the main goal of this work
to control the reactant concentration with respect to the rea
constraint (Eq. (6)) for safety reasons, the inclusion of the c
trol action movement in the objective function is not cons
ered. In addition, to ensure that the reactant concentratio
forced to a desired set point at the terminal time (tf) [Mayne,
1995], Eq. (4) is included.

To find the solution of the optimal control problems, FROT
RAN programmes, based on the optimisation algorithm descri
by Pytlak and Vinter [1992], have been written for solving th
problems with terminal equality and inequlity constraints a
with constraints on states and controls. Terminal equlity c
straints are tackled by an exact penalty function. A second o
correction step is applied to equality constraints. Simple con
constraints are tackled by a projection which leads to a fast
cognition of active control constraints at a solution. The inequ
ity constraints are treated through a feasible direction appro
A direction of descent is obtained by solving a convex optim

dTr
dt

--------= 
− ∆H( )
ρCp

----------------koCae
−E
RTr
---------

+ 
F
Vr
------ Tf − Tr( ) + 

UrAr
ρCpVr
----------------- Tj − Tr( )

dCa
dt

---------= − koCae
−E
RTr
---------

+ 
F
Vr
------ Cao− Ca( )

min W Ca− Casp( )2dt
0

tf∫
ko

Tabel 1. Physical properties and process data for the experi-
mental study

Ur=68.0 kcal/(min·m2 oC) k0=3.64* 106 min−1

Ar=0.7 m2 ∆H=8000.0 kcal/kmol
Vr=0.24 m3 E/R=6000.0oK−1

Cpr=Cpj kcal/(kg3 oC) F=0.0036 m3/min
Cpj=1.0 kcal/(kg·oC) Tj=293.15 K (20oC)

Initial steady state condition

Ca(0)=5.364 kmol/m3 Tr(0)=333.15 K (60oC)
Cao=25.0 kmol/m3 Casp=5.364 kmol/m3

Tfo=300.15 K (23oC)
Korean J. Chem. Eng.(Vol. 17, No. 3)
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Fig. 1 illustrates the information flowchart of the MPC algo-

rithm. A control trajectory U(k) (referring to Tj(k)) for an entire
horizon is computed on-line based on current states. The initial
value of controls is then implemented to the system, which means
that the control action at time k+1 is the control U(1) (referring
to Tj(1)) of future controls calculated at time k. Some feedback
is provided by measurements of state at the next interval and re-
peating the calculation. In other words, measurements are com-
pared to a set point or predicted value so that the error between the
measurements and a set point can be utilised within the MPC
algorithm. The MPC algorithm, then, produces the future controls
which minimise this error.
2. Model Predictive Control (MPC) with Estimator

The MPC technique provides control actions based upon ref-
erence models. However, in practice, the measurement of the
reactant concentration may not be available. Therefore, the esti-
mates of concentration are needed. Here, the extended Kalman
filter (EKF) described by e.g. Meybeck [1982] is applied to esti-
mate the reactant concentration on-line using the available meas-
ured temperature.

For the purposes of estimation, the state equations for the re-
actor are: from energy and material balances of the reactor, (Eqs.
(1) and (2)). The EKF tuning parameters: , Q and R, are tuned
to reflect the accuracy of estimation of unmeasured reactant con-
centration. Table 2 shows the values of the EKF tuning param-
eters: , Q and R and initail state estimates for the EKF.

Fig. 2 illustrates the flowchart of the MPC with the EKF ap-
proach. As we see from the MPC algorithm, a set of control ac-

tions is determined on-line based on current states. Only the
element of controls is applied to the system; the control actio
time k+1 is the control U(1) (referring to Tj(1)) of future con
trols calculated at time k. Some feedback is obtained by meas
ments of state at the next interval and repeating the calcula
The inclusion of the EKF is for estimating the unmeasured s
X2 (referring to Ca) using the available measurement of X1 (re-
ferring to Tr). Measurements and estimates are compared 
set point or predicted value. As a result, the error between
measurements and set point or predicted value caused by p
model mismatch or disturbances can be utilised within the M
algorithm. The MPC algorithm, then, produces the future contr
which minimise this error based on the updated model para
ters.

CONTROL IMPLEMENTATION

1. Case Study
The main purpose of this simulation study is to evaluate 

performance of the MPC algorithm. Here, the MPC algorith
[with/without the reactor temperature constraint (Eq. (6))] h
been studied to control the reactant concentration to a desireP̂

P̂

Fig. 1. Information flowchart of the MPC algorithm.

Table 2. Filter parameters and initial state estimates for simu-
lation studies

X1(0)=333.15 K =1.0 Q11=9.0
X2(0)=5.364 kmol/m3 =0.3 Q22=4.0
R11=0.05

P̂11

P̂22

Fig. 2. Information flowchart of the MPC with EKF.

Fig. 3. Case study (a step disturbance in feed flowrate).
May, 2000
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point by adjusting the jacket temperature. The reactor is simu-
lated from an initial conditions until a feed flowrate disturbance
(25% increase form the nominal case) is introduced at time =
100 minutes and is kept throughout the simulation. Then the
MPC is activated at time = 200 minutes. Fig. 3 illustrates the case
study.
2. Simulation Results

To achieve the main goal, here, the weighting factor W is cho-
sen to be 10.

Figs. 4 and 5 show the control performances of the MPC with
EKF with and without the reactor temperature constraint repec-
tively. It can be seen that without the reactor temperature con-
straint, the MPC with EKF can bring the reactant concentration
quickly back to the desired set point with a small overshoot. As
expected, to bring the reactant concentration back to the set
point as quickly as possible, the reactor temperature needs to be
raised quickly; it goes beyond the maximum allowable value
(65 oC). Then, it is reduced and settled at about 64oC and the

reactant concentration is stable at the set point.
On the other hand, without any change in MPC or EKF pa

meters, the MPC with the EKF subject to the reactor tempe
ture constraint gives control actions to quickly raise the reac
temperature up too. However, since the reactor temperature 
straint is included, the reactor temperature cannot be increa
over the constraint. Therefore, the reactant concentration ta
longer time to reach the set point than the previous result
other words, the MPC with EKF can control the reactant conc
tration at the desired set point with less drastic control act
and within the reactor temperature. This result demonstrates
the MPC algorithm can handle state constraints of the sys
constraint.
3. Robustness Test

The MPC algorithm with EKF has been tested in the prese
of plant/model mismatch in the heat transfer coefficient (20% 
crease) and the rate constant (20% increase) and with the 
tor temperature constraint. It was found that althought the m
matches have been included, the MPC with EKF can still con
the reactant concentration at the set point and within the rea
temperature constraint. This result ensures that the MPC w
EKF is able to control the reactant concentration of chemical
actors without any violation of safety concerns.

CONCLUSIONS

The Model Predictive Control (MPC) with Extended Kalma
Filter (EKF) with/without state constraints has been studied h
In this work, the MPC with EKF has been applied to contr
the reactant concentration of a reactor. Simulation results h
demonstrated that without the reactor temperature constraint
MPC with EKF can control the reactant concentration at a 
sired set point but the reactor temperator is raised over a m
mum allowable value. On the other hand, when the maxim
allowable value is added as a constraint, the MPC with EKF 
control the reactant concentration at the desired set point w

Fig. 4. Response of the MPC with EKF.

Fig. 5. Response of the MPC with EKF subject to the reactor
temperature constraint.

Fig. 6. Response of the MPC with EKF subject to the reactor
temperature constraint in the presence of mismatch in
heat transfer coefficient.
Korean J. Chem. Eng.(Vol. 17, No. 3)
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less drastic control action and within the reactor temperature con-
straint. In addition, in the presense of plant/model mismatches
in the heat transfer coefficient and the rate constant, the MPC
with EKF can still produce good control response; the reactant
concentration is controlled at the set point and within the reac-
tor temperature contraint. This shows that the MPC with EKF is
applicable to control the reactant concentration of chemical reac-
tors.

NOMENCLATURE

A : component “A”
Ar : heat transfer area [m2]
B : component “B”
Ca : reactant concentration [kmol/m3]
Cao : nominal feed concentration [kmol/m3]
Cp : specific heat capacity [kcal/(kg·C)]
E : activation energy [kcal/kmol]
F : volumetric flowrate [m3/min]
Fo : nominal volumetric flowrate [m3/min]
∆H : heat of reaction [kcal/kmol]
k0 : Arrhenius pre-exponential constant [min−1]
, Q : EKF parameters

R : universal gas constant [kcal/(kmol·K)]/EKF parameters
t : time [Min]
Tr : reactor temperature [K]
Tj : jacketed temperature [K]
Tf : feed temperature [K]
U : manipulated variables
Ur : heat transfer coefficient [kcal/(s·m2·C)]
Vr : volume of reactor [m3]
X : state variables

Greek Letter
ρ :  reactant density [kg/m3]

Subscipts
a : component “A”
c : cooling water
f : feed condition
o : initial condition or nominal condition
sp : set point
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