Korean J. Chem. Engl7(3), 368-372 (2000)
SHORT COMMUNICATION

Model Predictive Control for the Reactant Concentration Control of a Reactor
Paisan Kittisupakorn™ and Mohamed Azlan Hussain*
Department of Chemical Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Department of Chemical Engineering, University Malaya, 50603 Kuala Lumpur Malaysia
(Received 19 October 1999 « accepted 5 February 2000

Abstract—The reactant concentration control of a reactor using Model Predictive Control (MPC) is presented in
this paper. Two major difficulties in the control of reactant concentration are that the measurement of concentration
is not available for the control point of view and it is not possible to control the concentration without considering
the reactor temperature. Therefore, MIMO control techniques and state and parameter estimation are needed. One of
the MIMO control techniques widely studied recently is MPC. The basic concept of MPC is that it computes a control
trajectory for a whole horizon time minimising a cost function of a plant subject to a dynamic plant model and an
end point constraint. However, only the initial value of controls is then applied. Feedback is incorporated by using
the measurements/estimates to reconstruct the calculation for the next time step. Since MPC is a model based con-
troller, it requires the measurement of the states of an appropriate process model. However, in most industrial pro-
cesses, the state variables are not all measurable. Therefore, an extended Kalman filter (EKF), one of estimation tech-
niques, is also utilised to estimate unknown/uncertain parameters of the system. Simulation results have demon-
strated that without the reactor temperature constraint, the MPC with EKF can control the reactant concentration
at a desired set point but the reactor temperator is raised over a maximum allowable value. On the other hand,
when the maximun allowable value is added as a constraint, the MPC with EKF can control the reactant con-
centration at the desired set point with less drastic control action and within the reactor temperature constraint.
This shows that the MPC with EKF is applicable to control the reactant concentration of chemical reactors.
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INTRODUCTION Secondly, the MPC strategy was tested in the control of a
simulated gas sweetening unit. The control objective was to re-
An optimisation model based feedback controller design knowngulate the output of the modelled unit (the partial pressure of
as “Model Predictive Control (MPC)” technique has been re-the carbon-dioxide at the output gas stream) to a set point value of
quired to handle highly nonlinear chemical processes includingd.001 bar by means of manipulating mono-ethanolamine (M.E.A.)
constraints. The basic idea of MPC is to determine a set of consolution and steam flows. The performance of the MPC was
trols for a whole time horizon by minimising a cost function of compared to that of open loop optimal control. It was found
the plant subject to a dynamic plant model incorporating plantthat the MPC gave better control response than the optimal con-
nonlinearities, and an end point constraint. The initial value oftrol did. Control results showed the success of the MPC in hand-
control is then applied to the plant.The use of measurementding both disturbances and moderate modelling errors. Nonethe-
estimates of state and repeating the calculation provides feedbadéss, the steady state offset could not be eliminated; the MPC
controls action. It has been shown theoretically that, under re€ould not provide any kind of an integral control action [Grbovic,
stricted conditions, this approach guarantees plant stabilisatiori992].
Kwon and Pearson [1977], Mayne and Michalska [1990], and Extended work on controlling the gas sweetening unit was
Kershenbaum et al. [1993] have derived the stabilising propertiegarried out based on more realistic models. The main goal was
of the MPC in several systems. to keep the process output below a specified level, not to sta-
The control performance of the MPC technique has beerbilise the unit. Simulation results showed that the MPC was able
widely tested in several systems for over a decade. First of allto account for a large disturbance reasonably well [Kershenbaum
the MPC technique was applied together with neural networket al., 1993].
structure in pH control which involved significant nonlinearity =~ The application of the MPC on an exothermic batch reactor
and uncertainty. Simulation results showed that the MPC controlwas addressed by eg. Kittisupakorn and Ruksawid [1998]. It was
ler with the neural network gave satisfactory control responsefound that the MPC could control the temperature of the batch
[Warwick et al., 1992]. reactor, which involved highly nonlinear behaviour and subjected
to constraints, at a desired set point and gave a better control
"To whom correspondence should be addressed. performance than the PID did. In the presence of plant/model
E-mail: chawiny2k@usa.net mismatch, the EKF was incorporated in the MPC to estimate
This paper was presented at the 8th APCChE (Asia Pacific Confederanknown/uncertain parameters. As a result, the MPC with EKF
tion of Chemical Engineering) Congress held at Seoul between Auguswvas robust; it could give good contral performance in the pre-
16 and 19, 1999. sence of plant/model mismatch.
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The control of a continuous stirred tank reactor using the THEORETICAL DESCRIPTION
MPC technique has been widely studied by eg. Patwardhan et al.
[1990], Sistu and Bequette [1991] and Ramamurthi et al. [1993].1. Model Predictive Control
However, such study has aimed to control the temperature ra- The basic concept of the Model Predictive Control (MPC) is
ther than the reactant concentration of the reactor. On the othahat it calculates future controls based on current measurements
hand, to set up product specifications, the reactant concentratiovia the solution of an optimal control problem but only the first
needs to be controlled rather than the reactor temperature. Thelement of controls is applied to the process. Then, the states are
control of reactant concentration faces two major difficulties. Themeasured or estimated and used as initial conditions in order to
first one is that it is not possible to control the concentrationrecalculate the future controls by re-solving the optimal control
without considering the reactor temperature due to safety reasonproblem.
The other one is that the measurement of concentration is ndt-1. Optimal Control Problem
available for the control point of view. Therefore, this paper is In this work, the reactant concentration of the reactor is con-
aimed to study the reactant concentration control of a CSTRrolled at a desired set point by adjusting the jacket temperature
using the MPC with an extended Kalman filter with respect to (without considering the control cost). Therefore, the optimal con-
the difficulties. trol problem can be given by a cost function (Performance Index):

DESCRIPTION OF A CONTINUOUS REACTOR minf’ W(Ca-Ca,)’dt €)

The reactor used by Limqueco and Kantor [1990] has beerfVnere W is a weighting factor.

studied here. This system consists of a jacketed CSTR in whictpUPiect to the system equations (Egs. (1) and (2)), a final state
a first order, irreversible reaction, AB, takes place. Assump-  constraint (Eq. (4)), a bounded control (Eq. (5)) and a reactor

tions made in formulating the model are: the reactor is perfectly{€mperature constraint (Eq. (6))

mixed and no heat loss occurs within the system, the amount of (ca-ca )(t)=0 (4)
heat retained in the reactor walls is negligible, all temperatures ]
are measurable, the jacket temperature can be directly manipu- 293.15Tj(H<333.15 ®)
lated without delay i.e. the cooling water jacket dynamics can be y)<338.15 6)
neglected and the feed concentration is assumed to be a known
constant in this case. with the initial conditions (Egs. (7) and (8)) and time horizon
Under the assumptions above, the energy and mass balancésd. (9))
in the CSTR can be written as follows: Tr(0)=333.15 )
dTr_(=AH), ~ g, F oo~ UrAr . Ca(0)=5.364 8)
3t~ pCp k,Cae (7= pCer(TJ Tr) 1)
- 0<t<20. 9
o k,Ca& yr(CaoCa (2

The objective function (Eq. (3)) is included to define that the
. . . reactant concentration is controlled to a desired set point mini-
The meaning of letters and symbols are given in Nomencla- . . .
twre. The physical properties and process data are given in Tab ising the error between the control response and the set point
1 ' or a whole time horizon. It should be noted that in several con-

' trol problems the control action movement is also included in the

The main purpose of this simulation study is to evaluate theob'ective function. However, since the main goal of this work is
performance of the MPC with estimator to control the reactant ) ' ' 9

concentration (Ca) of the reactor to a desired steady state by a(tjg control the reactant concentration with respect to the reactor

justing the jacket temperature (Tj) with/without a reactor tem- constramt (Eq. (6)) for S afety reasons, the |r!clu§|on of the con-
. trol action movement in the objective function is not consid-
perature constraint.

ered. In addition, to ensure that the reactant concentration is
forced to a desired set point at the terminal timegNtayne,
Tabel 1. Physical properties and process data for the experi-  1995], Eq. (4) is included.
mental study To find the solution of the optimal control problems, FROT-
- — RAN programmes, based on the optimisation algorithm described
Ur=68.0 kcall/ -rh°C =3.6410° ! . . .
' cal/(min ) N min by Pytlak and Vinter [1992], have been written for solving the

Ar=0.7 nt AH=8000.0 kcal/kmol , . . ; : .

Vr=0.24 E/R=6000.0K problems with terminal equality and inequlity constraints and
Cpr=Cpij kcal/(kg°C) E=0.0036 imin with constraints on states and controls. Terminal equlity con-
Cpj=1.0 kcall(kg®C) Tj=293.15 K (20C) straints are tackled by an exact penalty function. A second order

correction step is applied to equality constraints. Simple control

Initial steady state condition constraints are tackled by a projection which leads to a fast re-

Ca(0)=5.364 kmol/r Tr(0)=333.15K (60C) cognition of active control constraints at a solution. The inequal-
Cao=25.0 kmol/rh Ca,=5.364 kmol/m ity constraints are treated through a feasible direction approach.
Tf0o=300.15 K (23C) A direction of descent is obtained by solving a convex optimal
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Fig. 1. Information flowchart of the MPC algorithm.

] . Fig. 2. Information flowchart of the MPC with EKF.
control problem by means of quadratic programming procedure.

Fig. 1 illustrates the information flowchart of the MPC algo-
rithm. A control trajectory U(k) (referring to Tj(k)) for an entire tions is determined on-line based on current states. Only the first
horizon is computed on-line based on current states. The initiaklement of controls is applied to the system; the control action at
value of controls is then implemented to the system, which meantme k+1 is the control U(1) (referring to Tj(1)) of future con-
that the control action at time k+1 is the control U(1) (referring trols calculated at time k. Some feedback is obtained by measure-
to Tj(1)) of future controls calculated at time k. Some feedbackments of state at the next interval and repeating the calculation.
is provided by measurements of state at the next interval and reFhe inclusion of the EKF is for estimating the unmeasured state
peating the calculation. In other words, measurements are comX, (referring to Ca) using the available measurement, ¢fex
pared to a set point or predicted value so that the error between therring to Tr). Measurements and estimates are compared to a
measurements and a set point can be utilised within the MPGet point or predicted value. As a result, the error between the
algorithm. The MPC algorithm, then, produces the future controlsmeasurements and set point or predicted value caused by plant/
which minimise this error. model mismatch or disturbances can be utilised within the MPC
2. Model Predictive Control (MPC) with Estimator algorithm. The MPC algorithm, then, produces the future controls

The MPC technique provides control actions based upon refwhich minimise this error based on the updated model parame-
erence models. However, in practice, the measurement of theers.
reactant concentration may not be available. Therefore, the esti-
mates of concentration are needed. Here, the extended Kalman
filter (EKF) described by e.g. Meybeck [1982] is applied to esti-
mate the reactant concentration on-line using the available meag-. Case Study
ured temperature. The main purpose of this simulation study is to evaluate the

For the purposes of estimation, the state equations for the rgperformance of the MPC algorithm. Here, the MPC algorithm
actor are: from energy and material balances of the reactor, (Eqfwith/without the reactor temperature constraint (Eqg. (6))] has
(1) and (2)). The EKF tuning parametds: , Q and R, are tunedbeen studied to control the reactant concentration to a desired set
to reflect the accuracy of estimation of unmeasured reactant cor-
centration. Table 2 shows the values of the EKF tuning param:
eters:P, Q and R and initail state estimates for the EKF.

Fig. 2 illustrates the flowchart of the MPC with the EKF ap-
proach. As we see from the MPC algorithm, a set of control ac-

CONTROL IMPLEMENTATION

Inactive Active

_ Controller

Y.

¢+25% Te

Table 2. Filter parameters and initial state estimates for simu-
lation studies
X,(0)=333.15K
X,(0)=5.364 kmol/m
R;;,=0.05

P, =1.0
P,=0.3

Q=9.0
Q,=4.0

100 200
Time
Fig. 3. Case study (a step disturbance in feed flowrate).
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Fig. 4. Response of the MPC with EKF. Fig. 6. Response of the MPC with EKF subject to the reactor
temperature constraint in the presence of mismatch in
Ca(-), Cae(2), Casp() heat transfer coefficient.
6.5 T v v

E Al reactant concentration is stable at the set point.
g On the other hand, without any change in MPC or EKF para-
%55 ] meters, the MPC with the EKF subject to the reactor tempera-
O 7 e L e Raateanns et e ture constraint gives control actions to quickly raise the reactor

5 . R . . . temperature up too. However, since the reactor temperature con-

0 %0 100 150 200 250 300 straint is included, the reactor temperature cannot be increased
70 ‘ Tr6), Ti-), Trsp() ' over the constraint. Therefore, the reactant concentration takes
%60 longer time to reach the set point than the previous result. In
x 0 Vel Bt b other words, the MPC with EKF can control the reactant concen-
'5 !i" tration at the desired set point with less drastic control action
m 40 and within the reactor temperature. This result demonstrates that
= 30 the MPC algorithm can handle state constraints of the system
=20, 50 100 150 200 250 300 constraint.
TIME (min) 3. Robustness Test

The MPC algorithm with EKF has been tested in the presence
of plant/model mismatch in the heat transfer coefficient (20% in-
crease) and the rate constant (20% increase) and with the reac-
tor temperature constraint. It was found that althought the mis-
point by adjusting the jacket temperature. The reactor is simu+natches have been included, the MPC with EKF can still control
lated from an initial conditions until a feed flowrate disturbance the reactant concentration at the set point and within the reactor
(25% increase form the nominal case) is introduced at time =temperature constraint. This result ensures that the MPC with
100 minutes and is kept throughout the simulation. Then theEKF is able to control the reactant concentration of chemical re-
MPC is activated at time =200 minutes. Fig. 3 illustrates the caseactors without any violation of safety concerns.

Fig. 5. Response of the MPC with EKF subject to the reactor
temperature constraint.

study.
2. Simulation Results CONCLUSIONS
To achieve the main goal, here, the weighting factor W is cho-
sen to be 10. The Model Predictive Control (MPC) with Extended Kalman

Figs. 4 and 5 show the control performances of the MPC withFilter (EKF) with/without state constraints has been studied here.
EKF with and without the reactor temperature constraint repecdn this work, the MPC with EKF has been applied to control
tively. It can be seen that without the reactor temperature conthe reactant concentration of a reactor. Simulation results have
straint, the MPC with EKF can bring the reactant concentrationdemonstrated that without the reactor temperature constraint, the
quickly back to the desired set point with a small overshoot. AsSMPC with EKF can control the reactant concentration at a de-
expected, to bring the reactant concentration back to the setired set point but the reactor temperator is raised over a maxi-
point as quickly as possible, the reactor temperature needs to baum allowable value. On the other hand, when the maximun
raised quickly; it goes beyond the maximum allowable value allowable value is added as a constraint, the MPC with EKF can
(65°C). Then, it is reduced and settled at abou364nd the control the reactant concentration at the desired set point with
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