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Abstract −−−−A growing literature within the field of chemical engineering describing the use of artificial neural networks
(ANN) has evolved for a diverse range of engineering applications such as fault detection, signal processing, process
modeling, and control. Because ANN are nets of basis functions, they can provide good empirical models of com-
plex nonlinear processes useful for a wide variety of purposes. This article describes certain types of neural networks
that have proved to be effective in practical applications, mentions the advantages and disadvantages of using them,
and presents four detailed chemical engineering applications. In the competitive field of modeling, ANN have secured a
niche that now, after one decade, seems secure.

Key words: Artificial Neural Networks, Control, Data Rectification, Fault Detection, Modeling

INTRODUCTION

Traditional approaches of solving chemical engineering prob-
lems frequently have their limitations, as for example in the mod-
eling of highly complex and nonlinear systems. Artificial neural
networks (ANN) have proved to be able to solve complex tasks
in a number of practical applications that should be of interest to
you as a chemical engineer. This paper is not a review of the ex-
tensive literature that has been published in the last decade on ar-
tificial neural networks nor is it a general review of artificial neural
networks. Instead, it focuses solely on certain kinds of ANN that
have proven fruitful in solving real problems, and gives four de-
tailed examples of applications:

1. fault detection
2. prediction of polymer quality
3. data rectification
4. modeling and control

For those who want more information, Appendix A is a partial list
of the many applications of ANN to chemical engineering prob-
lems, but space prohibits a review of these and the many other ar-
ticles that have been published in the last 10 years. A good start to
review ANN in general would be the Handbook of Neural Com-
putation [Fiesler, 1996] and Statistics and Neural Net Users [Kay
and Titterington, 2000].

What are the advantages people see in using artificial neural net-
works in constrast with first principles models or other empirical
models? First, ANN can be highly nonlinear, second the structure
can be more complex, and hence more representative, than most
other empirical models, third the structure does not have to be pre-
specified, and fourth, they are quite flexible models. We will men-
tion some of the disadvantages later on!

An ANN forms a mapping F between and input space X and an
output space Y. We can distinguish three different kinds of map-
pings:

1. Both the input and output spaces are comprised of continu
variables, a typical case of process modeling;

2. The input space is comprised of continuous variables whe
the output space is comprised of a finite set of discrete varia
as in classification and fault detection;

3. Both the input space and the output space are comprise
discrete variables that are mapped in so called associative nets
will be ignored in this article).

In what follows we first discuss the concept of artificial neur
networks, and explain how their parameters are identified. T
we specifically describe feedforward nets, recursive nets, and ra
basis function nets, the nets that comprise the major types of
reported in the literature and used in practice. Finally, we give so
detailed examples of the application of ANN to common chem
cal engineering problems.

ARTIFICIAL NEURAL NETWORKS (ANN)

As the term artificial neural networks implies, early work in th
field of neural networks centered on modeling the behavior of n
rons found in the human brain. Engineering systems are cons
ably less complex than the brain, hence from an engineering v
point ANN can be viewed as nonlinear empirical models that 
especially useful in representing input-output data, making pre
tions in time, classifying data, and recognizing patterns. Appen
A lists numerous articles I selected from the literature describ
applications of interest to chemical engineers.

To read the literature on the theory and application of artific
neural networks, you have to become familiar with the preva
jargon, a jargon that is somewhat foreign to engineering.

Fig. 1 shows the basic structure of a single processing unit in
ANN which will be referred to as a node in this work and is anal-
ogous to a single neuron in the human brain. A node receives
or more input signals, Ij, which may come from other nodes o
from some other source. Each input is weighted according to
value wi.j which is called a weight. These weights are similar to the
synaptic strength between two connected neurons in the hu
brain. The weighted signals to the node are summed and the r
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ing signal, called the activation, h, is sent to a transfer function, g,
which can be any type of mathematical function, but is usually tak-
en to be a simple bounded differentiable function such as the sig-
moid (Fig. 2). If the function g is active over the entire input space,
it is termed a global transfer function in constrast with radial basis
functions (to be described subsequently) that are local functions.
The resulting output of the node Oj, may then be sent to one or
more nodes as an input or taken as the output of an ANN model.

A collection of nodes connected to each other forms the artifi-
cial neural network. Cybenko [1987] and numerous subsequent ar-
ticles have shown that various networks of such functions can ap-
proximate any input-output relation to the desired degree of accu-
racy (in the limit exactly). Of course, how many nodes to use can-

not be prespecified, but refer to Baum and Haussler [1988]
some ideas. Fig. 3 is an example ANN. You can find numer
other architectures in the literature; Lippmann [1987] docume
at least 50 other network configurations. Hybrid nets, that is n
composed of different or similar ANN, or nets connected to ot
types of models that are not ANN, cannot be discussed here
a considerable literature exists for various types of architectur

A group of nodes called the input layer receives a signal from
some external source. In general, this input layer does not pro
the signal unless it needs scaling. Another group of nodes, ca
the output layer, return signals to the external environment. The
maining nodes in the network, are called hidden nodes because
they do not receive signals from or send a signal to an exte
source or location. The hidden nodes may be grouped into on
more hidden layers. Each of the arcs between two nodes (the lin
between the circles in Fig. 3) has a weight associated with it. 
3 shows a layered network in which the layers are fully connec
from one layer to the next (input to hidden, hidden to hidden, h
den to output). Although this type of connectivity is frequent
used, other patterns of connectivity are possible. Connections 
be made between nodes in nonadjacent layers or within the s
layer, or feedback connections from a node in one layer to a n
in a previous layer can also be made. This latter type of conn
tion is called a recurrent connection to be discussed below and, d
pending on the type of application for which the network is be
used, such a connection may have a time delay associated wi

Another part of the jargon associated with ANN models rel
es to model identification. Generally, there is no direct analyt
method of calculating what the values of the weights are if a n
work is to model a particular behavior of a process. Instead the
work must be trained on a set of data (called the training set) col-
lected from the process to be modeled. Training is just the p
cedure of estimating the values of the weights and establishing
network structure, and the algorithm used to do this is calle
“learning” algorithm. The learning algorithm is nothing more tha
some type of optimization algorithm. Once a network is train
it provides a response with a few simple calculations, one of
advantages of using an ANN instead of a first principles mode
cases for which the model equations have to be solved over
over again.

A key difficulty with optimization for neural network problems
is that multiple minima occur (see Fukuoka et al. [1998]). Sin
most training procedures used for neural networks typically f
local minima starting from randomly selected starting guesses
the parameters, it should be expected that local minima of v
ing quality will be found. While use of a global optimization pro
cedure, such as genetic algorithms, branch and bound, or simu
annealing, might thus appear to be called for, the training time
such algorithms expands to an unacceptable degree. Consequ
satisfactory representation of data rests on the use of one local
imum achieved in a reasonable time.

Regardless of what training algorithm is used to calculate 
values of the weights, all of the training methods go through 
same general steps. First, the available data is divided into a t
ing and test set(s). The following procedure is then used (ca
“supervised learning”) to determine the values of weights of 
network:

Fig. 1. Structure of a single processing node.

Fig. 2. Plot of the sigmoid transfer function.

Fig. 3. Structure of a layered neural network.
July, 2000
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1. for a given ANN architecture, the values of the weights in the
network are initialized as small random numbers;

2. the inputs of the training set are sent to the network and the
resulting outputs are calculated;

3. some measure (an objective function) of the error between the
outputs of the network and the known correct (target) values is cal-
culated;

4. the gradients of the objective function with respect to each of
the individual weights are calculated;

5. the weights are changed according to the optimization search
direction and step length determined by the optimization code;

6. the procedure returns to step 2;
7. the iteration terminates when the value of the objective func-

tion calculated using the data in the test set starts to increase.

The type of objective function that is typically used in a training
algorithm will be discussed subsequently below.

If target values are not known so that the learning goal is not de-
fined in terms of specific correct examples, a procedure called “un-
supervised learning” that is analogous to classification in statistics
can be employed. A net will then produce output signals corre-
sponding to the established input category, i.e., extract features
from seemingly unstructured data. We will not discuss this type of
training.

The purpose of partitioning the available data into the a train-
ing and test set is to evaluate how well the network generalizes
(predicts) to domains that were not included in the training set. For
non-trivial problems you probably cannot collect all of the possi-
ble input-output patterns needed to span the input-output space for
a particular behavior or process to be modeled. Therefore, you have
to train the network with some subset of all of the possible input-
output patterns. However, the training set must be representative of
the domain of interest if you expect the network to learn (interpo-
late among the data) the underlying relationships and correlations
in the process that generated the data. If not, the net may not pre-
dict well for similar data, and may predict poorly for completely
novel data (extrapolate). Noise in the data surprisingly automati-
cally provides some smoothing, namely by adding the absolute
value of the first derivative of the objective function as a penalty
to the objective function. By holding some of the data back from
the training phase to comprise a test set, you can evaluate how well
the neural network can generalize by examining the value of the
prediction error to the test set.

For three reasons you often need to carry out some type of un-
supervised preprocessing of the data to be used in identifying a
network so that you can

1. reduce the dimensionality of the data (feature extraction), and
thus the complexity of the net used to represent it along with the
correlations among variables;

2. transform the data into a more suitable format for processing
by the net;

3. eliminate or reduce auto correlation for each variable.

FEED FORWARD NETWORKS

Three layer (sometimes called two layer) feed-forward artificial

neural networks are commonly encountered models in the lit
ture (see [Fine, 1999]). Computation nodes are arranged in la
and information feeds forward from layer to layer via weight
connections as illustrated in Fig. 4. While the neural network lit
ature uses jargon such as training patterns, test sets, conne
weights, and hidden layers, for modeling involving ANN, here w
formulate artificial neural network models in terms of classic
nonlinear system identification. Graphs of the network informat
flow help explain the more formidable equations.

Mathematically, the typical feed-forward network can be e
pressed as

yi=ϕo[Cϕh(Bui+bh)+bo] (1)

where yi is the output vector corresponding to input vector ui, C
is the connection matrix (matrix of weights) represented by arc
from the hidden layer to the output layer, B is the connection ma-
trix from the input layer to the hidden layer, and bh and bo are the
bias vectors for the hidden and output layers, respectively. ϕh( · )
are ϕo( · ) are the vector valued functions corresponding to the acti-
vation (transfer) functions of the nodes in the hidden and output la
ers, respectively. Thus, feed-forward neural network models h
the general structure of

yi=f(u) (2)

where f( · ) is a nonlinear mapping. Hence feed-forward neural n
works are structurally similar to nonlinear regression models, 
Eq. (2) represents a steady state process.

To use models for identification of dynamic systems or pred
tion of time series, a vector comprised of a moving window of p
input values (delayed coordinates) must be introduced as inputs
to the net. This procedure yields a model analogous to a nonli
finite impulse response model where

yi=yt and ui=[ut, ut− 1, …, ut− m] or yt=f([ut, ut− 1, …, ut− m]). (3)

The lengths of the moving window must be long enough to c
ture the system dynamics for each variable in practice. In prac
the duration of the data windows are determined by trial and e
(cross validation), and each individual input and output varia

Fig. 4. Graph of the information flow in a feed-forward neural
network. Circles represent computation nodes (transfer
functions), and lines represent weighted connections. The
bias thresholding nodes are represented by squares.
Korean J. Chem. Eng.(Vol. 17, No. 4)
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might have a separate data window for optimal performance.
If you use windows of past inputs and outputs in feed-forward

neural network models for dynamic modeling, the nets tend to be
very large with the result that they include hundreds of parameters
that have to be estimated. Each additional input to the neural net
model adds greatly to the size of the network and the number of
parameters that must be estimated. As a specific example, if the
input vector at time t consists of 4 different variables, and the num-
ber of past values of each is selected to be 6, the net must contain
24 input nodes. If this hypothetical network were to have 12 hid-
den nodes and 2 output nodes, the total number of parameters to
be estimated, including the bias terms, would total 326. The large
number of parameters necessitates large quantities of training or
identification data, and slower times for identification.

RECURRENT NETWORKS

Recurrent Neural Networks (RNN) have architectures similar
to standard feed-forward Artificial Neural Networks with layers
of nodes connected via weighted feed-forward connections, but
also include time delayed feedback or recurrent connections in the
network architecture. Examine Fig. 5.

Recurrent neural network models have the same relationship to
feed-forward neural network models as autoregressive/infinite im-
pulse response models have to moving average/finite impulse re-
sponse models. RNN provide a more parsimonious model struc-
ture of reduced complexity because the feedback connections large-
ly obviate the necessity of data windows of time lagged inputs.
RNN also have a direct nonlinear state space interpretation use-
ful in optimal estimation as discussed below.

Two individual variations of recurrent neural network architec-
tures are commonly employed. The first is called an Internally Re-
current Network (IRN), that is characterized by time delayed feed-
back connections to the hidden nodes. Examine the connections
in the hidden layer in Fig. 5. The remainder of the network com-
prise a standard feed-forward architecture. This structure is also
known as an Elman network [Elman, 1990].

Externally Recurrent Networks (ERN), on the other hand, c
tain time delayed feedback connections from the output laye
the hidden layer. You can also envision a hybrid recurrent netw
which contains both types of recurrent connections, and migh
described as an Internal-External Recurrent Network (IERN) s
as the network pictured in Fig. 5. Simulation studies, both p
lished and unpublished, have indicated no clear advantage of u
an IRN versus an ERN, or even an IERN, for dynamic modeli
Both IRN and ERN models seem to be equally satisfactory
most process modeling applications.

Another possibility is to include a moving window of past ou
puts along with the past inputs to the network

yt=f([yt−1, yt− 2, …, yt− n; ut, ut−1, …, ut− m]) (4)

analogous to a more general nonlinear time series model.
If we allow the vectors ut, xt, and yt to denote the vector out-

puts of the input, hidden, and output nodes, respectively, at t
t, we can formulate an IRN network as a discrete time mode

xt+1=ϕh(Axt+But+bk) (5)

yt+1=ϕo(Cxt+1+bo) (6)

where and ϕh( · ) are ϕo( · ) are the vector valued functions corre
sponding to the activation functions in the hidden and output l
ers, respectively. In most applications the scalar elements o
Gaussian activation function for each hidden node are

(7)

where vi is the total input to each node. Usually all the eleme
are made identical for simplicity. Linear activation functions a
typically used in the output layer. The matrices A, B, and C are the
matrices of connection weights for the hidden to hidden recur
connections, input to hidden, and hidden to output connections
spectively, and the vectors bh and bo are the bias vectors for the
hidden and output layers. By posing the IRN model in the ab
form we see that this type of recurrent neural network is a n
linear extension of the standard linear state-space model in w
the outputs of the hidden layer nodes, xt are the states of the model

In a similar fashion we can write nonlinear state space equat
for the ERN. Whereas in the IRN model the states are the 
puts of the hidden nodes, in the ERN model the states are the
puts of the nodes in the output layer so that the state space
uations are

xt+1=ϕo[Cϕh(Dxt+But+bh)+bo] (8)

yt+1=xt+1 (9)

where the matrices B and C and vectors bh and bo have the same
meaning for the ERN as the IRN, and the matrix D is the matrix
of weights for the recurrent connections from the output laye
time t−1 to the inputs of the hidden layer at time t.

Although the ERN and IRN can exhibit comparable modeli
performance, they have different features that may make one m
desirable than the other for a particular process. Just like the 
ventional linear state space model, the IRN does not have any s
tural limit on the number of model states because the numbe
hidden nodes can be freely varied. The ERN, however, can 

ϕi v i( ) = exp
− vi

2

2
-------- 

 

Fig. 5. Representation of internally/externally recurrent neural
networks. Circles represent computation nodes, lines re-
present weighted connections, z−−−−1 indicates time delay. For
clarity not all recurrent connections are shown and bias
nodes are omitted.
July, 2000



Applications of Artificial Neural Networks in Chemical Engineering 377

rune
m-
 pa-
er-
g”

 add
net-
a-

en-
f in-
 net.

 sig-
 the
es).
riant
cal-

units
) is
ds

ing
de-
end-
s

N)
 you
net-
 us-
 de-
 al-
als
rror
.
ace

er

tor
ro-

he
have the same number of states as model outputs because the out-
puts are the states. The IRN thus tends to be more flexible in mod-
eling. The ERN has the advantage that the model states have a
clear physical interpretation in that they are the variables of the
process itself, whereas the states of the IRN are hypothetical and
neither unique nor canonical.

Since both types of models have been posed as difference eq-
uations (rather than differential equations), to complete the model,
a vector of initial values of the model states must be specified. In-
itialization of ERN models is simple because the user can observe
the current values of the process output and use those values to in-
itialize the states. Just as with linear state space models, IRN mod-
els are more difficult to initialize as the states lack physical mean-
ing. In applications you usually initialize the states of IRN mod-
els with the median value of the activation function of the hidden
nodes (0.5 if the activation function ranges from 0 to 1.0). Inaccu-
racies in the state initialization typically result in initial inaccuracies
in the model predictions, but these die out in a time of the order of
the dominant time constant of the process being modeled. Such
startup transients can be minimized by holding the network inputs
constant using the initial input vector and cycling the IRN model
until the states and hence the output of the network becomes con-
stant. This is equivalent to assuming that ut=uo for all t<0.

SELECTION OF THE SPECIFIC ARCHITECTURE OF 
AN ANN

Once you decide on a particular category from which to select
an ANN for your application, you still must determine the specific
details concerning the structure of the nodes (transfer functions)
and the connections between them. No general theoretically based
strategy exists to carry out this task, but numerous strategies have
been proposed. Refer to van de Laer and Henkes [1999] and the
references therein or to Reed [1993]. An appropriate size network
should exhibit:

1. Good “generalization”, i.e., prediction for new data, by avoid-
ing under- and over-fitting

2. Computational efficiency; the smaller the network, the fewer
the parameters, less data is needed, and the identification time is
less.

3. Interpretation of the input-output relation is so far as possible.

Because ANN are not unique, that is many nets can produce iden-
tical outputs from prespecified inputs, and many different goals can
be deemed “best”, searching for the “best” net in some sense is
rarely an efficient use of your time. A “satisfactory” net is all that
you need to make predictions or classify data.

If you choose to start the training (identification) with more
nodes and connections than you eventually plan to end up with,
the net will contain considerable redundant information after the
training terminates. What you should do then is prune the nodes
and/or links from the network without significantly degrading per-
formance. Pruning techniques can be categorized into two classes.
One is the sensitivity method [Lee, 1991]. The sensitivity of the
error function is estimated after the network is trained. Then the
weights or nodes which relate to the lowest sensitivity are pruned.

The other class is to add terms to the objective function that p
the network by driving some weights to zero during training [Ka
ruzzom, 1992; Reed, 1993]. These techniques require some
rameter tuning which is problem dependent to obtain good p
formance. An alternate approach to building a net (the “growin
technique) is to start with a small number of hidden nodes and
new nodes or split existing nodes if the performance of the 
work is not satisfactory. Pruning is identical to backward elimin
tion and growing to forward selection in regression.

You can apply principal component analysis, or the Karhun
Loeve transformation, to your data set to reduce the number o
puts to a net, and hence reduce the size and structure of the
The transformed coordinates can be arranged in order of their
nificance, with the first being the components corresponding to
major eigenvectors of the correlation matrix (largest eigenvalu
A major weakness of these methods is that they are not inva
under a transformation of the variables. For example a linear s
ing of the input variables (that may be caused by a change of 
for the measurements or by scaling needed for identification
sufficient to modify the PCA results. Feature selection metho
that are sufficient for simple distributions of the patterns belong
to different classes can fail in classification tasks with complex 
cision boundaries. In addition, methods based on a linear dep
ence (such as correlation) cannot take care of arbitrary relation
between the pattern coordinates and the different classes.

PARAMETER IDENTIFICATION

If you choose one of the Recurrent Neural Network (RN
structures as a model, Eqs. (5) and (6), or (8) and (9), how do
estimate the values of the parameters (the weights) of the 
work? The standard way from the perspective of investigators
ing neural networks is to train the networks to reproduce the
sired dynamic behavior using the backpropagation-through-time
gorithm [Hertz, 1991]. Closer examination of this technique reve
that what is really being carried out is conventional prediction e
estimation [Lyung, 1987] which will be briefly described here

Let the parameters vector in the RNN nonlinear state-sp
model be denoted by θθθθ where

θθθθ={A; B; C; bh; bo} (10)

for the IRN model and

θθθθ={B; C; D; bh; bo} (11)

for the ERN model. Let the vector of prediction errors of eith
model be

(12)

where yt is the vector of observed outputs and  is the vec
of predictions from the model. The observed data from the p
cess being modeled is the set of input-output vector pairs

ZN={y1, u1; y2, u2; …, yt, ut; …, yN, uN} (13)

where N is the number of data samples and ut is the process input
vector. The goal in prediction error identification is to minimize t
prediction error of the model for the data set ZN by adjusting the

εt θθθθ( )= yt − ŷt θθθθ( )

ŷt θθθθ( )
Korean J. Chem. Eng.(Vol. 17, No. 4)
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parameter vector θθθθ, i.e.

(14)

Eq. (14) is the standard unweighted least squares objective func-
tion. When working with data containing outliers it is often more
robust to use

(15)

where the function ζ(ε) is a positive, scaler function such as

Because ANN models are nonlinear in the coefficients, iterative
methods must be used to minimize Eq. (14). The backpropagation
algorithm is a gradient descent scheme that is well suited for par-
allel implementation in hardware as each stage uses only local in-
formation about the inputs and outputs of each activation node.
For calculations on a serial computer, more efficient optimization
techniques such as the BFGS or conjugate gradient algorithms are
preferred. Although analytic formulation of the gradients of J(θθθθ,
ZN) with respect to θθθθ given the specific equations for the ANN is
quite complex because of the existence of state feedback in recur-
rent nets, use of the gradient calculation as done in the BP algo-
rithm [Hertz, 1991; Werbus, 1990] is both intuitive and computa-
tionally efficient. Analytical gradients of the objective function can
be combined with an efficient quasi-Newton optimization code
such as NPSOL in MATLAB or GRG2 in Excel to yield rapid pa-
rameter identification. We do not recommend trying to program
the parameter identification code; instead use a commercial code
focusing on ANN.

The parameter estimation scheme described above is known
as prediction error estimation. An inherent assumption underlying
this strategy is that the process output measurements, yt, only con-
tain additive white noise (noise uncorrelated in time) while the pro-
cess inputs are assumed to be deterministic. In reality, these as-
sumptions are rarely met, and it can be shown that even when sim-
ple linear regression is used to model a steady-state process, the
presence of noise in the independent variable will yield biased pa-
rameter estimates and biased predictions. Noise in the inputs is
also a serious problem in the identification of linear dynamic mod-
els because when the effect of input noise is neglected, and it ex-
ists, prediction error methods cannot give consistent parameter es-
timates. If the noise characteristics of the process measurements
are known, this problem can be ameliorated to a degree, but in gen-
eral how to resolve the problem is still open. For nonlinear, non-
parametric system identification such as for ERN or IRN, the prob-
lem of bias similary exists, and is further complicated by the non-
linearity of the model. In the case of nonlinear systems modeled
by parametric models, various types of linearization based error-in-
the-variables methods have been proposed [Kim et al., 1990]. Sim-
ilar methods could be applied to neural network models if model
bias became a serious problem.

Another problem with using the prediction error method has to
do with the uncertainty associated with predicted output values.

You cannot assume the values are not autocorrelated even 
residual errors are normally distributed, hence any confidence 
its you place on the outputs must be developed with care.

THE BIAS/VARIANCE ISSUE

The great strength of neural networks, in general, is their ab
to “learn” (represent) arbitrary mappings through their role as n
parametric estimators. This strength is also a weakness becau
fitting input-output data, a large number of weights must be a
justed during training. If we consider the problem to be one
forming an estimate y= f(x; D), of an unknown model, E[y|x], giv-
en a training set D={(x1, y1), …, (xN, yN)}, the mean square estima
tion error between the function we create and the actual mode

E[(f(x; D)−E[y|x])2]=(E[(f(x; D)]−E[y|x])2

+E[(f(x; D)−E[f(x; D)])2] (16)

for any arbitrary x and all possible realizations of D. The first term
on the right hand side of the equality sign is the square of the 
between our estimate and the unknown model, and the sec
term is the variance of our estimate, i.e.

(estimation error)2=(bias) 2+variance (17)

thus decomposing the estimation error into bias and variance c
ponents. A trade-off exists between reducing bias and varianc
estimation theory [Goman et al., 1992; Moody, 1994]. A simp
parametric model with few parameters may show low variance
the estimation error but intolerable bias in its predictions due to
inability to capture the complexity of the system being model
A traditional feed-forward neural network with hundreds or tho
sands of weights may have very low bias but high variance du
over-fitting of the noisy training data. The goal is to minimize bo
bias and variance. You may be able to reduce variance by u
larger and larger training sets, and to reduce bias by increasing
of the network, making a large optimization problem quite difficu
to solve. But a more common approach to the control of esti
tion bias and variance in modeling feedforward ANN is that 
periodic stopping during training and using cross validation to ev
uate the residual error. When the residual error no longer decre
training is stopped and the weights (coefficients) are fixed. T
procedure is a form of regularization and is discussed from a 
tem identification perspective in [Sjoberg and Ljang, 1992]. Oth
methods of controlling both bias and variance in neural netw
models include reducing the number of weights through prun
or slowly allowing the network to grow while training to preven
over-parameterization.

Recurrent networks alleviate many of the problems of over-
ting and the need for large training sets characteristic of feed
ward networks when applied to modeling dynamic process
The absence of a need for a history window for each input vari
as well as fewer hidden nodes translates into significantly fe
weights and less chance of over-fitting for a given data set.
corporation of prior knowledge about the process to be mode
into the neural net as in Ungar’s work [Psichogious and Ung
1992] may allow the parameter count to be reduced even furthe

MODEL VALIDATION

min
θθθθ

 J θθθθ ZN,( ) = 
1
N
---- εt

T

t = 1

N

∑ θθθθ( )εt θθθθ( )

min
θθθθ

 J θθθθ ZN,( ) = 
1
N
---- ζ

t = 1

N

∑ εt θθθθ( )( )

ζ ε( )= ε  or ζ ε( )= log 1+ 
1
2
---ε2

 
 
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Model validation is an important part of system identification.
Although a large number of statistical hypothesis tests and evalua-
tion criteria have been developed for linear, steady-state systems,
the problem is much more complicated for nonlinear, dynamic sys-
tems. A simple criterion of model validity is the value of the ob-
jective function J(θθθθ, ZN) when the model is applied to a data set
(ZM) different than the data set (ZN) used for system identification.

However, such a criterion does not distinguish between error
caused by model mismatch (bias) and the error due to data corrup-
tion. More sophisticated tests are based on correlational analysis in
which you examine the prediction errors, εt(θθθθ). If a non-linear, non-
parametric model is adequate and unbiased, then the prediction er-
rors should be uncorrelated with all linear and nonlinear combina-
tions of past inputs and outputs [Billings and Varn, 1986]. This
outcome can be determined using the normalized cross-correlation
function

(18)

Here  is the normalized cross-correlation between two vari-
ables (time series ψ1 and ψ2), τ is the time shift, and t is the time
index. You can plot the  as a function of τ for both positive
and negative time lags. Examine Fig. 6 which is an example of

 when ψ1 is a white noise sequence, and exhibits negligi-
ble autocorrelation. Because the estimated correlations will never
be exactly zero, approximate 95% confidence bands can be drawn
as  for large N to indicate if the correlations are signi-
ficant. For multivariate, nonlinear models it is of course impractical
to check every possible cross-correlation, but the auto and cross-
correlations should be calculated for the residuals as a minimal
check on model validity.

RADIAL BASIS FUNCTION NETWORKS

If you view ANN such as shown in Figs. 4 and 5 as providing
system outputs that result from a finite sum of weighted outputs of
nonlinear functions forming the hidden nodes, then numerous net-
works are analogous to ANN. One type is the radial basis func-
tion network (RBFN) which was first used for process modeling
by Chen et al. [1990]. Lee et al. [1999] and Gurumoorthy and

Kosanovich [1998] review some of the theory (existence, uniq
ness, stability etc). The structure of a RBFN (Fig. 7) differs fro
an ANN in that the inputs to the network are fed directly into t
hidden nodes through connections with unity fixed weights. Ea
node represents only a limited range of the total range of an i
variable, hence is a local function. The transfer function of e
hidden node is a radial basis function (RBF) usually Gaussia
ellipsoidal:

(19)

where I  denotes the vector of inputs to the node, c is a vector
which centers each function of the RBF in the input space, σ is a
“span” parameter, and || · || a vector norm. Note that the outp
this radial basis function is 1 when I=c and drops off to zero as I
moves away from c (figuratively shown by the sketches in the ci
cular node symbols in Fig. 7). The outputs of the hidden nodes
then sent to an output layer through a layer of weighted conn
tions. The weighted signals are summed, and the sum forms
output of the network, i.e. the transfer functions in the output la
are linear. The sum of overlapping functions g(I) form a smoothed
representation of data as do ANN, and have been shown t
capable of universal approximation [Frombe, 1988].

Two major advantages exist for this type of network structu
First, using established numerical methods for clustering (gro
ing) data, the values of c can be calculated for each hidden nod
Selection of the number of hidden nodes is a complex problem
clustering. The values of σ can be arbitrary or evaluated (separat
ly from c) by simple optimization. The weights to the output lay
can be calculated directly during training by linear regression 
cause of the linear relations between output nodes and the ou
of the radial basis functions. Thus, the time to train the networ
much shorter than for ANNs. Second, if a unique new input ve
is encountered in testing, the network output will go to zero 
cause of the local properties of the RBF in Eq. (19). This is a 
jor advantage over most other network types since neural netw
generally extrapolate for new inputs very poorly. While RBF
suffer from this same problem, at least they are capable of de
ing when the network is being asked to extrapolate.

One major disadvantage of RBFN is that like ANN time mu
be explicitly incorporated into the structure by using a window
past process inputs and outputs as the inputs to the network

φ̂ψ1ψ2
τ( )= 

ψN − τ
t = 1 1 t( )ψ2 t− τ( )∑

ψN 2
t = 1 1 t( ) ψN 2

t = 1 2 t( )∑∑[ ]
-------------------------------------------------

φ̂ψ1ψ2

φ̂ψ1ψ2
τ( )

φ̂ψ1ψ1
τ( )

1.96 N⁄±

g I( )= exp − 
||I − c||2

σ2
---------------- 

 

Fig. 6. The autocorrelation function for white noise.

Fig. 7. Structure of the radial basis functions network.
Korean J. Chem. Eng.(Vol. 17, No. 4)
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fortunately, with RBFN, the size of the network scales exponen-
tially with the number of inputs to the network. Each of the hid-
den nodes represents a bump in the input space, and the number of
bumps required to model a process over the entire space rises ex-
ponentially with the dimension of the input space. Even for steady
state models, RBFN become impractical with more than 4 or 5 in-
put variables.

We now present four examples of applications of ANN in typi-
cal chemical engineering processes.

EXAMPLE 1. FAULT DETECTION USING AN ANN

This example from Suewatanakul [1993] demonstrates the use
of a feedforward ANN to detect faults in a heat exchanger. Fig. 8
is a sketch showing the input and output measurements of an ex-
changer. The temperature and flow rate deviations from normal
were deemed to be symptoms of the physical causes of faults. The
two physical causes considered faults here were tube plugging and
partial fouling in the heat exchanger internals. The diagnostic abil-
ity of a neural network is compared with Bayesian and KNN clas-
sifiers to detect the internal faults.

Rather than using data from an operating heat exchanger, the
Simulation Sciences code PROCESS was used to generate data
for clean and fouled conditions for a steady state counter-current
heat exchanger. To generate the data for both the clean and faulty
conditions, a data file for each faulty (and normal) condition was
prepared. Information about the thermodynamic properties of the
streams, the fluid and exchanger physical properties, the configura-
tion of the heat exchanger, the number of tubes, the size of the
tubes and shell, and the fouling layer thickness in the tube and
shell sides (for fouled conditions) was prespecified. Table 1 lists
the physical data and the normal parameters for the heat exchanger.

Tube side:

Feed: mixture of water: ethyl benzene: styrene of composition
(weight percent)

55: 25: 20
Number of tubes: 108; length: 4.88 m; outside tube diame

3.18 cm; thickness: 0.26 cm; tube arrangements: square tube 
3.97 cm; tube-side fouling layer thickness: 0

Shell side:

Feed: water
inside diameter: 54 cm
shell-side fouling layer thickness: 0 cm

Baffles:

Number of cuts (segments) for each baffle: single

For the fault of tube plugging (tube-sided only), the degree
the fault was classified into 4 cases-the number of tubes plug
was 5, 3, 2, and 1. In the study of fouling (both for the tube-s
and the shell-side), the degree of fouling was expressed as a 
tion of the decreased cross-sectional area which was also clas
into 4 cases, namely a decrease of 8%, 5%, 3%, and 1%, re
tively. To make the simulated measurements more realistic, 
different levels of normally distributed noise were added to the 
terministic flows, pressure, and temperatures so that the co
cients of variation of the noise were 0.02 and 0.01. Fig. 9 ill
trates a typical feedforward ANN used to classify the respec
faults.

To train the ANN, each measurement, namely the temperat
of all four streams (T1, T2, T3, and T4), the two flow rates (F1 and
F2), and the pressure drops in the tube and shell size (∆Ptube and
∆Pshell), for both the normal (clean) and faulty states had to be 
early scaled to be between the range of −1 and 1. The network was
trained so that 0.9 represented the normal state (yes) while 0.
presented the faulty state (no). For example, a target output
tern of 0.9 0.9 0.9 represented a pattern in which the heat
changer was clean. The target pattern from a state in which t

Fig. 8. A typical heat exchanger. F1=F3 and F2=F4 for the example.

Table 1. Prespecified data for the normally operating heat ex-
changer

Stream 1 Stream 2 Stream 3 Stream 4

Temperature, T (K) 533 977 708.2 599.8
Flow rate, F (kg/hr) 9080 4086 9080 4086
Pressure, P (kPa) 207 345 148 236

Fig. 9. The network architecture used in the training for internal
fault detection (bias nodes are not shown).
July, 2000
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was one or more totally-plugged tube was 0.1 0.9 0.9. The target
output pattern of 0.9 0.1 0.9 represented a state in which fouled
tubes existed while a target output pattern of 0.9 0.9 0.1 repre-
sented a state in which fouling existed on the shell side. The train-
ing data set contained 80 patterns each for the four different classes
(a total of 320 training patterns). Another set of 20 patterns for
each class was used for testing the classification capability of the
ANN (a total of 80 patterns). NPSOL was the optimization code
used in the training of the ANN.

In testing the ANN, a threshold value of 0.5 for the output of an
output node was used as the discrimination criterion for classifica-
tion. If the activation of an output node was greater than 0.5, then
that node was deemed activated and represented a faulty state of
the exchanger. If the node value was less than 0.5, then the node
was deemed to be not activated, and the fault was said not to oc-
cur. Table 2 lists the results for one set of runs from the training
and testing of the net.

By way of comparison, the two tradition classifiers, Bayesian
and k-nearest neighbors (KNN, K=5 in Table 3), were also ap-
plied to the data sets. Table 3 lists the results.

Multivariate hypothesis tests on the means of the measurements
gave much larger rates of misclassification. The conclusion is that
ANN for this type of analysis are no worse than traditional meth-
ods of classification, and may have some edge.

EXAMPLE 2. PREDICTION OF POLYMER QUALITY 
USING AN ANN

This example from Barton [1997] illustrates the use of a recur-

rent ANN to predict polymer quality in an industrial reactor un
Operation and control of industrial polymerization reactors is d
ficult because of the lack of reliable and timely measurement
key polymer product quality variables close to the reactor. Of
product samples must be collected hours downstream from th
actor, after the polymer finishing operations. Measurement of th
quality variables is typically performed off-line in a laboratory an

Table 2. Classification rates for the neural network (when the
noise coefficient of variation was 0.02)

Tube plugging:

Number of
totally-plugged tubes

% correctly classified

Training Testing

5 100 100
3 100 100
2 100 100
1 100 95

Tube-side fouling:

% area was decreased
% correctly classified

Training Testing

5 100 95.00
3 100 93.75
2 98.75 92.50
1 97.50 86.25

Shell side fouling:

% area was decreased
% correctly classified

Training Testing

5 100 96.25
3 100 95.00
2 98.75 93.75
1 97.50 92.50

Table 3. Classification rates yielded by traditional methods (when
the noise coefficient of variation was 0.02)

Tube plugging

Number of
totally plugged

tubes

Bayes procedure 5-NN procedure

Training
% correct

Testing
% correct

Training
% correct

Testing
% correct

5 100 100 100 98.00
3 100 100 100 95.00
2 100 98.00 100 92.50
1 100 93.00 100 89.75

Tube-side fouling

% area was
decreased

Bayes procedure 5-NN procedure

Training
% correct

Testing
% correct

Training
% correct

Testing
% correct

5 100 96.00 100 93.00
3 100 91.50 100 89.00
2 98.75 90.00 98.75 83.00
1 97.50 88.00 97.50 80.50

Shell-side fouling

% area was 
decreased

Bayes procedure 5-NN procedure

Training
% correct

Testing
% correct

Training
% correct

Testing
% correct

5 100 97.00 100 96.00
3 100 95.00 100 93.50
2 98.75 91.00 98.75 90.00
1 98.75 89.00 98.75 80.50

Fig. 10. Schematic of an industrial polymerization reactor.
Korean J. Chem. Eng.(Vol. 17, No. 4)
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may not be available for several hours after the sample is delivered
to the lab. Thus, the measurements of the quality variables arrive
too late to provide useful feedback for control.

Fig. 10 is a schematic of an industrial polymerization reactor and
subsequent finishing section. The reactor feed flowrate, FF, and
feed temperature, FT, are measured and the feed stream is analyzed
for the monomer concentration, Mf, which can be manipulated, and
several key impurities, Xi,j, which are disturbances that affect the
product quality. The feed rate for the polymerization catalyst, CA,
is a manipulated variable, and is also measured. The temperature
in the reactor, T, is measured along with the liquid level, L. A re-
cycle stream from the reactor is analyzed for unreacted monomer,
M0, and the key impurities, Xi, o. The recycle flowrate, OF, and the
recycle temperature, OT, are measured, but not directly manipu-
lated.

After the polymer product leaves the reactor, it must be pro-
cessed another two to six hours in the finishing section. After the
finishing section, the final polymer product is sampled every four
hours and analyzed in the laboratory which takes another four
hours to return the quality measurement, Qlab. The product quality
is also measured on-line Qon, but the on-line instrument was unreli-
able and only sporadically available, and when in operation was
difficult to keep calibrated.

The reactor in Fig. 10 was used to manufacture several differ-
ent polymer grades spanning a wide operating range over which
the reactor is highly nonlinear. The polymer finishing section im-
parts dynamics to the response Qlab to changes in reactor conditions
due to mixing.

An internally recurrent net (IRN) shown in Fig. 11 was used to
model the dynamic process, particularly when changes occurred
on transition from one grade of polymer to another.

The model corresponding to Fig. 11 is

xt+1=σ(Axt+But)
yt+1=Cxt+1 (20)

where xt+1 is the network’s internal state vector prediction (outputs
of the hidden nodes) at time t+1; yt+1 is the network prediction from
the vector of process outputs; in this case the network output is the
product quality prediction, Qirn; and ut is the vector of network in-
puts at time t. The input vector to the IRN model consisted of the
measurements FF, CA, Mf, X1, f, X2, f, X3, f, T, and Mo, as indicated

in Fig. 10. σ( · ) is a vector-valued nonlinear (sigmoidal) activatio
function; and A, B, and C are weight matrices that are trained u
ing historical data. Qss below represents the company’s predictio
from a previously developed steady state model.

The IRN in this work was trained using approximately 10,0
hours of data collected at one hour sample intervals over sev
months, and tested using approximately 2,000 hours of data
pure time delay of 3 hours for the product quality was found
yield the best IRN model, and was incorporated directly into 
training and testing data. The difference between the 6 hour 
delay estimated for Qss and the 3 hour delay used for Qirn is ex-
plained by the dynamic lag associated with product mixing in 
finishing section. For this problem, an IRN with 4 hidden nod
gave the best performance. The measurements for Qlab were inter-
polated to fill in the three hours of missing data between the lab

samples.
For this problem the IRN yielded better long term predictio

than feed forward networks with feedback of past outputs beca
potentially erroneous old process output measurements did
have to be used in the network input vector. Long term predicti
were necessary for this model because the goal was to us
model to develop strategies for directly controlling Qlab during
grade transitions.

The criterion for evaluating models for predicting Qlab was the
standard prediction error (SPE):

where Qlab is the quality measurement,  is the model predicti
(either Qirn or Qss), t is the sample time, and N is the number 
samples in the data set. In this work the product quality was sc
to lie between 0 and 10.

Fig. 12 compares the predictions from the linear steady-s
model developed by the company operating the reactor with
predictions from the IRN for the test data set, and the (delayed
data (which may not necessarily be correct).

The IRN is clearly better able to capture the dynamic charac
istics of the reactor, and does an excellent job of predicting the 
duct quality several hours before the laboratory measuremen
come available. In Fig. 12 two polymer grades are shown and 

SPE= 
1
N
---- Qlab t, − Q̂mod t,( )2

t = 1

N

∑

Q̂mod

Fig. 11. The IRN structure used in modeling the reactor.
Fig. 12. Comparison of polymer product quality predictions for

testing data set.
July, 2000
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grade transitions. Quality above 3 represents a “high” grade poly-
mer, while quality below 1 represents a “low” grade polymer.
Quality between 1 and 3 is in a grade transition region, and the
IRN predictions are shown to be excellent in these regions. The
large discrepancy between Qirn and Qss in the high grade region be-
tween t=1800 and t=2000 in Fig. 12 is caused by the failure of the
steady-state linear model to include the effects of impurity X2.

Table 4 lists the SPE results for the IRN model versus the
steady-state model when used to predict the product quality. The
IRN model represents a marked improvement over the linear
steady-state model in terms of SPE due to the modeling of process
dynamics that are imparted by the polymer finishing section, and
because the effects of measured impurities are included in the IRN
model. The IRN model accurately predicts the quality variable over
the entire reactor operating region, even between grades, eliminat-
ing the need for switching between different models in different
operating regions.

EXAMPLE 3. DATA RECTIFICATION IN A DYNAMIC 
PROCESS USING AN ANN

This example from Karjala [1995] shows how nonparametric
models can be used to adjust process data. The goal of data rectifi-
cation is to compensate for random and nonrandom measurement
errors by making suitable adjustments to the measured values of
the process variables in order to provide the best (in some sense)
estimates of the “true” values. This example focuses on detecting
and eliminating gross and random errors, but does not address
other important problems such as bias, correlations, nonperiodic
data, missing measurements, and nonsymmetric probability distri-
butions for the process measurements.

The term data reconciliation usually refers to the adjustment
of process measurements to conform to some prescribed model.
Since the model used in this example is nonparametric, that is the
structure is built from the process data itself, we refer to the adjust-
ment as data rectification. Furthermore, as explained below, the
model involved does not necessarily use current data in the adjust-
ment, but uses predicted values of the variables. Consequently, the
term rectification in the sense of “making the data right” seems to
be the appropriate word to use.

An unfortunate aspect of the literature on the rectification of data
collected in a dynamic process is that the reported results of re-
ctification always appear to be favorable, because the authors of
the papers usually assume a known model and probability distribu-
tion for the noise in the data. To demonstrate how well rectification
works, the authors simulate deterministic process data and corrupt
the data by adding the known noise (almost always white Gauss-
ian), and perhaps gross errors. Then, the noise and gross errors are
removed using the known, exact model by the strategy proposed

by the authors of the paper.
But how good is the rectification if the process model is n

known exactly as is usually the case in practice? Furthermore, 
good is the rectification if the probability distribution of the noise
different in practice than the assumed distribution? In this exam
we describe how internal recurrent neural nets can be used fo
rectification of data from dynamic process whose true mathem
cal description is unknown and uncertain.

Dynamic data rectification can be posed as a general optim
tion problem in which the equations representing the model,
ANN, form part of the constraints:

(21)

Subject to: f(x.t, xt, ut, t)=0
h(xt, t)=0
g(xt, t)≥0

where Φ is a generalized objective function (normally the sum
squares or absolute values), xt is a vector of state variables at time
(not all of which are measured), mt and  are the measurement
and rectified measurements, respectively, f is the dynamic process
model, g is a vector of inequality constraints (including bounds 
the variables), and h is a vector of known equality constraints. Fo
state space models the model constraint equations f are typically
expressed as dynamic differential equations which are solved
orthogonal collocation on finite elements. The above minimizat
problem is usually performed for a moving window of past me
urements. This window must be long enough to capture rele
process dynamics, but kept to a minimum to keep the nonlin
programming problem size tractable.

In data rectification using an IRN as the model f in Eq. (21),
the idea is to build a model of the process in which one s
ahead predictions can be made of both the input and the ou
variables. The input variables may need special treatment 
Barton [1996]). The mathematical model for rectification is

(22)

where  is the estimate of the process measurement vect
time t, mt is the actual measurement vector, and G( · ) is the non-
linear mapping we seek to identify. Note that with this model 
current  is not calculated from mt, the current measurement
You cannot use mt as an independent variable in the nonparame
representation G because then system identification would yie
the trivial identity mapping of =mt. Because the noise in eac
measurement is assumed to be uncorrelated with the noise in
vious measurements, it is possible to identify a system that des
es the evolution of the measurement vectors in time using a pre
tion error model. The problems encountered when the noise in
measurements is autocorrelated is beyond our scope here. Be
the model input vector mt−1 is not deterministic and contains mea
urement noise, the parameter estimates from the IRN model
be biased. Nevertheless, good results have been obtained for
linear processes in which the process measurements are corr
by Gaussian and spike type measurement errors. In “training”
IRN, i.e., estimating the values of the coefficients, the targets
the measurements. The states of the net are the outputs of the
den” nodes, but these variables have no physical meaning, an

Minimize
m̂

: Φ mt m̂t mt − 1 m̂t − 1 Λ, , , ,( )

m̂t

m̂t = G mt − 1 mt − 2 mt − 3 Λ m0, , , ,( )

m̂ t

m̂ t

m̂t

Table 4. Comparison of the Standard Prediction Errors (Scaled
SPEs) for Quality Prediction by the Steady-State and
IRN Models

Model Number of parameters Train Test

Qss 12 0.458 0.466
Qirn 57 0.191 0.210
Korean J. Chem. Eng.(Vol. 17, No. 4)
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number of nodes was determined by trial and error.
To compare rectified measurements with their “true” values, we

used a model published by Seinfeld [1970] to develop simulated
measurements (You cannot use actual process data and know what
the “true” values of the measurements are.). The process consisted
of a continuous nonlinear stirred tank reactor (CSTR) with a first-
order exothermic reaction and heat removal by a coil or jacket.
Jang et al. [1986] used this example to compare extended Kalman
filtering to a nonlinear programming approach for state and para-
meter estimation. We added Gaussian noise to the simulated deter-
ministic process measurements, and used the simulated noisy
measurements in identifying an IRN model for rectification based
on step changes in the inputs to the reactor.

Figs. 13 and 14 show the results using the trained net for rectifi-
cation of the outlet concentration and temperature (the solid lines),
respectively, together with the simulated test data (the diamonds),
and the respective true values (the dashed line). You can see that
the rectified values are excellent. Keep in mind that the results
shown above did not require that the true model be used as a con-
straint. An important but usually ignored factor in process model-
ing is that variable delay occurs in a response from a process so
that modeling the delay successfully in a theoretically based model
is quite formidable. The IRN model automatically accommodates
delay.

EXAMPLE 4. PROCESS CONTROL USING AN ANN

This example from MacMurray [1993] explains how an AN
model can be used for model predictive control. Model predict
control (MPC) involves using a process model to predict futu
process behavior so that the controlled variables can be man
lated such that the process will meet some desired future sta
e.g., set-point, trajectory of set-points, maximize a yield, minim
the operating cost, or any combination of these. The performa
of MPC relies heavily on the quality of the process model, and
veloping or identifying a valid process model is a major part of 
work required to implement MPC.

Models based on first principles represent the process by a
of equations (linear and/or nonlinear ordinary and partial differ
tial equations, and algebraic equations) derived from conserva
laws and knowledge of the process. The model form is well e
blished, but values of a few parameters have to be either estim
from data or derived from physical laws in order to make pred
tions using such models. Models constructed in this fashion
known as parametric models.

In contrast, nonparametric models comprise an arbitrary but
ually very flexible model structure involving numerous paramet
which must be estimated from ample process data. The key ad
tage of nonparametric models are that little or no a priori knowl-
edge of the process is required, the development time for the m
el can be quite short compared to the first principles approach,
prediction using the identified model is rapid because sets of
uations do not have to be solved for each new input vector. A 
cess can not wait several seconds for the optimization problem
be solved if it requires controller action immediately.

When posed as an optimization problem, MPC uses the 
cess model as a constraint in evaluating the trajectory of the 
cess according to some objective function. Traditionally, the ob
tive function is expressed as:

(23)

subject to:

(24)

(25)

(26)

where ysp(tk+j) is the vector of set-points of the controlled var
ables and  is the vector of model predictions of the co
trolled variables at time tk+j (tk is the current time) which is gen-
erated by the model of the process represented by F. P is the pre-
diction horizon; it defines the time interval for optimizing the pr
cess trajectory and how far into the future the process model
be called on to predict.

Ncont is the number of control moves in a control horizon, 
which will be made by the controller (C≤P). If C is shorter than
the prediction horizon, the manipulated variables, u, are assumed
to remain constant at their last computed values, u(tk+c), for the re-
mainder of the precition horizon. Qj and Rj are weighting matrices
for each time step along the prediction and control horizons res
tively, and are usually diagonal matrices.

Φ = ysp tk + j( ) − ŷ tk + j( )[ ]TQj ysp tk + j( ) − ŷ tk + j( )[ ]
j = 1

P

∑

+ ∆uT

j = 1

Ncont

∑ tk + j( )Rj∆u tk + j( )

ŷ= F y u,( )

umin ∆u tk + j( ) umax≤ ≤

∆u tk + j( ) ∆umax≤

ŷ tk + j( )

Fig. 13. Rectification of the outlet concentration.

Fig. 14. Rectification of the outlet temperature.
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Eqs. (25) and (26) restrict the changes which can be made in the
values of the manipulated variables, since for a real process the ma-
nipulated variables may be limited in range and rate of change by
physical limitations of the operating equipment.

As posed in Eqs. (23)-(26), the tuning parameters of MPC are P,
C, and the weighting matrices, Qj and Rj. Generally, a longer con-
trol horizon will make the controller more aggressive as will a
shorter prediction horizon and vice versa. Rj penalizes control
moves and hence large elements in Rj will make the controller less
aggressive. There are no generally accepted rules of thumb for se-
lecting the tuning parameters, but the computation time required
to perform the optimization will increase as either P or C is in-
creased. Depending on the complexity of the model used to de-
scribe the process, the computation time to perform the optimiza-
tion may be the limiting factor in applying MPC, and hence influ-
ence the selections of the values of P, C, and the type of model it-
self. For stability of such a system when the model is an ANN re-
fer to Kulawski and Brdys [2000].

To demonstrate the use of ERN in control, MacMurray devel-
oped an ERN model based on the work of Patwardhan [1991] who
modeled a pilot plant packed distillation column (see Fig. 15). A
feed stream enters the column (with flow rate, feed, and compo-
sition, xf) between two packed sections (a rectifying section and
a stripping section) that contain a structured or unstructured pack-
ing material which is used to produce and support the liquid-vapor
interface inside of the column. Mass transfer occurs between the
vapor flowing up and the liquid flowing down the column. The
vapor exiting at the top of the column is condensed, and part of the
resulting liquid flow is returned to the column at the top (the re-
flux, rr); the remainder is taken as the distillate product (dist) with
composition xd. Part of the liquid flow out of the bottom of the col-
umn is vaporized (vbr) in a reboiler and sent back to the bottom of
the column. The remainder is taken as the bottoms product with a
composition of xb.

The reason that this packed column is of interest is that the pro-
cess gain changes sign over the operating region shown in Fig. 16.

Patwardhan’s model for the separation of a binary mixture of cy-
clohexane and n-heptane contained two partial differential equa-
tions, three ordinary differential equations, and eight algebraic eq-
uations, and was used in lieu of data from the actual pilot plant col-
umn to simulate data for identification of the ERN. The model as-

sumed:

• equimolar counter diffusion
• negligible liquid phase mass transfer resistance
• vapor boilup used as an input.

In the identification of the column, the feed composition (xf) and
flow rate (feed) were assumed to be the disturbances, and the 
nipulated variables were the vapor boilup rate (vbr) and either the
reflux rate (rr) or the distillate rate (dist). Since the level in the con-
denser drum was held constant, the value of the distillate rate
termined the value of the reflux rate and vice versa. Various ERN
models were used to predict the distillate and bottoms comp
tions, xd and xb, respectively, the controlled variables. Patwardha
VE model was deemed to be the “true” process, and his code
used to generate the deterministic training and test data for
ANN modeling. The operation and design parameters of the 
umn used were identical to those used by Patwardhan.

Data for the training and data sets used to estimate the we
in the ERN were generated by making step changes in the 
variables and recording the response of the exit compositions e
60 s (the time constant in this region of operations was appr
mately 4000 s). Two PI controllers were used to change the ma
ulated variables to states such that the distillate and bottoms c
positions would return to their set points after the disturbance
the feed had been introduced. Because of the relatively low v
metric hold up in the packed sections of the column and the m
ner in which the “true” model was implemented mathematica
there was virtually no dead time associated with the respons
the outputs of the column when changes were made in any o
disturbances or manipulated inputs.

Gaussian random noise with a coefficient of variation of 0.
for each of the four input and two output variables was adde
the deterministic measurements to represent measurement n
All of the resulting data were scaled into the range of zero to 
in order to prevent scaling problems during training of the ER
and also to insure a fair influence of each of the output variab
when the objective function was computed. To give the precis
needed, the final sizes of the training and test sets comprised 
data points each.Fig. 15. Diagram of a packed distillation column.

Fig. 16. Steady-state output of the VE model with Sulzer packing,
xf=0.5 and xd=1−−−−xb.
Korean J. Chem. Eng.(Vol. 17, No. 4)
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Because Patwardhan’s model (which represented the actual col-
umn well) took too long to solve for the purpose of control, one
of his simpler approximate models developed for control (the Z
model) comprised of one ordinary differential equation and three
nonlinear algebraic equations was compared to various ERN. The
result of control using the ERN shown below are for a model with
2 recurrent inputs to the hidden nodes, 15 hidden nodes, and a total
of 197 weights. This particular model represented the best bal-
ance between representing the steady state and unsteady state data
simultaneously. In practice it is possible that a network which
modeled the dynamics very well and the steady state very poorly
(or vice versa) could be selected over a network which modeled
both the dynamics and steady state moderately well.

Fig. 17 shows the response of one column output, the distillate
composition, to two changes in the setpoint. Some slight steady
state offset occurred with the ERN network for the bottoms com-
position as shown in Fig. 18 as might be expected to occur in prac-
tice because of mismatch between the model used by the controller
and the actual process (e.g. the parameters for the mass transfer eq-
uations will not be exactly correct).

To reduce the steady state offset, a simple error feedback scheme
was added to the model predictive controller. Use of the Z and
ANN models for MPC was also compared when measured distur-
bances were introduced into the feed flowrate. Fig. 19 shows that

the ERN model (with the error feedback scheme implement
provided substantially better control performance than did th
model.

WHAT ARE THE FUTURE PROSPECTS FOR ANN?

Many competing types of models exist for process model
besides ANN. A number of the advantages and disadvantage
using ANN have been discussed in previous sections. For 
cesses too complex to be modeled by a first principles model
well understood, or that take too long to model with various e
pirical models, an ANN model might be a very effective choi
for a model. Because ANN work best when interpolating, the n
to collect suitable data and the time required to train the nets
present the two disadvantages in using ANN. On the other h
in principle ANN would involve less model mismatch for a re
process and would reduce the computation time to predict out
from inputs. Some process design and operation simulators, 
as those by Pavilion Technologies, Inc., already incorporate A
based on the argument that an engineer can model a process 
ly from the process data alone. Probably the arrival of more 
idated software that use ANN as part of a state and/or dyna
process flowsheeting code will be needed if practicing engine
are to use ANN extensively in the next decade.
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