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Applications of Artificial Neural Networks in Chemical Engineering
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Abstract—A growing literature within the field of chemical engineering describing the use of artificial neural networks
(ANN) has evolved for a diverse range of engineering applications such as fault detection, signal processing, process
modeling, and control. Because ANN are nets of basis functions, they can provide good empirical models of com-
plex nonlinear processes useful for a wide variety of purposes. This article describes certain types of neural networks
that have proved to be effective in practical applications, mentions the advantages and disadvantages of using them,
and presents four detailed chemical engineering applications. In the competitive field of modeling, ANN have secured a
niche that now, after one decade, seems secure.
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INTRODUCTION 1. Both the input and output spaces are comprised of continuous
variables, a typical case of process modeling;

Traditional approaches of solving chemical engineering prob- 2. The input space is comprised of continuous variables whereas
lems frequently have their limitations, as for example in the mod-the output space is comprised of a finite set of discrete variables
eling of highly complex and nonlinear systems. Artificial neural as in classification and fault detection;
networks (ANN) have proved to be able to solve complex tasks 3. Both the input space and the output space are comprised of
in a number of practical applications that should be of interest tadiscrete variables that are mapped in so called associative nets (that
you as a chemical engineer. This paper is not a review of the exwill be ignored in this article).
tensive literature that has been published in the last decade on ar-
tificial neural networks nor is it a general review of artificial neural  In what follows we first discuss the concept of artificial neural
networks. Instead, it focuses solely on certain kinds of ANN thatnetworks, and explain how their parameters are identified. Then
have proven fruitful in solving real problems, and gives four de-we specifically describe feedforward nets, recursive nets, and radial

tailed examples of applications: basis function nets, the nets that comprise the major types of nets
reported in the literature and used in practice. Finally, we give some
1. fault detection detailed examples of the application of ANN to common chemi-
2. prediction of polymer quality cal engineering problems.
3. data rectification
4. modeling and control ARTIFICIAL NEURAL NETWORKS (ANN)

For those who want more information, Appendix A is a partial list ~ As the term atrtificial neural networks implies, early work in the
of the many applications of ANN to chemical engineering prob- field of neural networks centered on modeling the behavior of neu-
lems, but space prohibits a review of these and the many other arens found in the human brain. Engineering systems are consider-
ticles that have been published in the last 10 years. A good start tably less complex than the brain, hence from an engineering view-
review ANN in general would be tiiéandbook of Neural Com-  point ANN can be viewed as nonlinear empirical models that are
putation [Fiesler, 1996] antatistics and Neural Net Usdisay especially useful in representing input-output data, making predic-
and Titterington, 2000]. tions in time, classifying data, and recognizing patterns. Appendix

What are the advantages people see in using artificial neural nef lists numerous articles | selected from the literature describing
works in constrast with first principles models or other empirical applications of interest to chemical engineers.
models? First, ANN can be highly nonlinear, second the structure To read the literature on the theory and application of artificial
can be more complex, and hence more representative, than maseural networks, you have to become familiar with the prevalent
other empirical models, third the structure does not have to be prgargon, a jargon that is somewhat foreign to engineering.
specified, and fourth, they are quite flexible models. We will men-  Fig. 1 shows the basic structure of a single processing unit in an
tion some of the disadvantages later on! ANN which will be referred to astodein this work and is anal-

An ANN forms a mapping F between and input space X and arogous to a single neuron in the human brain. A node receives one
output space Y. We can distinguish three different kinds of map-or more input signals, Wwhich may come from other nodes or

pings: from some other source. Each input is weighted according to the
value w; which is called aveight These weights are similar to the

To whom correspondence should be addressed. synaptic strength between two connected neurons in the human

E-mail: himmelblau@che.utexas.edu brain. The weighted signals to the node are summed and the result-
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not be prespecified, but refer to Baum and Haussler [1988] for
some ideas. Fig. 3 is an example ANN. You can find numerous
other architectures in the literature; Lippmann [1987] documents
at least 50 other network configurations. Hybrid nets, that is nets
composed of different or similar ANN, or nets connected to other
types of models that are not ANN, cannot be discussed here, but
a considerable literature exists for various types of architectures.
A group of nodes called thieput layerreceives a signal from
some external source. In general, this input layer does not process
the signal unless it needs scaling. Another group of nodes, called

Fig. 1. Structure of a single processing node.

1 . . , the output layer, return signals to the external environment. The re-
09 | . maining nodes in the network, are calleddennodes because
08 | ] they do not receive signals from or send a signal to an external
2 o1} | source or location. The hidden nodes may be grouped into one or
T 06 ] morehidden layersEach of the arcs between two nodes (the lines
o between the circles in Fig. 3) has a weight associated with it. Fig.
- 0S5 1 . .
= 04 L 3 shows a layered network'ln which Fhe Iayers are fuIIy. connecf[ed
no from one layer to the next (input to hidden, hidden to hidden, hid-
0.3 den to output). Although this type of connectivity is frequently
02 ¢ used, other patterns of connectivity are possible. Connections may
0.1 ¢ 1 be made between nodes in honadjacent layers or within the same
0 6 4 _'2 0 2 "1 P layer, or feedback connections from a node in one layer to a node
Node Activation, h in a previous layer can also be made. This latter type of connec-

tion is called aecurrentconnection to be discussed below and, de-
pending on the type of application for which the network is being
used, such a connection may have a time delay associated with it.
ing signal, called thactivation h, is sent to &ransfer functiong, Another part of the jargon associated with ANN models relat-
which can be any type of mathematical function, but is usually tak-es to model identification. Generally, there is no direct analytical
en to be a simple bounded differentiable function such as the signethod of calculating what the values of the weights are if a net-
moid (Fig. 2). If the functioig is active over the entire input space, work is to model a particular behavior of a process. Instead the net-
it is termed aylobal transfer function in constrast with radial basis work must bdrained on a set of data (called ttiaining se} col-
functions (to be described subsequently) thatosa functions. lected from the process to be modeled. Training is just the pro-
The resulting output of the node, @ay then be sent to one or cedure of estimating the values of the weights and establishing the
more nodes as an input or taken as the output of an ANN modelnetwork structure, and the algorithm used to do this is called a

A collection of nodes connected to each other forms the artifi-“learning” algorithm. The learning algorithm is nothing more than
cial neural network. Cybenko [1987] and numerous subsequent asome type of optimization algorithm. Once a network is trained,
ticles have shown that various networks of such functions can apit provides a response with a few simple calculations, one of the
proximate any input-output relation to the desired degree of accuadvantages of using an ANN instead of a first principles model in
racy (in the limit exactly). Of course, how many nodes to use cancases for which the model equations have to be solved over and

over again.

A key difficulty with optimization for neural network problems

is that multiple minima occur (see Fukuoka et al. [1998]). Since

most training procedures used for neural networks typically find
Output Layer local minima starting from randomly selected starting guesses for

the parameters, it should be expected that local minima of vary-

ing quality will be found. While use of a global optimization pro-
Hidden Layer cedure, such as genetic algorithms, branch and bound, or simulated
annealing, might thus appear to be called for, the training time for
such algorithms expands to an unacceptable degree. Consequently,
satisfactory representation of data rests on the use of one local min-
imum achieved in a reasonable time.

Regardless of what training algorithm is used to calculate the
values of the weights, all of the training methods go through the
Input Layer same general steps. First, the available data is divided into a train-
ing and test set(s). The following procedure is then used (called

“supervised learning”) to determine the values of weights of the
Fig. 3. Structure of a layered neural network. network:

Fig. 2. Plot of the sigmoid transfer function.

Hidden Layer
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1. for a given ANN architecture, the values of the weights in the Outputs
network are initialized as small random numbers;
2.the inputs of the training set are sent to the network and th
resulting outputs are calculated;
3. some measure (an objective function) of the error between th
outputs of the network and the known correct (target) values is cal
culated;
4. the gradients of the objective function with respect to each of
the individual weights are calculated;
5. the weights are changed according to the optimization searc
direction and step length determined by the optimization code; Input Layer
6. the procedure returns to step 2;
7. the iteration terminates when the value of the objective func-

tion calculated using the data in the test set starts to increase.

Fig. 4. Graph of the information flow in a feed-forward neural
network. Circles represent computation nodes (transfer
functions), and lines represent weighted connections. The
bias thresholding nodes are represented by squares.

Output Layer

Hidden Layer

Inputs

The type of objective function that is typically used in a training
algorithm will be discussed subsequently below.

If target values are not known so that the learning goal is not de-
fined in terms of specific correct examples, a procedure called “un-
supervised learning” that is analogous to classification in statisticsieural networks are commonly encountered models in the litera-
can be employed. A net will then produce output signals correture (see [Fine, 1999]). Computation nodes are arranged in layers
sponding to the established input category, i.e., extract featureand information feeds forward from layer to layer via weighted
from seemingly unstructured data. We will not discuss this type ofconnections as illustrated in Fig. 4. While the neural network liter-
training. ature uses jargon such as training patterns, test sets, connections

The purpose of partitioning the available data into the a train-weights, and hidden layers, for modeling involving ANN, here we
ing and test set is to evaluate how well the netwerkeralizes  formulate artificial neural network models in terms of classical
(predicts) to domains that were not included in the training set. Fononlinear system identification. Graphs of the network information
non-trivial problems you probably cannot collect all of the possi- flow help explain the more formidable equations.
ble input-output patterns needed to span the input-output space for Mathematically, the typical feed-forward network can be ex-

a particular behavior or process to be modeled. Therefore, you haygressed as

to train the network with some subset of all of the possible input-

output patterns. However, the training set must be representative of Y=¢IC,(Bu+b)+b] @)
the domain of interest if you expect the network to learn (interpo-wherey; is the output vector corresponding to input veato€

late among the data) the underlying relationships and correlations theconnection matriXmatrix of weights) represented by arcs

in the process that generated the data. If not, the net may not préfom the hidden layer to the output layris the connection ma-

dict well for similar data, and may predict poorly for completely trix from the input layer to the hidden layer, dndndb, are the
novel data (extrapolate). Noise in the data surprisingly automatibias vectors for the hidden and output layers, respectiiéhy)

cally provides some smoothing, namely by adding the absoluteareg,( - ) are the vector valued functions corresponding tadtie
value of the first derivative of the objective function as a penalty vation (transferfunctionsof the nodes in the hidden and output lay-
to the objective function. By holding some of the data back fromers, respectively. Thus, feed-forward neural network models have
the training phase to comprise a test set, you can evaluate how wétie general structure of

the neural network can generalize by examining the value of the >

prediction error to the test set. y=t(u) @

For three reasons you often need to carry out some type of urwheref( - ) is a nonlinear mapping. Hence feed-forward neural net-
supervised preprocessing of the data to be used in identifying avorks are structurally similar to nonlinear regression models, and
network so that you can Eq. (2) represents a steady state process.

To use models for identification of dynamic systems or predic-

1. reduce the dimensionality of the data (feature extraction), andion of time series, a vector comprised of a moving window of past
thus the complexity of the net used to represent it along with thenput values delayed coordinat¢smust be introduced as inputs

correlations among variables; to the net. This procedure yields a model analogous to a nonlinear
2. transform the data into a more suitable format for processindinite impulse response model where
by the net; _ _ _
3. eliminate or reduce auto correlation for each variable. Yi=Y, andu=[u,, ey, ..., U] or Y =f([U, Uy, .y Upcy])- (3)
The lengths of the moving window must be long enough to cap-
FEED FORWARD NETWORKS ture the system dynamics for each variable in practice. In practice,

the duration of the data windows are determined by trial and error
Three layer (sometimes called two layer) feed-forward artificial (cross validation), and each individual input and output variable
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might have a separate data window for optimal performance. Externally Recurrent Networks (ERN), on the other hand, con-
If you use windows of past inputs and outputs in feed-forwardtain time delayed feedback connections from the output layer to
neural network models for dynamic modeling, the nets tend to behe hidden layer. You can also envision a hybrid recurrent network
very large with the result that they include hundreds of parametera/hich contains both types of recurrent connections, and might be
that have to be estimated. Each additional input to the neural netescribed as an Internal-External Recurrent Network (IERN) such
model adds greatly to the size of the network and the number os the network pictured in Fig. 5. Simulation studies, both pub-
parameters that must be estimated. As a specific example, if thiished and unpublished, have indicated no clear advantage of using
input vector at timé consists of 4 different variables, and the num- an IRN versus an ERN, or even an IERN, for dynamic modeling.
ber of past values of each is selected to be 6, the net must contadoth IRN and ERN models seem to be equally satisfactory in
24 input nodes. If this hypothetical network were to have 12 hid-most process modeling applications.
den nodes and 2 output nodes, the total number of parameters to Another possibility is to include a moving window of past out-
be estimated, including the bias terms, would total 326. The larggouts along with the past inputs to the network
number of parameters necessitates large quantities of training or

identification data, and slower times for identification. O ) “)
analogous to a more general nonlinear time series model.
RECURRENT NETWORKS If we allow the vectors,, X,, andy, to denote the vector out-

puts of the input, hidden, and output nodes, respectively, at time
Recurrent Neural Networks (RNN) have architectures similart, we can formulate an IRN network as a discrete time model
to standard feed-forward Artificial Neural Networks with layers = 6, (Ax+Bu.+b) ®)
of nodes connected via weighted feed-forward connections, but Xon= UAXTEL
also include time delayed feedback or recurrent connections in the vy,,,=¢,(Cx..,+b,) (6)
network architecture. Examine Fig. 5. . . .where andp,( - ) areg,( - ) are the vector valued functions corre-
Recurrent neural network models have the same relationship to . YR . ; i
. F sponding to the activation functions in the hidden and output lay-
feed-forward neural network models as autoregressive/infinite im- . N
. L ers, respectively. In most applications the scalar elements of the
pulse response models have to moving averageffinite impulse res ) 0 . .
. : ; aussian activation function for each hidden node are
sponse models. RNN provide a more parsimonious model struc-
ture of reduced complexity because the feedback connections large-
ly obviate the necessity of data windows of time lagged inputs.

RN.N alsp have a d'r.e ct nonI!near state space Interpretation USSvhere vis the total input to each node. Usually all the elements
ful in optimal estimation as discussed below.

L L . are made identical for simplicity. Linear activation functions are
Two individual variations of recurrent neural network architec- plicity.

tures are commonly employed. The first is called an Internally Re_typlcglly used in the 'output'layer. The ma'truéeﬁ, anglC are the
current Network (IRN), that is characterized by time delayed feed_matr|ce§ of cpnnect|or! weights for'the hidden to hidden repurrent
back connections to t’he hidden nodes. Examine the connectioncsonnecuons’ inputt to hidden, and hidden to output connections, re-

. . - . _Spectively, and the vectdog andb, are the bias vectors for the
in the hidden layer in Fig. 5. The remainder of the network COM-\ 1 4en and output layers. By posing the IRN model in the above

prise a standard feed-forward architecture. This structure is als? : .
orm we see that this type of recurrent neural network is a non-
known as an Elman network [Elman, 1990]. . . : . .
linear extension of the standard linear state-space model in which
the outputs of the hidden layer nodesye the states of the model.

In a similar fashion we can write nonlinear state space equations
for the ERN. Whereas in the IRN model the states are the out-
puts of the hidden nodes, in the ERN model the states are the out-
puts of the nodes in the output layer so that the state space eg-

0(v)=exp5 )

uations are
X1+1= ¢u[c¢h(DX1+But+bh) +bu] (8)
yt+l:Xt+l (9)

where the matricd8 andC and vectord, andb, have the same
meaning for the ERN as the IRN, and the m&¥is the matrix
of weights for the recurrent connections from the output layer at
time t-1 to the inputs of the hidden layer at time t.
Inputs Although the ERN and IRN can exhibit comparable modeling
) . . performance, they have different features that may make one more
Fig. 5. Representation of internally/externally recurrent neural . ; .
networks. Circles represent computation nodes, lines re- desqable j[han the other for a particular process. Just like the con-
present weighted connections; zindicates time delay. For ~ ventional linear state space model, the IRN does not have any struc-
clarity not all recurrent connections are shown and bias  tural limit on the number of model states because the number of
nodes are omitted. hidden nodes can be freely varied. The ERN, however, can only
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have the same number of states as model outputs because the cotite other class is to add terms to the objective function that prune
puts are the states. The IRN thus tends to be more flexible in modhe network by driving some weights to zero during training [Kam-
eling. The ERN has the advantage that the model states haverazzom, 1992; Reed, 1993]. These techniques require some pa-
clear physical interpretation in that they are the variables of theameter tuning which is problem dependent to obtain good per-
process itself, whereas the states of the IRN are hypothetical anfdrmance. An alternate approach to building a net (the “growing”
neither unique nor canonical. technique) is to start with a small number of hidden nodes and add
Since both types of models have been posed as difference eqew nodes or split existing nodes if the performance of the net-
uations (rather than differential equations), to complete the modelyvork is not satisfactory. Pruning is identical to backward elimina-
a vector of initial values of the model states must be specified. Intion and growing to forward selection in regression.
tialization of ERN models is simple because the user can observe You can apply principal component analysis, or the Karhunen-
the current values of the process output and use those values to ineeve transformation, to your data set to reduce the number of in-
itialize the states. Just as with linear state space models, IRN moguts to a net, and hence reduce the size and structure of the net.
els are more difficult to initialize as the states lack physical mean-The transformed coordinates can be arranged in order of their sig-
ing. In applications you usually initialize the states of IRN mod- nificance, with the first being the components corresponding to the
els with the median value of the activation function of the hiddenmajor eigenvectors of the correlation matrix (largest eigenvalues).
nodes (0.5 if the activation function ranges from 0 to 1.0). Inaccu-A major weakness of these methods is that they are not invariant
racies in the state initialization typically result in initial inaccuracies under a transformation of the variables. For example a linear scal-
in the model predictions, but these die out in a time of the order ofng of the input variables (that may be caused by a change of units
the dominant time constant of the process being modeled. Sucfor the measurements or by scaling needed for identification) is
startup transients can be minimized by holding the network inputssufficient to modify the PCA results. Feature selection methods
constant using the initial input vector and cycling the IRN model that are sufficient for simple distributions of the patterns belonging
until the states and hence the output of the network becomes cotw different classes can fail in classification tasks with complex de-

stant. This is equivalent to assuming thatyfor all t<O0. cision boundaries. In addition, methods based on a linear depend-
ence (such asorrelation) cannot take care of arbitrary relations
SELECTION OF THE SPECIFIC ARCHITECTURE OF between the pattern coordinates and the different classes.
AN ANN

PARAMETER IDENTIFICATION

Once you decide on a particular category from which to select
an ANN for your application, you still must determine the specific  If you choose one of the Recurrent Neural Network (RNN)
details concerning the structure of the nodes (transfer functionstructures as a model, Egs. (5) and (6), or (8) and (9), how do you
and the connections between them. No general theoretically basesbtimate the values of the parameters (the weights) of the net-
strategy exists to carry out this task, but numerous strategies hawgork? The standard way from the perspective of investigators us-
been proposed. Refer to van de Laer and Henkes [1999] and thieg neural networks is to train the networks to reproduce the de-
references therein or to Reed [1993]. An appropriate size networkired dynamic behavior using the backpropagation-through-time al-
should exhibit: gorithm [Hertz, 1991]. Closer examination of this technique reveals

that what is really being carried out is conventional prediction error

1. Good “generalization”, i.e., prediction for new data, by avoid- estimation [Lyung, 1987] which will be briefly described here.
ing under- and over-fitting Let the parameters vector in the RNN nonlinear state-space

2. Computational efficiency; the smaller the network, the fewer model be denoted B/where
the parameters, less data is needed, and the identification time is

less 8={A; B; C; b, b} (10)
3. Interpretation of the input-output relation is so far as possible.for the IRN model and
0={B; C; D; b,; b} 11

Because ANN are not unique, that is many nets can produce iden-
tical outputs from prespecified inputs, and many different goals carfor the ERN model. Let the vector of prediction errors of either
be deemed “best”, searching for the “best” net in some sense ig1odel be

rarely an efficient use of your time. A “satisfactory” net is all that

you need to make predictions or classify data. €(0)=y,~9.(0) (12)
If you choose to start the training (identification) with more
nodes and connections than you eventually plan to end up withwherey, is the vector of observed outputs (@) is the vector

the net will contain considerable redundant information after theof predictions from the model. The observed data from the pro-
training terminates. What you should do then is prune the nodesess being modeled is the set of input-output vector pairs
and/or links from the network without significantly degrading per-
formance. Pruning techniques can be c%tegorizgd in?o twogcr;sses. ZU= Y Ui Y g Yo U s Yo U (13)
One is the sensitivity method [Lee, 1991]. The sensitivity of the where Nis the number of data samples ani the process input
error function is estimated after the network is trained. Then thevector. The goal in prediction error identification is to minimize the
weights or nodes which relate to the lowest sensitivity are prunedprediction error of the model for the data Z&by adjusting the
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parameter vectd, i.e. You cannot assume the values are not autocorrelated even if the
. residual errors are normally distributed, hence any confidence lim-
min J(Q’ZN):ﬁ ACEC) (14) its you place on the outputs must be developed with care.
6 =1

Eqg. (14) is the standard unweighted least squares objective func- THE BIAS/VARIANCE ISSUE

tion. When working with data containing outliers it is often more

robust to use The great strength of neural networks, in general, is their ability

to “learn” (represent) arbitrary mappings through their role as non-
parametric estimators. This strength is also a weakness because in
fitting input-output data, a large number of weights must be ad-
justed during training. If we consider the problem to be one of
forming an estimateyf(x; D), of an unknown model, ER}} giv-

en a training set D=X(, v, ..., &, Yu)}: the mean square estima-

min 8.2 =35 ¢(¢(@)) (15)

where the functiod(¢) is a positive, scaler function such as

1
2(€)=lel orZ(e)=logHL+ € . tion error between the function we create and the actual model is
: ; - o E[(f(x; D)-ElyX])7=(E[(f(x; D)]-Ely[x])*
Because ANN models are nonlinear in the coefficients, iterative
+E[(f(x; D)=E[f(x; D)])7] (16)

methods must be used to minimize Eq. (14). The backpropagation
algorithm is a gradient descent scheme that is well suited for parfor any arbitrary« and all possible realizations of D. The first term
allel implementation in hardware as each stage uses only local iren the right hand side of the equality sign is the square of the bias
formation about the inputs and outputs of each activation nodebetween our estimate and the unknown model, and the second
For calculations on a serial computer, more efficient optimizationterm is the variance of our estimate, i.e.
techniques such as the BFGS or conjugate gradient algorithms are
preferred. Although analytic formulation of the gradients 6f J(
ZM with respect t@ given the specific equations for the ANN is thus decomposing the estimation error into bias and variance com-
quite complex because of the existence of state feedback in recuponents. A trade-off exists between reducing bias and variance in
rent nets, use of the gradient calculation as done in the BP algeestimation theory [Goman et al., 1992; Moody, 1994]. A simple
rithm [Hertz, 1991; Werbus, 1990] is both intuitive and computa- parametric model with few parameters may show low variance in
tionally efficient. Analytical gradients of the objective function can the estimation error but intolerable bias in its predictions due to an
be combined with an efficient quasi-Newton optimization code inability to capture the complexity of the system being modeled.
such as NPSOL in MATLAB or GRG2 in Excel to yield rapid pa- A traditional feed-forward neural network with hundreds or thou-
rameter identification. We do not recommend trying to programsands of weights may have very low bias but high variance due to
the parameter identification code; instead use a commercial codever-fitting of the noisy training data. The goal is to minimize both
focusing on ANN. bias and variance. You may be able to reduce variance by using
The parameter estimation scheme described above is knowlarger and larger training sets, and to reduce bias by increasing size
as prediction error estimation. An inherent assumption underlyingof the network, making a large optimization problem quite difficult
this strategy is that the process output measurergegmsly con- to solve. But a more common approach to the control of estima-
tain additive white noise (noise uncorrelated in time) while the pro-tion bias and variance in modeling feedforward ANN is that of
cess inputs are assumed to be deterministic. In reality, these aperiodic stopping during training and using cross validation to eval-
sumptions are rarely met, and it can be shown that even when sinuate the residual error. When the residual error no longer decreases,
ple linear regression is used to model a steady-state process, ttraining is stopped and the weights (coefficients) are fixed. This
presence of noise in the independent variable will yield biased paprocedure is a form of regularization and is discussed from a sys-
rameter estimates and biased predictions. Noise in the inputs i&m identification perspective in [Sjoberg and Ljang, 1992]. Other
also a serious problem in the identification of linear dynamic mod-methods of controlling both bias and variance in neural network
els because when the effect of input noise is neglected, and it exnodels include reducing the number of weights through pruning
ists, prediction error methods cannot give consistent parameter esr slowly allowing the network to grow while training to prevent
timates. If the noise characteristics of the process measurementser-parameterization.
are known, this problem can be ameliorated to a degree, but in gen- Recurrent networks alleviate many of the problems of over-fit-
eral how to resolve the problem is still open. For nonlinear, non-ting and the need for large training sets characteristic of feedfor-
parametric system identification such as for ERN or IRN, the prob-ward networks when applied to modeling dynamic processes.
lem of bias similary exists, and is further complicated by the non-The absence of a need for a history window for each input variable
linearity of the model. In the case of nonlinear systems modeleds well as fewer hidden nodes translates into significantly fewer
by parametric models, various types of linearization based error-inweights and less chance of over-fitting for a given data set. In-
the-variables methods have been proposed [Kim et al., 1990]. Sinzorporation of prior knowledge about the process to be modeled
ilar methods could be applied to neural network models if modelinto the neural net as in Ungar’s work [Psichogious and Unger,

(estimation erroff (biasy+variance 17)

bias became a serious problem. 1992] may allow the parameter count to be reduced even further.
Another problem with using the prediction error method has to
do with the uncertainty associated with predicted output values. MODEL VALIDATION
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Fig. 7. Structure of the radial basis functions network.

Time Shift

Fig. 6. The autocorrelation function for white noise. ) ) . )
Kosanovich [1998] review some of the theory (existence, unique-

ness, stability etc). The structure of a RBFN (Fig. 7) differs from

Model validation is an important part of system identification. an ANN in that the inputs to the network are fed directly into the
Although a large number of statistical hypothesis tests and evaluadidden nodes through connections with unity fixed weights. Each
tion criteria have been developed for linear, steady-state systemapde represents only a limited range of the total range of an input
the problem is much more complicated for nonlinear, dynamic sysvariable, hence is a local function. The transfer function of each
tems. A simple criterion of model validity is the value of the ob- hidden node is a radial basis function (RBF) usually Gaussian or
jective function 3, Z") when the model is applied to a data set ellipsoidal:
(2" different than the data sé"j used for system identification. )

However, such a criterion does not distinguish between error g(|)=eXpD_LI|—_CLLD (19)

[l 2 [

caused by model mismatch (bias) and the error due to data corrup- °
tion. More sophisticated tests are based on correlational analysis wherel denotes the vector of inputs to the natlis a vector
which you examine the prediction erra®). If a non-linear, non-  which centers each function of the RBF in the input sgaisea
parametric model is adequate and unbiased, then the prediction éspan” parameter, and || - || a vector norm. Note that the output of
rors should be uncorrelated with all linear and nonlinear combinathis radial basis function is 1 whénc and drops off to zero &s
tions of past inputs and outputs [Billings and Varn, 1986]. This moves away frong (figuratively shown by the sketches in the cir-
outcome can be determined using the normalized cross-correlatiocular node symbols in Fig. 7). The outputs of the hidden nodes are

function then sent to an output layer through a layer of weighted connec-
A T Wst-1) tions. The weighted signals are summed, and the sum forms the
QD)= — (18) output of the network, i.e. the transfer functions in the output layer
HISUALDISLEQ) are linear. The sum of overlapping functior3 fgfm a smoothed

Here(pr]wz is the normalized cross-correlation between two vari-representation of data as do ANN, and have been shown to be
ables (time serieg, andy,), T is the time shift, andis the time capable of universal approximation [Frombe, 1988].

index. You can plot the,,,(t) as a functiortdbr both positive Two major advantages exist for this type of network structure.
and negative time lags. Examine Fig. 6 which is an example ofFirst, using established numerical methods for clustering (group-
®,.,.(T) wheny, is a white noise sequence, and exhibits negligi- ing) data, the values ofcan be calculated for each hidden node.
ble autocorrelation. Because the estimated correlations will neveBelection of the number of hidden nodes is a complex problem in
be exactly zero, approximate 95% confidence bands can be drawelustering. The values of can be arbitrary or evaluated (separate-
as+1.96/./N for large N to indicate if the correlations are signi- ly from c) by simple optimization. The weights to the output layer
ficant. For multivariate, nonlinear models it is of course impractical can be calculated directly during training by linear regression be-
to check every possible cross-correlation, but the auto and crossause of the linear relations between output nodes and the outputs
correlations should be calculated for the residuals as a minimabf the radial basis functions. Thus, the time to train the network is

check on model validity. much shorter than for ANNs. Second, if a unique new input vector
is encountered in testing, the network output will go to zero be-
RADIAL BASIS FUNCTION NETWORKS cause of the local properties of the RBF in Eg. (19). This is a ma-

jor advantage over most other network types since neural networks
If you view ANN such as shown in Figs. 4 and 5 as providing generally extrapolate for new inputs very poorly. While RBFN
system outputs that result from a finite sum of weighted outputs ofuffer from this same problem, at least they are capable of detect-
nonlinear functions forming the hidden nodes, then humerous neting when the network is being asked to extrapolate.
works are analogous to ANN. One type is the radial basis func- One major disadvantage of RBFN is that like ANN time must
tion network (RBFN) which was first used for process modeling be explicitly incorporated into the structure by using a window of
by Chen et al. [1990]. Lee et al. [1999] and Gurumoorthy andpast process inputs and outputs as the inputs to the network. Un-
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T | R 55: 25: 20
l Number of tubes: 108; length: 4.88 m; outside tube diameter:
r 3.18 cm; thickness: 0.26 cm; tube arrangements: square tube pitch:
T 8 3.97 cm; tube-side fouling layer thickness: 0
—d Heat Exchanper L
i F3 Shell side
L. l F Feed: water
inside diameter: 54 cm
Fig. 8. A typical heat exchanger. =F; and F.=F, for the example. shell-side fouling layer thickness: 0 cm
Table 1. Prespecified data for the normally operating heat ex- Baffles
changer '
Steam 1 Steam 2 Steam 3 Steam 4 Number of cuts (segments) for each baffle: single
Temperature, T (K) 533 977 708.2  599.8 For the fault of tube plugging (tube-sided only), the degree of
Flow rate, F (kg/hr) 9080 4086 9080 4086 the fault was classified into 4 cases-the number of tubes plugged
Pressure, P (kPa) 207 345 148 236  was 5, 3, 2, and 1. In the study of fouling (both for the tube-side

and the shell-side), the degree of fouling was expressed as a func-

tion of the decreased cross-sectional area which was also classified
fortunately, with RBFN, the size of the network scales exponen-into 4 cases, namely a decrease of 8%, 5%, 3%, and 1%, respec-
tially with the number of inputs to the network. Each of the hid- tively. To make the simulated measurements more realistic, two
den nodes represents a bump in the input space, and the numberdifferent levels of normally distributed noise were added to the de-
bumps required to model a process over the entire space rises eberministic flows, pressure, and temperatures so that the coeffi-
ponentially with the dimension of the input space. Even for steadycients of variation of the noise were 0.02 and 0.01. Fig. 9 illus-
state models, RBFN become impractical with more than 4 or 5 intrates a typical feedforward ANN used to classify the respective

put variables. faults.
We now present four examples of applications of ANN in typi-  To train the ANN, each measurement, namely the temperatures
cal chemical engineering processes. of all four streams (I T,, T;, and T,), the two flow rates (Fand
F,), and the pressure drops in the tube and shellAizg, éand
EXAMPLE 1. FAULT DETECTION USING AN ANN AP, for both the normal (clean) and faulty states had to be lin-

early scaled to be between the rangelofind 1. The network was

This example from Suewatanakul [1993] demonstrates the us&rained so that 0.9 represented the normal state (yes) while 0.1 re-
of a feedforward ANN to detect faults in a heat exchanger. Fig. 8oresented the faulty state (no). For example, a target output pat-
is a sketch showing the input and output measurements of an exern of 0.9 0.9 0.9 represented a pattern in which the heat ex-
changer. The temperature and flow rate deviations from normathanger was clean. The target pattern from a state in which there
were deemed to be symptoms of the physical causes of faults. Th~
two physical causes considered faults here were tube plugging ar
partial fouling in the heat exchanger internals. The diagnosticabil 71 T F F2
ity of a neural network is compared with Bayesian and KNN clas-
sifiers to detect the internal faults.

Rather than using data from an operating heat exchanger, th
Simulation Sciences code PROCESS was used to generate dz
for clean and fouled conditions for a steady state counter-currer
heat exchanger. To generate the data for both the clean and fau
conditions, a data file for each faulty (and normal) condition was
prepared. Information about the thermodynamic properties of the
streams, the fluid and exchanger physical properties, the configure
tion of the heat exchanger, the number of tubes, the size of th
tubes and shell, and the fouling layer thickness in the tube an
shell sides (for fouled conditions) was prespecified. Table 1 lists
the physical data and the normal parameters for the heat exchang

12 hidden nodes

Qutput layer

totally-plugged tbes  fouled tubes fouled shell
Tube side (If no, output = 0.9 (If no, output = 0.9 (If no, output = 0.9
clse, output = 0.1) clse, output =0.1)  else, output = 0.1)

Feed: mixture of water: ethyl benzene: styrene of compositionFig. 9. The network architecture used in the training for internal
(weight percent) fault detection (bias nodes are not shown).
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was one or more totally-plugged tube was 0.1 0.9 0.9. The targetable 3. Classification rates yielded by traditional methods (when
output pattern of 0.9 0.1 0.9 represented a state in which fouled the noise coefficient of variation was 0.02)
tubes existed while a target output pattern of 0.9 0.9 0.1 repre-

Tube plugging

sented a state in which fouling existed on the shell side. The train-

ing data set contained 80 patterns each for the four different classes Number of

Bayes procedure

5-NN procedure

(a total of 320 training patterns). Another set of 20 patterns for totally plugged  Training

each class was used for testing the classification capability of the tubes

Testing  Training
% correct % correct % correct % correct

Testing

ANN (a total of 80 patterns). NPSOL was the optimization code 5 100 100 100 98.00
used in the training of the ANN. 3 100 100 100 95.00

In testing the ANN, a threshold value of 0.5 for the output of an 2 100 98.00 100 92.50
output node was used as the discrimination criterion for classifica- 1 100 93.00 100 89.75

tion. If the activation of an output node was greater than 0.5, then

Tube-side fouling

that node was deemed activated and represented a faulty state of

Bayes procedure

5-NN procedure

the exchanger. If the node value was less than 0.5, then the node o, area was
was deemed to be not activated, and the fault was said not to oc- decreased
cur. Table 2 lists the results for one set of runs from the training

Training

Testing  Training
% correct % correct % correct % correct

Testing

and testing of the net. 5 100 96.00 100 93.00

By way of comparison, the two tradition classifiers, Bayesian 3 100 91.50 100 89.00
and k-nearest neighbors (KNN, K=5 in Table 3), were also ap- 2 98.75 90.00 98.75 83.00
plied to the data sets. Table 3 lists the results. 1 97.50 88.00 97.50 80.50

Multivariate hypothesis tests on the means of the measurements

Shell-side fouling

gave much larger rates of misclassification. The conclusion is that

ANN for this type of analysis are no worse than traditional meth- o4 grea was

Bayes procedure

5-NN procedure

ods of classification, and may have some edge. decreased  Training  Testing Training  Testing
% correct % correct % correct % correct

EXAMPLE 2. PREDICTION OF POLYMER QUALITY 5 100 97.00 100 96.00
USING AN ANN 3 100 95.00 100 93.50
2 98.75 91.00 98.75 90.00
This example from Barton [1997] illustrates the use of a recur- 1 98.75 89.00 98.75 80.50

Table 2. Classification rates for the neural network (when the
noise coefficient of variation was 0.02)

rent ANN to predict polymer quality in an industrial reactor unit.
Operation and control of industrial polymerization reactors is dif-

Tube plugging: ficult because of the lack of reliable and timely measurements of
Number of % correctly classified key polymer product quality variables close to the reactor. Often
totally-plugged tubes Training Testing product samples must b.e.co.llected hogrs downstream from the re-
actor, after the polymer finishing operations. Measurement of these
5 100 100 quality variables is typically performed off-line in a laboratory and
3 100 100
2 100 100
! 100 9 [Industrial Reactor ]
Tube-side fouling: X
ILr
% correctly classified Xa,¢
% area was decreased — - X3¢
Training Testing M¢ \
5 100 95.00 @
3 100 93.75 ()
2 98.75 92.50 FF) (FT)
1 97.50 86.25 _@
Shell side fouling: <5>
CA

% correctly classified

% area was decreased

Training Testing
5 100 96.25 . Finishing Section|——
3 100 95.00 - ;
2 98.75 93.75 Qs
1 97.50 92.50

Fig. 10. Schematic of an industrial polymerization reactor.
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may not be available for several hours after the sample is delivereith Fig. 10.0( - ) is a vector-valued nonlinear (sigmoidal) activation
to the lab. Thus, the measurements of the quality variables arrivéunction; andA, B, andC are weight matrices that are trained us-
too late to provide useful feedback for control. ing historical data. Qbelow represents the company’s prediction
Fig. 10 is a schematic of an industrial polymerization reactor androm a previously developed steady state model.
subsequent finishing section. The reactor feed flowrate, FF, and The IRN in this work was trained using approximately 10,000
feed temperature, FT, are measured and the feed stream is analyzezlirs of data collected at one hour sample intervals over several
for the monomer concentration,,Mhich can be manipulated, and months, and tested using approximately 2,000 hours of data. A
several key impurities, X which are disturbances that affect the pure time delay of 3 hours for the product quality was found to
product quality. The feed rate for the polymerization catalyst, CA,yield the best IRN model, and was incorporated directly into the
is a manipulated variable, and is also measured. The temperatutiaining and testing data. The difference between the 6 hour pure
in the reactor, T, is measured along with the liquid level, L. A re-delay estimated for Land the 3 hour delay used foy, @& ex-
cycle stream from the reactor is analyzed for unreacted monomeplained by the dynamic lag associated with product mixing in the
M,, and the key impurities,; X The recycle flowrate, Ol&gnd the finishing section. For this problem, an IRN with 4 hidden nodes
recycle temperature, OT, are measured, but not directly manipugave the best performance. The measurements,favege inter-
lated. polated to fill in the three hours of missing data between the Q
After the polymer product leaves the reactor, it must be pro-samples.
cessed another two to six hours in the finishing section. After the For this problem the IRN yielded better long term predictions
finishing section, the final polymer product is sampled every four than feed forward networks with feedback of past outputs because
hours and analyzed in the laboratory which takes another foupotentially erroneous old process output measurements did not
hours to return the quality measurement, Ohe product quality  have to be used in the network input vector. Long term predictions
is also measured on-ling (but the on-line instrument was unreli- were necessary for this model because the goal was to use the
able and only sporadically available, and when in operation wasnodel to develop strategies for directly controlling Quring
difficult to keep calibrated. grade transitions.
The reactor in Fig. 10 was used to manufacture several differ- The criterion for evaluating models for predicting, @as the
ent polymer grades spanning a wide operating range over whiclstandard prediction error (SPE):
the reactor is highly nonlinear. The polymer finishing section im-
parts dynamics to the responsg  changes in reactor conditions SPE= l%(Q.ah ~Onoa)?
due to mixing. NG

An internally recurrent net (IRN) shown in Fig. 11 was used t0 \yhere Q, is the quality measuremeqlt,,,  is the model prediction
model the dynamic process, particularly when changes occurregsither Q, or Q, t is the sample time, and N is the number of

on transition from one grade of polymer to another. samples in the data set. In this work the product quality was scaled
The model corresponding to Fig. 11 is to lie between 0 and 10.
X1 =O(AX,+BU,) Fig. 12 compares the predictions from the linear steady-state
Yo =CX.., (20) model developed by the company operating the reactor with the

) . o predictions from the IRN for the test data set, and the (delayed) lab
wherex., is the network’s internal state vector prediction (OUtpUtS gata (which may not necessarily be correct).

of the hidden nodes) at time t#1; is the network prediction from The IRN is clearly better able to capture the dynamic character-
the vector of process outputs; in this case the network output is thgtics of the reactor, and does an excellent job of predicting the pro-
product quality prediction,  andu, is the vector of network in-  quct quality several hours before the laboratory measurement be-

puts at ime t. The input vector to the IRN model consisted of thezome available. In Fig. 12 two polymer grades are shown and four
measurements FF, CA, M, X, X5, T, and M, as indicated

©  LAB mesasurements

IRN Model Predictions

u(t) ~ y(t+1)= Qirn s

.......... Linear Steady—state Model Predicllons

*

Scaled Product Quallty
@

O Input Node O One Time-step Delay

A Context Node O Computation Node i e oo 'memm';w a0 oo 2000
Fig. 12. Comparison of polymer product quality predictions for
Fig. 11. The IRN structure used in modeling the reactor. testing data set.
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Table 4. Comparison of the Standard Prediction Errors (Scaled by the authors of the paper.

SPEs) for Quality Prediction by the Steady-State and But how good is the rectification if the process model is not
IRN Models known exactly as is usually the case in practice? Furthermore, how
Model Number of parameters Train Test good is the rectification if the probability distribution of the noise is
Q. 12 0.458 0.466 different in practice than the assumed distribution? In this example
Q. 57 0.191 0.210 we describe how internal recurrent neural nets can be used for the

rectification of data from dynamic process whose true mathemati-
cal description is unknown and uncertain.
grade transitions. Quality above 3 represents a “high” grade poly- Dynamic data rectification can be posed as a general optimiza-
mer, while quality below 1 represents a “low” grade polymer. tion problem in which the equations representing the model, the
Quality between 1 and 3 is in a grade transition region, and theANN, form part of the constraints:
IRN predictions are shown to be excellent in these regions. The
large discrepancy between,@nd Q.in the high grade region be-
tween t=1800 and t=2000 in Fig. 12 is caused by the failure of the
steady-state linear model to include the effects of impusity X hx, £)=0
Table 4 lists the SPE results for the IRN model versus the g(x"t)>0
steady-state model when used to predict the product quality. The T
IRN model represents a marked improvement over the lineamwhere® is a generalized objective function (normally the sum of
steady-state model in terms of SPE due to the modeling of procesgjuares or absolute values)s a vector of state variables at time t
dynamics that are imparted by the polymer finishing section, andnot all of which are measured), andrh, are the measurements
because the effects of measured impurities are included in the IRldNd rectified measurements, respectiely,the dynamic process
model. The IRN model accurately predicts the quality variable overmodel,g is a vector of inequality constraints (including bounds on
the entire reactor operating region, even between grades, eliminatie variables), and is a vector of known equality constraints. For
ing the need for switching between different models in different state space models the model constraint equdtiares typically

Minimize: ®(m,,mh, m,.,, M, A) (21)

Subject tof(x, x, u, )=0

operating regions. expressed as dynamic differential equations which are solved via
orthogonal collocation on finite elements. The above minimization
EXAMPLE 3. DATA RECTIFICATION IN A DYNAMIC problem is usually performed for a moving window of past meas-
PROCESS USING AN ANN urements. This window must be long enough to capture relevant

process dynamics, but kept to a minimum to keep the nonlinear

This example from Karjala [1995] shows how nonparametric programming problem size tractable.
models can be used to adjust process data. The goal of data rectifi-In data rectification using an IRN as the mddel Eq. (21),
cation is to compensate for random and nonrandom measuremettie idea is to build a model of the process in which one step
errors by making suitable adjustments to the measured values @head predictions can be made of both the input and the output
the process variables in order to provide the best (in some sensegriables. The input variables may need special treatment (see
estimates of the “true” values. This example focuses on detectin@@arton [1996]). The mathematical model for rectification is
and eliminating gross and random errors, but does not address
other important problems such as bias, correlations, nonperiodic
data, missing measurements, and nonsymmetric probability distriwherer, is the estimate of the process measurement vector at
butions for the process measurements. time t,m, is the actual measurement vector, @fd) is the non-

The termdata reconciliationusually refers to the adjustment linear mapping we seek to identify. Note that with this model the
of process measurements to conform to some prescribed modaurrentrh, is not calculated from,, the current measurement.
Since the model used in this example is nhonparametric, that is thou cannot usen,as an independent variable in the nonparametric
structure is built from the process data itself, we refer to the adjustrepresentatiolis because then system identification would yield
ment asdata rectification Furthermore, as explained below, the the trivial identity mapping afh, m,. Because the noise in each
model involved does not necessarily use current data in the adjustneasurement is assumed to be uncorrelated with the noise in pre-
ment, but uses predicted values of the variables. Consequently, théous measurements, it is possible to identify a system that describ-
term rectification in the sense of “making the data right” seems tces the evolution of the measurement vectors in time using a predic-
be the appropriate word to use. tion error model. The problems encountered when the noise in the

An unfortunate aspect of the literature on the rectification of datameasurements is autocorrelated is beyond our scope here. Because
collected in a dynamic process is that the reported results of rethe model input vectan,_, is not deterministic and contains meas-
ctification always appear to be favorable, because the authors afrement noise, the parameter estimates from the IRN model will
the papers usually assume a known model and probability distribube biased. Nevertheless, good results have been obtained for non-
tion for the noise in the data. To demonstrate how well rectificationlinear processes in which the process measurements are corrupted
works, the authors simulate deterministic process data and corrufily Gaussian and spike type measurement errors. In “training” the
the data by adding the known noise (almost always white GausdRN, i.e., estimating the values of the coefficients, the targets are
ian), and perhaps gross errors. Then, the noise and gross errors e measurements. The states of the net are the outputs of the “hid-
removed using the known, exact model by the strategy proposeden” nodes, but these variables have no physical meaning, and the

mt:G(mrlimt*Zmt*SiAimO) (22)
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0.5 g y " y y This example from MacMurray [1993] explains how an ANN

045 | Naw“f:&sé’éﬁmi?éi ‘ model can be used for model predictive control. Model predictive

04} True Values - | control (MPC) involves using a process model to predict future
5 o35} v process behavior so that the controlled variables can be manipu-
g 03 | lated such that the process will meet some desired future state(s),
8 025 L ° | e.g., set-point, trajectory of set-points, maximize a yield, minimize
8 the operating cost, or any combination of these. The performance
% 02 of MPC relies heavily on the quality of the process model, and de-
o 015 veloping or identifying a valid process model is a major part of the

0.1 work required to implement MPC.

0.05 | Models based on first principles represent the process by a set

. . . of equations (linear and/or nonlinear ordinary and partial differen-
40 60 al 100 120 tial equations, and algebraic equations) derived from conservation
laws and knowledge of the process. The model form is well esta-
blished, but values of a few parameters have to be either estimated
from data or derived from physical laws in order to make predic-

Fig. 13. Rectification of the outlet concentration.

ass | Measurements  « ] tions using such models. Models constructed in this fashion are
' Network Estimates — known as parametric models.
497 ] In contrast, nonparametric models comprise an arbitrary but us-
S 485 1 ually very flexible model structure involving numerous parameters
§ 48 r which must be estimated from ample process data. The key advan-
§ 475 | tage of nonparametric models are that little oarmiori knowl-
g 47f edge of the process is required, the development time for the mod-
3 sest el can be quite short compared to the first principles approach, and
46 F prediction using the identified model is rapid because sets of eg-
455 uations do not have to be solved for each new input vector. A pro-
45 . ‘ . . cess can not wait several seconds for the optimization problem to
| 40 60 80 100 120 be solved if it requires controller action immediately.
time When posed as an optimization problem, MPC uses the pro-
Fig. 14. Rectification of the outlet temperature. cess model as a constraint in evaluating the trajectory of the pro-
cess according to some objective function. Traditionally, the objec-
number of nodes was determined by trial and error. tive function is expressed as:

To compare rectified measurements with their “true” values, we
used a model published by Seinfeld [1970] to develop simulated ®= Z[ysp(tk”) =9t )] QY sptiss) ~9 (s
measurements (You cannot use actual process data and know what '™
the “true” values of the measurements are.). The process consisted ~ +3 Au'(t,.)RAU(t;) (23)
of a continuous nonlinear stirred tank reactor (CSTR) with a first- o
order exothermic reaction and heat removal by a coil or jacketsubject to:
Jang et al. [1986] used this example to compare extended Kalman
filtering to a nonlinear programming approach for state and para- y=F(v.u (24)

g prog g app p

meter estimation. We added Gaussian noise to the simulated deter- u,,;,SAU(t+;) SUyay (25)
ministic process measurements, and used the simulated noisy AUt )|<Au (26)
measurements in identifying an IRN model for rectification based AT max
on step changes in the inputs to the reactor. where y(t.;) is the vector of set-points of the controlled vari-

Figs. 13 and 14 show the results using the trained net for rectifiables andy(t,.,) is the vector of model predictions of the con-
cation of the outlet concentration and temperature (the solid lines)trolled variables at time.f (t, is the current time) which is gen-
respectively, together with the simulated test data (the diamondskgrated by the model of the process representédmig the pre-
and the respective true values (the dashed line). You can see thdittion horizon; it defines the time interval for optimizing the pro-
the rectified values are excellent. Keep in mind that the resultscess trajectory and how far into the future the process model will
shown above did not require that the true model be used as a cohe called on to predict.
straint. An important but usually ignored factor in process model- N,,.is the number of control moves in a control horizon, C,
ing is that variable delay occurs in a response from a process sghich will be made by the controller €@). If C is shorter than
that modeling the delay successfully in a theoretically based modehe prediction horizon, the manipulated variahlegre assumed
is quite formidable. The IRN model automatically accommodatesto remain constant at their last computed valugs,), for the re-

delay. mainder of the precition horizon; @hd Rare weighting matrices
for each time step along the prediction and control horizons respec-
EXAMPLE 4. PROCESS CONTROL USING AN ANN tively, and are usually diagonal matrices.
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Egs. (25) and (26) restrict the changes which can be made in t 0.045 E -

. . : i \ feed rate = 1.250 —-
values of the manipulated variables, since for a real processthem L N =1.375 -
nipulated variables may be limited in range and rate of change b 3 0.04 l - = iggg o
physical limitations of the operating equipment. - b -1

As posed in Egs. (23)-(26), the tuning parameters of MPE, are .2 0035 | ‘ =1,
C, and the weighting matrices, @d R Generally, a longer con- g t ,,,,, =2
trol horizon will make the controller more aggressive as willa & 3 | 1%
shorter prediction horizon andce versaR, penalizes control “3,, [
moves and hence large elements;iwiRmake the controller less g 0.025 - '\.\
aggressive. There are no generally accepted rules of thumb fors 8 \
lecting the tuning parameters, but the computation time requirec 0.02 . . . ; , : y
to perform the optimization will increase as either P or C is in- 2 4 6 8 10 12 14 16
creased. Depending on the complexity of the model used to de Vapor Boilup Rate (gmol/s)
scribe the process, the computation time to perform the optimizaFig. 16. Steady-state output of the VE model with Sulzer packing,
tion may be the limiting factor in applying MPC, and hence influ- xf=0.5 and xd=1xb.

ence the selections of the value®dt, and the type of model it-
self. For stability of such a system when the model is an ANN re-
fer to Kulawski and Brdys [2000]. sumed:
To demonstrate the use of ERN in control, MacMurray devel-
oped an ERN model based on the work of Patwardhan [1991] who e« equimolar counter diffusion
modeled a pilot plant packed distillation column (see Fig. 15). A negligible liquid phase mass transfer resistance
feed stream enters the column (with flow rééed and compo- « vapor boilup used as an input.
sition, xf) between two packed sections (a rectifying section and
a stripping section) that contain a structured or unstructured pack- In the identification of the column, the feed compositidnaid
ing material which is used to produce and support the liquid-vapoiflow rate feed were assumed to be the disturbances, and the ma-
interface inside of the column. Mass transfer occurs between theipulated variables were the vapor boilup reke) (and either the
vapor flowing up and the liquid flowing down the column. The reflux rate ) or the distillate rated{s)). Since the level in the con-
vapor exiting at the top of the column is condensed, and part of thdenser drum was held constant, the value of the distillate rate de-
resulting liquid flow is returned to the column at the top (the re- termined the value of the reflux rate ank versaVarious ERN
flux, rr); the remainder is taken as the distillate prodiisf) {vith models were used to predict the distillate and bottoms composi-
compositiorxd Part of the liquid flow out of the bottom of the col- tions,xd andxh, respectively, the controlled variables. Patwardhan's
umn is vaporizedvpr) in a reboiler and sent back to the bottom of VE model was deemed to be the “true” process, and his code was
the column. The remainder is taken as the bottoms product with aised to generate the deterministic training and test data for the
composition ofxb. ANN modeling. The operation and design parameters of the col-
The reason that this packed column is of interest is that the pradmn used were identical to those used by Patwardhan.
cess gain changes sigh over the operating region shown in Fig. 16. Data for the training and data sets used to estimate the weights
Patwardhan’s model for the separation of a binary mixture of cy-in the ERN were generated by making step changes in the feed
clohexane and n-heptane contained two partial differential equavariables and recording the response of the exit compositions every
tions, three ordinary differential equations, and eight algebraic eq60 s (the time constant in this region of operations was approxi-
uations, and was used in lieu of data from the actual pilot plant colmately 4000 s). Two PI controllers were used to change the manip-
umn to simulate data for identification of the ERN. The model as-ulated variables to states such that the distillate and bottoms com-
positions would return to their set points after the disturbances in
the feed had been introduced. Because of the relatively low volu-
metric hold up in the packed sections of the column and the man-
ner in which the “true” model was implemented mathematically,
xd there was virtually no dead time associated with the response of
w dist the outputs of the column when changes were made in any of the
disturbances or manipulated inputs.

Gaussian random noise with a coefficient of variation of 0.01
xt ] for each of the four input and two output variables was added to
feed the deterministic measurements to represent measurement noise.
All of the resulting data were scaled into the range of zero to one
in order to prevent scaling problems during training of the ERN,

i and also to insure a fair influence of each of the output variables
L—l—‘ when the objective function was computed. To give the precision
X needed, the final sizes of the training and test sets comprised 8333
Fig. 15. Diagram of a packed distillation column. data points each.
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Because Patwardhan’s model (which represented the actual cc 0.976 - .

Z model —-

umn W?") took too Iong to solve for the purpose of control, one 0.975 © ANN model —
of his simpler approximate models developed for control (the Z set-point

model) comprised of one ordinary differential equation and three 0.974
nonlinear algebraic equations was compared to various ERN. Th
result of control using the ERN shown below are for a model with
2 recurrent inputs to the hidden nodes, 15 hidden nodes, and a to
of 197 weights. This particular model represented the best bal

ance between representing the steady state and unsteady state ¢

0973

0972
0971

Distillate Composition (mol %)

simultaneously. In practice it is possible that a network which 097
modeled the dynamics very well and the steady state very poorl 0.969 ) . . ) ) )
(or vice versa) could be selected over a network which modelec 0 50 100 150 200 250 300
both the dynamics and steady state moderately well. Time (minutes)

Fig. 17 shows the response of one column output, the distillatéig. 19. Response of the distillate composition for MPC using the
composition, to two changes in the setpoint. Some slight steady Z and ERN models after step disturbances in the feed
state offset occurred with the ERN network for the bottoms com- flowrate.

position as shown in Fig. 18 as might be expected to occur in prac-
tice because of mismatch between the model used by the controliéihe ERN model (with the error feedback scheme implemented)

and the actual process (e.g. the parameters for the mass transfer pepvided substantially better control performance than did the Z
uations will not be exactly correct). model.

To reduce the steady state offset, a simple error feedback scheme

was added to the model predictive controller. Use of the Z and WHAT ARE THE FUTURE PROSPECTS FOR ANN?
ANN models for MPC was also compared when measured distur-

bances were introduced into the feed flowrate. Fig. 19 shows that Many competing types of models exist for process modeling
besides ANN. A number of the advantages and disadvantages of

0974 ' i ' _ using ANN have been discussed in previous sections. For pro-
- Z model —— cesses too complex to be modeled by a first principles model, not
® 0972 _K ERN model —--- well understood, or that take too long to model with various em-
E 0.97 set-point - pirical models, an ANN model might be a very effective choice
& 0963 for a model. Because ANN work best when interpolating, the need
3 to collect suitable data and the time required to train the nets re-
g 0966 present the two disadvantages in using ANN. On the other hand,
8 0.964 in principle ANN would involve less model mismatch for a real
_fé 0.062 | process and would reduce the computation time to predict outputs
E T from inputs. Some process design and operation simulators, such
a 09 as those by Pavilion Technologies, Inc., already incorporate ANN
0.958 . " . based on the argument that an engineer can model a process quick-
S0 100 150 200

Time (minutes) ly from the process data alone. Probably the arrival of more val-
idated software that use ANN as part of a state and/or dynamic
process flowsheeting code will be needed if practicing engineers
are to use ANN extensively in the next decade.

Fig. 17. Response of the distillate composition under MPC to set-
point changes using the Z and ERN models.
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